1. Mechanistic Comparisons of bpy and phen Ligand Backbones in Cr-Mediated Co-Electrocatalytic CO2 Reduction
- Author
-
Amelia Reid, Megan Moberg, Connor Koellner, Juan Moreno, Shelby Hooe, Kira Baugh, Diane Dickie, and Charles Machan
- Abstract
Due to the rise in atmospheric carbon dioxide (CO2) concentrations, there is a need for the development of new strategies to enhance the selectivity and activity of the electrocatalytic conversion of CO2 to value-added products. The incorporation of redox mediators (RMs) as co-catalysts to enhance the transfer of redox equivalents during catalysis has been gaining more attention in recent years across a variety of small molecule transformations. We have shown that using Cr-centered complexes with sulfone-based RMs leads to an enhancement of CO2 reduction electrocatalysis under protic conditions via an inner-sphere mechanism. In these co-catalytic systems, an oxygen atom of the reduced RM binds to the Cr center to form a key intermediate stabilized by pancake bonding between the reduced aromatic components of the catalyst ligand backbone and the RM. This interaction facilitates the transfer of an electron and accesses a more kinetically favorable reaction pathway. Here, we show that expanding the aromatic character of the ligand backbone of the catalyst as well as the RM can cause a greater enhancement of co-electrocatalytic activity. These results suggest that further activity improvements can be achieved by focusing on the kinetic and thermodynamic parameters which control association between the catalyst and RM.
- Published
- 2022
- Full Text
- View/download PDF