1. The use of ectopic volar fibroblasts to modify skin identity.
- Author
-
Lee SS, Sweren E, Dare E, Derr P, Derr K, Wang CC, Hardesty B, Willis AA, Chen J, Vuillier JK, Du J, Wool J, Ruci A, Wang VY, Lee C, Iyengar S, Asami S, Daskam M, Lee C, Lee JC, Cho D, Kim J, Martinez-Peña EG, Lee SM, He X, Wakeman M, Sicilia I, Dobbs DT, van Ee A, Li A, Xue Y, Williams KL, Kirby CS, Kim D, Kim S, Xu L, Wang R, Ferrer M, Chen Y, Kang JU, Kalhor R, Kang S, and Garza LA
- Subjects
- Adult, Female, Humans, Male, Amputees, Cell Differentiation, Collagen metabolism, Elastin metabolism, Hand, Keratin-9 metabolism, Bioprinting, Dermis cytology, Dermis metabolism, Epidermis metabolism, Fibroblasts cytology, Fibroblasts transplantation, Keratinocytes cytology, Keratinocytes metabolism, Biomedical Enhancement methods
- Abstract
Skin identity is controlled by intrinsic features of the epidermis and dermis and their interactions. Modifying skin identity has clinical potential, such as the conversion of residual limb and stump (nonvolar) skin of amputees to pressure-responsive palmoplantar (volar) skin to enhance prosthesis use and minimize skin breakdown. Greater keratin 9 ( KRT9 ) expression, higher epidermal thickness, keratinocyte cytoplasmic size, collagen length, and elastin are markers of volar skin and likely contribute to volar skin resiliency. Given fibroblasts' capacity to modify keratinocyte differentiation, we hypothesized that volar fibroblasts influence these features. Bioprinted skin constructs confirmed the capacity of volar fibroblasts to induce volar keratinocyte features. A clinical trial of healthy volunteers demonstrated that injecting volar fibroblasts into nonvolar skin increased volar features that lasted up to 5 months, highlighting a potential cellular therapy.
- Published
- 2024
- Full Text
- View/download PDF