1. High-fidelity universal gates in the $^{171}$Yb ground state nuclear spin qubit
- Author
-
Muniz, J. A., Stone, M., Stack, D. T., Jaffe, M., Kindem, J. M., Wadleigh, L., Zalys-Geller, E., Zhang, X., Chen, C. -A., Norcia, M. A., Epstein, J., Halperin, E., Hummel, F., Wilkason, T., Li, M., Barnes, K., Battaglino, P., Bohdanowicz, T. C., Booth, G., Brown, A., Brown, M. O., Cairncross, W. B., Cassella, K., Coxe, R., Crow, D., Feldkamp, M., Griger, C., Heinz, A., Jones, A. M. W., Kim, H., King, J., Kotru, K., Lauigan, J., Marjanovic, J., Megidish, E., Meredith, M., McDonald, M., Morshead, R., Narayanaswami, S., Nishiguchi, C., Paule, T., Pawlak, K. A., Pudenz, K. L., Pérez, D. Rodríguez, Ryou, A., Simon, J., Smull, A., Urbanek, M., van de Veerdonk, R. J. M., Vendeiro, Z., Wu, T. -Y., Xie, X., and Bloom, B. J.
- Subjects
Quantum Physics ,Physics - Atomic Physics - Abstract
Arrays of optically trapped neutral atoms are a promising architecture for the realization of quantum computers. In order to run increasingly complex algorithms, it is advantageous to demonstrate high-fidelity and flexible gates between long-lived and highly coherent qubit states. In this work, we demonstrate a universal high-fidelity gate-set with individually controlled and parallel application of single-qubit gates and two-qubit gates operating on the ground-state nuclear spin qubit in arrays of tweezer-trapped $^{171}$Yb atoms. We utilize the long lifetime, flexible control, and high physical fidelity of our system to characterize native gates using single and two-qubit Clifford and symmetric subspace randomized benchmarking circuits with more than 200 CZ gates applied to one or two pairs of atoms. We measure our two-qubit entangling gate fidelity to be 99.72(3)% (99.40(3)%) with (without) post-selection. In addition, we introduce a simple and optimized method for calibration of multi-parameter quantum gates. These results represent important milestones towards executing complex and general quantum computation with neutral atoms.
- Published
- 2024