Olivier Peyrusse, Laurent Gremillet, Sadaoki Kojima, M. Ehret, Francisco Suzuki-Vidal, S. J. Rose, J. J. Honrubia, Vladimir Tikhonchuk, C. Mossé, Toma Toncian, Marco A. Gigosos, L. Giuffrida, P. Forestier-Colleoni, Joao Santos, Shohei Sakata, Dimitri Batani, Ph. Korneev, Nigel Woolsey, Annette Calisti, Farhat Beg, J.-R. Marquès, Mathieu Bailly-Grandvaux, Alexey Arefiev, Zhe Zhang, Shinsuke Fujioka, Alessio Morace, Sandrine Ferri, Gabriel Schaumann, Ricardo Florido, Markus Roth, King Fai Farley Law, Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Departamento de Optica y Fisica Aplicada, Universidad de Valladolid [Valladolid] (UVa)-Facultad de Ciencias, Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Imperial College London, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), and Royal Society
Powerful laser-plasma processes are explored to generate discharge currents of a few $100\,$kA in coil targets, yielding magnetostatic fields (B-fields) in excess of $0.5\,$kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, describing qualitatively the evolution of the discharge current, the major control parameter is the laser irradiance $I_{\mathrm{las}}\lambda_{\mathrm{las}}^2$. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at $60 \,\mathrm{\mu m}$ depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics., Comment: 11 pages, 7 figures, invited APS