1. Proteogenomic and metabolomic characterization of human glioblastoma.
- Author
-
Wang LB, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y, Rykunov D, Colaprico A, Rothstein JH, Hong R, Stathias V, Cornwell M, Petralia F, Wu Y, Reva B, Krug K, Pugliese P, Kawaler E, Olsen LK, Liang WW, Song X, Dou Y, Wendl MC, Caravan W, Liu W, Cui Zhou D, Ji J, Tsai CF, Petyuk VA, Moon J, Ma W, Chu RK, Weitz KK, Moore RJ, Monroe ME, Zhao R, Yang X, Yoo S, Krek A, Demopoulos A, Zhu H, Wyczalkowski MA, McMichael JF, Henderson BL, Lindgren CM, Boekweg H, Lu S, Baral J, Yao L, Stratton KG, Bramer LM, Zink E, Couvillion SP, Bloodsworth KJ, Satpathy S, Sieh W, Boca SM, Schürer S, Chen F, Wiznerowicz M, Ketchum KA, Boja ES, Kinsinger CR, Robles AI, Hiltke T, Thiagarajan M, Nesvizhskii AI, Zhang B, Mani DR, Ceccarelli M, Chen XS, Cottingham SL, Li QK, Kim AH, Fenyö D, Ruggles KV, Rodriguez H, Mesri M, Payne SH, Resnick AC, Wang P, Smith RD, Iavarone A, Chheda MG, Barnholtz-Sloan JS, Rodland KD, Liu T, and Ding L
- Subjects
- Brain Neoplasms pathology, Computational Biology methods, Glioblastoma pathology, Humans, Metabolomics methods, Mutation genetics, Phospholipase C gamma genetics, Phospholipase C gamma metabolism, Phosphorylation physiology, Protein Tyrosine Phosphatase, Non-Receptor Type 11 genetics, Proteomics methods, Brain Neoplasms metabolism, Glioblastoma genetics, Glioblastoma metabolism, Protein Tyrosine Phosphatase, Non-Receptor Type 11 metabolism, Proteogenomics methods
- Abstract
Glioblastoma (GBM) is the most aggressive nervous system cancer. Understanding its molecular pathogenesis is crucial to improving diagnosis and treatment. Integrated analysis of genomic, proteomic, post-translational modification and metabolomic data on 99 treatment-naive GBMs provides insights to GBM biology. We identify key phosphorylation events (e.g., phosphorylated PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct immune cell types are discovered using bulk omics methodologies, validated by snRNA-seq, and correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in classical-like and immune-low GBM is driven largely by BRDs, CREBBP, and EP300. Integrated metabolomic and proteomic data identify specific lipid distributions across subtypes and distinct global metabolic changes in IDH-mutated tumors. This work highlights biological relationships that could contribute to stratification of GBM patients for more effective treatment., Competing Interests: Declaration of interests S.Y. is employed by Sema4. A.H.K. consults for Monteris Medical. P.W. is a statistical consultant for Sema4. M.G.C. receives research support from Orbus Therapeutics and NeoimmuneTech Inc, and royalties from UpToDate., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF