6,587 results on '"Kim, Y. S."'
Search Results
2. A compact and stable incidence-plane-rotating second harmonics detector
- Author
-
Kim, S. H., Jung, S., Seok, B., Kim, Y. S., Park, H., Otsu, T., Kobayashi, Y., Kim, C., and Ishida, Y.
- Subjects
Physics - Instrumentation and Detectors ,Physics - Optics - Abstract
We describe a compact and stable setup for detecting the optical second harmonics, in which the incident plane rotates with respect to the sample. The setup is composed of rotating Fresnel-rhomb optics and a femtosecond ytterbium-doped fiber-laser source operating at the repetition frequency of 10 MHz. The setup including the laser source occupies an area of 1 m2 and is stable so that the intensity fluctuation of the laser harmonics can be less than 0.2 % for 4 h. We present the isotropic harmonic signal of a gold mirror of 0.5 pW and demonstrate the integrity and sensitivity of the setup. We also show the polarization-dependent six-fold pattern of the harmonics of a few-layer WSe2, from which we infer the degree of local-field effects. Finally, we describe the extendibility of the setup to investigate the samples in various conditions such as cryogenic, strained, ultrafast non-equilibrium, and high magnetic fields.
- Published
- 2021
- Full Text
- View/download PDF
3. Development of a Standard Test Method for Reducing the Uncertainties in Measuring the Capture Efficiency of Range Hoods
- Author
-
Kim, Y-S, Walker, I, and Delp, W
- Published
- 2021
4. Work function seen with sub-meV precision through laser photoemission
- Author
-
Ishida, Y., Jung, J. K., Kim, M. S., Kwon, J., Kim, Y. S., Chung, D., Song, I., Kim, C., Otsu, T., and Kobayashi, Y.
- Subjects
Condensed Matter - Materials Science - Abstract
Electron emission can be utilised to measure the work function of the surface. However, the number of significant digits in the values obtained through thermionic-, field- and photo-emission techniques is typically just two or three. Here, we show that the number can go up to five when angle-resolved photoemission spectroscopy (ARPES) is applied. This owes to the capability of ARPES to detect the slowest photoelectrons that are directed only along the surface normal. By using a laser-based source, we optimised our setup for the slow photoelectrons and resolved the slowest-end cutoff of Au(111) with the sharpness not deteriorated by the bandwidth of light nor by Fermi-Dirac distribution. The work function was leveled within $\pm$0.4 meV at least from 30 to 90 K and the surface aging was discerned as a meV shift of the work function. Our study opens the investigations into the fifth significant digit of the work function., Comment: For an associated blog-type posting, see https://devicematerialscommunity.nature.com/posts/measuring-the-work-function-precisely-by-using-laser-arpes
- Published
- 2020
- Full Text
- View/download PDF
5. Kant and Hegel in Physics
- Author
-
Kim, Y. S.
- Subjects
Physics - History and Philosophy of Physics ,Quantum Physics - Abstract
Kant and Hegel are among the philosophers who are guiding the way in which we reason these days. It is thus of interest to see how physical theories have been developed along the line of Kant and Hegel. Einstein became interested in how things appear to moving observers. Quantum mechanics is also an observer-dependent science. The question then is whether quantum mechanics and relativity can be synthesized into one science. The present form of quantum field theory is a case in point. This theory however is based on the algorithm of the scattering matrix where all participating particles are free in the remote past and in the remote future. We thus need, in addition, a Lorentz-covariant theory of bound state which will address the question of how the hydrogen atom would look to moving observers. The question is then whether this Lorentz-covariant theory of bound states can be synthesized with the field theory into a Lorentz-covariant quantum mechanics. This article reviews the progress made along this line. This integrated Kant-Hegel process is illustrated in terms of the way in which Americans practice their democracy., Comment: LaTex 20 pages, 9 figures, Appendix added
- Published
- 2020
6. Classification of the symmetry of photoelectron dichroism broken by light
- Author
-
Ishida, Y., Chung, D., Kwon, J., Kim, Y. S., Soltani, S., Kobayashi, Y., Merriam, A. J., Yu, L., and Kim, C.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
We investigate how the direction of polarized light can affect the dichroism pattern seen in angle-resolved photoemission spectroscopy. To this end, we prepared a sample composed of highly-oriented Bi(111) micro-crystals that macroscopically has infinite rotational and mirror symmetry of the point group $\rm{C}_{\infty\rm{v}}$ and examined whether the dichroism pattern retains the $\rm{C}_{\infty\rm{v}}$ symmetry under the stationary configuration of the light and sample. The direction of the light was imprinted in the pattern. Thereby, we apply group theory and classify the pattern with the configuration of light taken into account. We complete the classification by discussing the cases when the out-of-plane component of the polarization can be neglected, when the incidence angle is either 0$^{\circ}$ or 90$^{\circ}$, when the polarization is either elliptic or linear, and also when the sample is a crystal.
- Published
- 2020
7. Momentum dependent $d_{xz/yz}$ band splitting in LaFeAsO
- Author
-
Huh, S. S., Kim, Y. S., Kyung, W. S., Jung, J. K., Kappenberger, R., Aswartham, S., Büchner, B., Ok, J. M., Kim, J. S., Dong, C., Hu, J. P., Cho, S. H., Shen, D. W., Denlinger, J. D., Kim, Y. K., and Kim, C.
- Subjects
Condensed Matter - Superconductivity - Abstract
We performed angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of the nematic phase in LaFeAsO. Degeneracy breaking between the dxz and dyz hole bands near the {\Gamma} and M point is observed in the nematic phase. Different temperature dependent band splitting behaviors are observed at the {\Gamma} and M points. The energy of the band splitting near the M point decreases as the temperature decreases while it has little temperature dependence near the {\Gamma} point. The nematic nature of the band shift near the M point is confirmed through a detwin experiment using a piezo device. Since a momentum dependent splitting behavior has been observed in other iron based superconductors, our observation confirms that the behavior is a universal one among iron based superconductors.
- Published
- 2020
8. Environmental Factors Associated with the Eukaryotic Microbial Diversity of Ulleungdo Volcanic Island in South Korea
- Author
-
Yun, H. S., Lee, J. H., Choo, Y. S., Pak, J. H., Kim, H. S., Kim, Y. S., and Yoon, H. S.
- Published
- 2022
- Full Text
- View/download PDF
9. Role of Quantum Optics in Synthesizing Quantum Mechanics and Relativity
- Author
-
Kim, Y. S.
- Subjects
Quantum Physics ,Physics - History and Philosophy of Physics - Abstract
Two-photon states produce enough symmetry needed for Dirac's construction of the two-oscillator system which produces the Lie algebra for the O(3,2) space-time symmetry. This O(3,2) group can be contracted to the inhomogeneous Lorentz group which, according to Dirac, serves as the basic space-time symmetry for quantum mechanics in the Lorentz-covariant world. Since the harmonic oscillator serves as the language of Heisenberg's uncertainty relations, it is right to say that the symmetry of the Lorentz-covariant world, with Einstein's $E = mc^2$, is derivable from Heisenberg's uncertainty relations., Comment: Latex 16 pages with 6 figuresbased on an invited talk presented at the 26th International Conference on Quantum Optics and Quantum Information (Minsk, Belarus, May 2019)
- Published
- 2019
10. Numerical Prediction of Failure in Single Point Incremental Forming Using a New Yield Criterion for Sheet Metal
- Author
-
Quach, H., Xiao, X., Kim, J. J., Kim, Y. S., Inal, Kaan, editor, Levesque, Julie, editor, Worswick, Michael, editor, and Butcher, Cliff, editor
- Published
- 2022
- Full Text
- View/download PDF
11. Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions
- Author
-
Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Al-Bataineh, H., Alexander, J., Alfred, M., Al-Jamel, A., Al-Ta'ani, H., Angerami, A., Aoki, K., Apadula, N., Aphecetche, L., Aramaki, Y., Armendariz, R., Aronson, S. H., Asai, J., Asano, H., Aschenauer, E. C., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bagoly, A., Bai, M., Baksay, G., Baksay, L., Baldisseri, A., Bannier, B., Barish, K. N., Barnes, P. D., Bassalleck, B., Basye, A. T., Bathe, S., Batsouli, S., Baublis, V., Bauer, F., Baumann, C., Baumgart, S., Bazilevsky, A., Belikov, S., Belmont, R., Bennett, R., Berdnikov, A., Berdnikov, Y., Bhom, J. H., Bickley, A. A., Bjorndal, M. T., Blau, D. S., Boer, M., Boissevain, J. G., Bok, J. S., Borel, H., Boyle, K., Brooks, M. L., Brown, D. S., Bryslawskyj, J., Bucher, D., Buesching, H., Bumazhnov, V., Bunce, G., Burward-Hoy, J. M., Butsyk, S., Camacho, C. M., Campbell, S., Roman, V. Canoa, Caringi, A., Castera, P., Chai, J. -S., Chang, B. S., Chang, W. C., Charvet, J. -L., Chen, C. -H., Chernichenko, S., Chi, C. Y., Chiba, J., Chiu, M., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chung, P., Churyn, A., Chvala, O., Cianciolo, V., Citron, Z., Cleven, C. R., Cobigo, Y., Cole, B. A., Comets, M. P., del Valle, Z. Conesa, Connors, M., Constantin, P., Csanád, M., Csörgö, T., Dahms, T., Dairaku, S., Danchev, I., Danley, T. W., Das, K., Datta, A., Daugherity, M. S., David, G., Dayananda, M. K., Deaton, M. B., Dehmelt, K., Delagrange, H., Denisov, A., d'Enterria, D., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Do, J. H., Donadelli, M., D'Orazio, L., Drachenberg, J. L., Drapier, O., Drees, A., Drees, K. A., Dubey, A. K., Durham, J. M., Durum, A., Dutta, D., Dzhordzhadze, V., Edwards, S., Efremenko, Y. V., Egdemir, J., Ellinghaus, F., Emam, W. S., Engelmore, T., Enokizono, A., En'yo, H., Espagnon, B., Esumi, S., Eyser, K. O., Fadem, B., Fan, W., Feege, N., Fields, D. E., Finger, M., Finger, Jr., M., Fleuret, F., Fokin, S. L., Forestier, B., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fung, S. -Y., Fusayasu, T., Gadrat, S., Gainey, K., Gal, C., Gallus, P., Garg, P., Garishvili, A., Garishvili, I., Gastineau, F., Ge, H., Germain, M., Glenn, A., Gong, H., Gong, X., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Grim, G., Perdekamp, M. Grosse, Gunji, T., Guo, L., Gustafsson, H. Å., Hachiya, T., Henni, A. Hadj, Haegemann, C., Haggerty, J. S., Hagiwara, M. N., Hahn, K. I., Hamagaki, H., Hamblen, J., Han, R., Hanks, J., Harada, H., Hartouni, E. P., Haruna, K., Harvey, M., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Haslum, E., Hasuko, K., Hayano, R., He, X., Heffner, M., Hemmick, T. K., Hester, T., Heuser, J. M., Hiejima, H., Hill, J. C., Hill, K., Hobbs, R., Hodges, A., Hohlmann, M., Hollis, R. S., Holmes, M., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Hornback, D., Hotvedt, N., Huang, J., Huang, S., Hur, M. G., Ichihara, T., Ichimiya, R., Iinuma, H., Ikeda, Y., Imai, K., Imrek, J., Inaba, M., Inoue, Y., Iordanova, A., Isenhower, D., Isenhower, L., Ishihara, M., Isobe, T., Issah, M., Isupov, A., Ivanishchev, D., Iwanaga, Y., Jacak, B. V., Javani, M., Ji, Z., Jia, J., Jiang, X., Jin, J., Jinnouchi, O., Johnson, B. M., Jones, T., Joo, K. S., Jouan, D., Jumper, D. S., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kaneta, M., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kanou, H., Kapustinsky, J., Karatsu, K., Kasai, M., Kawagishi, T., Kawall, D., Kawashima, M., Kazantsev, A. V., Kelly, S., Kempel, T., Khachatryan, V., Khanzadeev, A., Kijima, K. M., Kikuchi, J., Kim, A., Kim, B. I., Kim, C., Kim, D. H., Kim, D. J., Kim, E., Kim, E. -J., Kim, H. J., Kim, K. -B., Kim, M., Kim, S. H., Kim, Y. -J., Kim, Y. K., Kim, Y. -S., Kincses, D., Kinney, E., Kiriluk, K., Kiss, Á., Kistenev, E., Kiyomichi, A., Klatsky, J., Klay, J., Klein-Boesing, C., Kleinjan, D., Kline, P., Kochenda, L., Kochetkov, V., Komatsu, Y., Komkov, B., Konno, M., Koster, J., Kotchetkov, D., Kotov, D., Kozlov, A., Král, A., Kravitz, A., Krizek, F., Kroon, P. J., Kubart, J., Kunde, G. J., Kurgyis, B., Kurihara, N., Kurita, K., Kurosawa, M., Kweon, M. J., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Layton, D., Lebedev, A., Bornec, Y. Le, Leckey, S., Lee, B., Lee, D. M., Lee, J., Lee, K. B., Lee, K. S., Lee, M. K., Lee, S. H., Lee, S. R., Lee, T., Leitch, M. J., Leite, M. A. L., Leitgab, M., Lenzi, B., Leung, Y. H., Lewis, B., Lewis, N. A., Li, X., Li, X. H., Lichtenwalner, P., Liebing, P., Lim, H., Lim, S. H., Levy, L. A. Linden, Liška, T., Litvinenko, A., Liu, H., Liu, M. X., Lökös, S., Love, B., Lynch, D., Maguire, C. F., Majoros, T., Makdisi, Y. I., Makek, M., Malakhov, A., Malik, M. D., Manion, A., Manko, V. I., Mannel, E., Mao, Y., Mašek, L., Masui, H., Masumoto, S., Matathias, F., McCain, M. C., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Means, N., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Mihalik, D. E., Mikeš, P., Miki, K., Miller, T. E., Milov, A., Mioduszewski, S., Mishra, D. K., Mishra, G. C., Mishra, M., Mitchell, J. T., Mitrovski, M., Mitsuka, G., Miyachi, Y., Miyasaka, S., Mohanty, A. K., Mohapatra, S., Moon, H. J., Moon, T., Morino, Y., Morreale, A., Morrison, D. P., Morrow, S. I., Moss, J. M., Motschwiller, S., Moukhanova, T. V., Mukhopadhyay, D., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagashima, K., Nagata, Y., Nagle, J. L., Naglis, M., Nagy, M. I., Nakagawa, I., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nam, S., Nattrass, C., Nederlof, A., Newby, J., Nguyen, M., Nihashi, M., Niida, T., Norman, B. E., Nouicer, R., Novák, T., Novitzky, N., Nyanin, A. S., Nystrand, J., Oakley, C., O'Brien, E., Oda, S. X., Ogilvie, C. A., Ohnishi, H., Ojha, I. D., Oka, M., Okada, K., Omiwade, O. O., Onuki, Y., Koop, J. D. Orjuela, Osborn, J. D., Oskarsson, A., Otterlund, I., Ouchida, M., Ozawa, K., Pak, R., Pal, D., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J., Park, S., Park, S. K., Park, W. J., Pate, S. F., Patel, L., Patel, M., Pei, H., Peng, J. -C., Peng, W., Pereira, H., Perepelitsa, D. V., Peresedov, V., Peressounko, D. Yu., PerezLara, C. E., Petti, R., Pinkenburg, C., Pisani, R. P., Proissl, M., Purschke, M. L., Purwar, A. K., Qu, H., Radzevich, P. V., Rak, J., Rakotozafindrabe, A., Ravinovich, I., Read, K. F., Rembeczki, S., Reuter, M., Reygers, K., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Richford, D., Rinn, T., Roach, D., Roche, G., Rolnick, S. D., Romana, A., Rosati, M., Rosen, C. A., Rosendahl, S. S. E., Rosnet, P., Rowan, Z., Rukoyatkin, P., Runchey, J., Ružička, P., Rykov, V. L., Ryu, S. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Sakashita, K., Sakata, H., Sako, H., Samsonov, V., Sano, M., Sano, S., Sarsour, M., Sato, H. D., Sato, S., Sato, T., Sawada, S., Schmoll, B. K., Sedgwick, K., Seele, J., Seidl, R., Semenov, A. Yu., Semenov, V., Sen, A., Seto, R., Sharma, D., Shea, T. K., Shein, I., Shevel, A., Shibata, T. -A., Shigaki, K., Shimomura, M., Shohjoh, T., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Skoby, M. J., Skutnik, S., Slunečka, M., Smith, W. C., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Staley, F., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Suire, C., Sukhanov, A., Sullivan, J. P., Sun, J., Sun, Z., Sziklai, J., Tabaru, T., Takagi, S., Takagui, E. M., Takahara, A., Taketani, A., Tanabe, R., Tanaka, K. H., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarján, P., Tennant, E., Themann, H., Thomas, D., Thomas, T. L., Tieulent, R., Todoroki, T., Togawa, M., Toia, A., Tojo, J., Tomášek, L., Tomášek, M., Tomita, Y., Torii, H., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Tuli, S. K., Tydesjö, H., Tyurin, N., Ueda, Y., Ujvari, B., Vale, C., Valle, H., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Vértesi, R., Vinogradov, A. A., Virius, M., Vossen, A., Vrba, V., Vznuzdaev, E., Wagner, M., Walker, D., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., Wessels, J., White, S. N., Willis, N., Winter, D., Wolin, S., Wong, C. P., Woody, C. L., Wright, R. M., Wysocki, M., Xia, B., Xie, W., Xu, C., Xu, Q., Yamaguchi, Y. L., Yamaura, K., Yang, R., Yanovich, A., Yasin, Z., Ying, J., Yokkaichi, S., Yoo, J. H., You, Z., Young, G. R., Younus, I., Yu, H., Yushmanov, I. E., Zajc, W. A., Zaudtke, O., Zelenski, A., Zhang, C., Zharko, S., Zhou, S., Zimamyi, J., Zolin, L., and Zou, L.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The PHENIX collaboration presents first measurements of low-momentum ($0.4
$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\approx}1.25$. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield., Comment: 673 authors from 82 institutions, 10 pages, 4 figures. v2 is version accepted for publication in Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html - Published
- 2018
- Full Text
- View/download PDF
12. On generalization of Bailey's identity involving product of generalized hypergeometric series
- Author
-
Kim, Y. S. and Rathie, A. K.
- Subjects
Mathematics - Complex Variables ,Primary 33B20, 33C20, Secondary 33B15, 33C15 - Abstract
The aim of this research paper is to obtain explicit expressions of (i) $ {}_1F_1 \left[\begin{array}{c} \alpha \\ 2\alpha + i \end{array} ; x \right]. {}_1F_1\left[ \begin{array}{c} \beta \\ 2\beta + j \end{array} ; x \right]$ (ii) ${}_1F_1 \left[ \begin{array}{c} \alpha \\ 2\alpha - i \end{array} ; x \right] . {}_1F_1 \left[ \begin{array}{c} \beta \\ 2\beta - j \end{array} ; x \right]$ (iii) ${}_1F_1 \left[ \begin{array}{c} \alpha \\ 2\alpha + i \end{array} ; x \right] . {}_1F_1 \left[\begin{array}{c} \beta \\ 2\beta - j \end{array} ; x \right]$ in the most general form for any $i,j=0,1,2,\ldots$ For $i=j=0$, we recover well known and useful identity due to Bailey. The results are derived with the help of a well known Bailey's formula involving products of generalized hypergeometric series and generalization of Kummer's second transformation formulas available in the literature. A few interesting new as well as known special cases have also been given., Comment: 7 pages
- Published
- 2017
13. Multi-Purpose Binomial Model: Fitting all Moments to the Underlying Geometric Brownian Motion
- Author
-
Kim, Y. S., Stoyanov, S., Rachev, S., and Fabozzi, F.
- Subjects
Quantitative Finance - Pricing of Securities - Abstract
We construct a binomial tree model fitting all moments to the approximated geometric Brownian motion. Our construction generalizes the classical Cox-Ross-Rubinstein, the Jarrow-Rudd, and the Tian binomial tree models. The new binomial model is used to resolve a discontinuity problem in option pricing.
- Published
- 2016
14. Endoscopic Submucosal Resection of Gastric Neoplasm: A Single Center Experience
- Author
-
Kim, I., additional, Kim, Y. S., additional, and Moon, J. S., additional
- Published
- 2024
- Full Text
- View/download PDF
15. Eugene Paul Wigner's Nobel Prize
- Author
-
Kim, Y. S.
- Subjects
Physics - History and Philosophy of Physics ,Mathematical Physics - Abstract
In 1963, Eugene Paul Wigner was awarded the Nobel Prize in Physics for his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles. There are no disputes about this statement. On the other hand, there still is a question of why the statement did not mention Wigner's 1939 paper on the Lorentz group, which was regarded by Wigner and many others as his most important contribution in physics. By many physicists, this paper was regarded as a mathematical exposition having nothing to do with physics. However, it has been more than one half century since 1963, and it is of interest to see what progress has been made toward understanding physical implications of this paper and its historical role in physics. Wigner in his 1963 paper defined the subgroups of the Lorentz group whose transformations do not change the four-momentum of a given particle, and he called them the little groups. Thus, Wigner's little groups are for internal space-time symmetries of particles in the Lorentz-covariant world. Indeed, this subgroup can explain the electron spin and spins of other massive particles. However, for massless particles, there was a gap between his little group and electromagnetic waves derivable Maxwell's equations. This gap was not completely removed until 1990. The purpose of this report is to review the stormy historical process in which this gap is cleared. It is concluded that Wigner's little groups indeed can be combined into one Lorentz-covariant formula which can dictate the symmetry of the internal space-time time symmetries of massive and massless particles in the Lorentz covariant world, just like Einstein's energy-momentum relation applicable to both slow and massless particles., Comment: 23 pages, 9 figures
- Published
- 2016
16. Symmetries of Massive and Massless Neutrinos
- Author
-
Kim, Y. S.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Theory ,Mathematical Physics - Abstract
Wigner's little groups are subgroups of the Lorentz group dictating the internal space-time symmetries of massive and massless particles. These little groups are like O(3) and E(2) for massive and massless particles respectively. While the geometry of the O(3) symmetry is familiar to us, the geometry of the flat plane cannot explain the E(2)-like symmetry for massless particles. However, the geometry of a circular cylinder can explain the symmetry with the helicity and gauge degrees of freedom. It is shown further that the symmetry of the massless particle can be obtained as a zero-mass limit of O(3)-like symmetry for massive particles. It is shown further that the polarization of massless neutrinos is a consequence of gauge invariance, while the symmetry of massive neutrinos is still like O(3)., Comment: 9 pages with 1 fig; presented at the International Conference on Hadron Structure and QCD: from Low to High Energies (Gatchina, Russia, 2016); to be published in the proceedings
- Published
- 2016
17. Do Small-mass Neutrinos participate in Gauge Transformations?
- Author
-
Kim, Y. S., Maguire Jr, G. Q., and Noz, M. E.
- Subjects
Physics - General Physics - Abstract
Neutrino oscillation experiments presently suggest that neutrinos have a small but finite mass. If neutrinos are to have mass, there should be a Lorentz frame in which they can be brought to rest. This paper discusses how Wigner's little groups can be used to distinguish between massive and massless particles. We derive a representation of the SL(2,c) group which separates out the two sets of spinors contained therein. One set is gauge dependent. The other set is gauge-invariant and represents polarized neutrinos. We show that a similar calculation can be done for the Dirac equation. In the large-momentum/zero-mass limit, the Dirac spinors can be separated into large and small components. The large components are gauge invariant, while the small components are not. These small components represent spin-$\frac{1}{2}$ non-zero mass particles. If we renormalize the large components, these gauge invariant spinors again represent the polarization of neutrinos. Massive neutrinos cannot be invariant under gauge transformations., Comment: 15 pages
- Published
- 2016
- Full Text
- View/download PDF
18. Identification of the Side Population Associated with ATP-Binding Cassette Transporters Activity Using Imaging Flow Cytometry
- Author
-
Gisina, A. M., Kim, Y. S., Yarygin, K. N., and Lupatov, A. Yu.
- Published
- 2021
- Full Text
- View/download PDF
19. Investigation of structure, optical, nonlinear optical, dielectrical properties and electronic results of La0.01Ba0.99TiO3, Sm0.5Sr0.5CoO3 and Sm0.5Sr0.5CoO3/La0.01Ba0.99TiO3 thin films grown on quartz substrates using pulsed laser deposition (PLD) technique
- Author
-
Moez, A. Abdel, Kim, Y. S., and Ali, Ahmed I.
- Published
- 2021
- Full Text
- View/download PDF
20. Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV
- Author
-
Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Al-Bataineh, H., Alexander, J., Alfred, M., Al-Jamel, A., Al-Ta'ani, H., Angerami, A., Aoki, K., Apadula, N., Aphecetche, L., Aramaki, Y., Armendariz, R., Aronson, S. H., Asai, J., Asano, H., Aschenauer, E. C., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Bai, X., Baksay, G., Baksay, L., Baldisseri, A., Bandara, N. S., Bannier, B., Barish, K. N., Barnes, P. D., Bassalleck, B., Basye, A. T., Bathe, S., Batsouli, S., Baublis, V., Bauer, F., Baumann, C., Baumgart, S., Bazilevsky, A., Beaumier, M., Beckman, S., Belikov, S., Belmont, R., Bennett, R., Berdnikov, A., Berdnikov, Y., Bhom, J. H., Bickley, A. A., Bjorndal, M. T., Black, D., Blau, D. S., Boissevain, J. G., Bok, J. S., Borel, H., Boyle, K., Brooks, M. L., Brown, D. S., Bryslawskyj, J., Bucher, D., Buesching, H., Bumazhnov, V., Bunce, G., Burward-Hoy, J. M., Butsyk, S., Campbell, S., Caringi, A., Castera, P., Chai, J. -S., Chang, B. S., Charvet, J. -L., Chen, C. -H., Chernichenko, S., Chi, C. Y., Chiba, J., Chiu, M., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chung, P., Churyn, A., Chvala, O., Cianciolo, V., Citron, Z., Cleven, C. R., Cobigo, Y., Cole, B. A., Comets, M. P., del Valle, Z. Conesa, Connors, M., Constantin, P., Cronin, N., Crossette, N., Csanád, M., Csörgő, T., Dahms, T., Dairaku, S., Danchev, I., Danley, D., Das, K., Datta, A., Daugherity, M. S., David, G., Dayananda, M. K., Deaton, M. B., DeBlasio, K., Dehmelt, K., Delagrange, H., Denisov, A., d'Enterria, D., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Diss, P. B., Do, J. H., Donadelli, M., D'Orazio, L., Drachenberg, J. L., Drapier, O., Drees, A., Drees, K. A., Dubey, A. K., Durham, J. M., Durum, A., Dutta, D., Dzhordzhadze, V., Edwards, S., Efremenko, Y. V., Egdemir, J., Ellinghaus, F., Emam, W. S., Engelmore, T., Enokizono, A., En'yo, H., Espagnon, B., Esumi, S., Eyser, K. O., Fadem, B., Feege, N., Fields, D. E., Finger, M., Finger Jr., M., Fleuret, F., Fokin, S. L., Forestier, B., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fung, S. -Y., Fusayasu, T., Gadrat, S., Gainey, K., Gal, C., Gallus, P., Garg, P., Garishvili, A., Garishvili, I., Gastineau, F., Ge, H., Germain, M., Giordano, F., Glenn, A., Gong, H., Gong, X., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Grim, G., Perdekamp, M. Grosse, Gu, Y., Gunji, T., Guo, L., Guragain, H., Gustafsson, H. -Å., Hachiya, T., Henni, A. Hadj, Haegemann, C., Haggerty, J. S., Hagiwara, M. N., Hahn, K. I., Hamagaki, H., Hamblen, J., Hamilton, H. F., Han, R., Han, S. Y., Hanks, J., Harada, H., Hartouni, E. P., Haruna, K., Harvey, M., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Haslum, E., Hasuko, K., Hayano, R., Hayashi, S., He, X., Heffner, M., Hemmick, T. K., Hester, T., Heuser, J. M., Hiejima, H., Hill, J. C., Hobbs, R., Hohlmann, M., Hollis, R. S., Holmes, M., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Hornback, D., Hoshino, T., Hotvedt, N., Huang, J., Huang, S., Hur, M. G., Ichihara, T., Ichimiya, R., Iinuma, H., Ikeda, Y., Imai, K., Imazu, Y., Imrek, J., Inaba, M., Inoue, Y., Iordanova, A., Isenhower, D., Isenhower, L., Ishihara, M., Isinhue, A., Isobe, T., Issah, M., Isupov, A., Ivanishchev, D., Iwanaga, Y., Jacak, B. V., Javani, M., Jeon, S. J., Jezghani, M., Jia, J., Jiang, X., Jin, J., Jinnouchi, O., Johnson, B. M., Jones, T., Joo, K. S., Jouan, D., Jumper, D. S., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kanda, S., Kaneta, M., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kanou, H., Kapustinsky, J., Karatsu, K., Kasai, M., Kawagishi, T., Kawall, D., Kawashima, M., Kazantsev, A. V., Kelly, S., Kempel, T., Key, J. A., Khachatryan, V., Khandai, P. K., Khanzadeev, A., Kijima, K. M., Kikuchi, J., Kim, A., Kim, B. I., Kim, C., Kim, D. H., Kim, D. J., Kim, E., Kim, E. -J., Kim, G. W., Kim, H. J., Kim, K. -B., Kim, M., Kim, Y. -J., Kim, Y. K., Kim, Y. -S., Kimelman, B., Kinney, E., Kiss, Á., Kistenev, E., Kitamura, R., Kiyomichi, A., Klatsky, J., Klay, J., Klein-Boesing, C., Kleinjan, D., Kline, P., Koblesky, T., Kochenda, L., Kochetkov, V., Kofarago, M., Komatsu, Y., Komkov, B., Konno, M., Koster, J., Kotchetkov, D., Kotov, D., Kozlov, A., Král, A., Kravitz, A., Krizek, F., Kroon, P. J., Kubart, J., Kunde, G. J., Kurihara, N., Kurita, K., Kurosawa, M., Kweon, M. J., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Lebedev, A., Bornec, Y. Le, Leckey, S., Lee, B., Lee, D. M., Lee, G. H., Lee, J., Lee, K. B., Lee, K. S., Lee, M. K., Lee, S, Lee, S. H., Lee, S. R., Lee, T., Leitch, M. J., Leite, M. A. L., Leitgab, M., Lenzi, B., Lewis, B., Li, X., Li, X. H., Lichtenwalner, P., Liebing, P., Lim, H., Lim, S. H., Levy, L. A. Linden, Liška, T., Litvinenko, A., Liu, H., Liu, M. X., Love, B., Lynch, D., Maguire, C. F., Makdisi, Y. I., Makek, M., Malakhov, A., Malik, M. D., Manion, A., Manko, V. I., Mannel, E., Mao, Y., Maruyama, T., Mašek, L., Masui, H., Masumoto, S., Matathias, F., McCain, M. C., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Means, N., Meles, A., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Midori, J., Mignerey, A. C., Mikeš, P., Miki, K., Miller, T. E., Milov, A., Mioduszewski, S., Mishra, D. K., Mishra, G. C., Mishra, M., Mitchell, J. T., Mitrovski, M., Miyachi, Y., Miyasaka, S., Mizuno, S., Mohanty, A. K., Mohapatra, S., Montuenga, P., Moon, H. J., Moon, T., Morino, Y., Morreale, A., Morrison, D. P., Moskowitz, M., Moss, J. M., Motschwiller, S., Moukhanova, T. V., Mukhopadhyay, D., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagashima, K., Nagata, Y., Nagle, J. L., Naglis, M., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nam, S., Nattrass, C., Nederlof, A., Netrakanti, P. K., Newby, J., Nguyen, M., Nihashi, M., Niida, T., Nishimura, S., Norman, B. E., Nouicer, R., Novak, T., Novitzky, N., Nukariya, A., Nyanin, A. S., Nystrand, J., Oakley, C., Obayashi, H., O'Brien, E., Oda, S. X., Ogilvie, C. A., Ohnishi, H., Oide, H., Ojha, I. D., Oka, M., Okada, K., Omiwade, O. O., Onuki, Y., Koop, J. D. Orjuela, Osborn, J. D., Oskarsson, A., Otterlund, I., Ouchida, M., Ozawa, K., Pak, R., Pal, D., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J., Park, J. S., Park, S., Park, S. K., Park, W. J., Pate, S. F., Patel, L., Patel, M., Pei, H., Peng, J. -C., Pereira, H., Perepelitsa, D. V., Perera, G. D. N., Peresedov, V., Peressounko, D. Yu., Perry, J., Petti, R., Pinkenburg, C., Pinson, R., Pisani, R. P., Proissl, M., Purschke, M. L., Purwar, A. K., Qu, H., Rak, J., Rakotozafindrabe, A., Ramson, B. J., Ravinovich, I., Read, K. F., Rembeczki, S., Reuter, M., Reygers, K., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Rinn, T., Riveli, N., Roach, D., Roche, G., Rolnick, S. D., Romana, A., Rosati, M., Rosen, C. A., Rosendahl, S. S. E., Rosnet, P., Rowan, Z., Rubin, J. G., Rukoyatkin, P., Ružička, P., Rykov, V. L., Ryu, M. S., Ryu, S. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Sakashita, K., Sakata, H., Sako, H., Samsonov, V., Sano, M., Sano, S., Sarsour, M., Sato, H. D., Sato, S., Sato, T., Sawada, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seele, J., Seidl, R., Sekiguchi, Y., Semenov, V., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shaver, A., Shea, T. K., Shein, I., Shevel, A., Shibata, T. -A., Shigaki, K., Shimomura, M., Shohjoh, T., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Skolnik, M., Skutnik, S., Slunečka, M., Smith, W. C., Snowball, M., Solano, S., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Staley, F., Stankus, P. W., Steinberg, P., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Stone, M. R., Sugitate, T., Suire, C., Sukhanov, A., Sullivan, J. P., Sumita, T., Sun, J., Sziklai, J., Tabaru, T., Takagi, S., Takagui, E. M., Takahara, A., Taketani, A., Tanabe, R., Tanaka, K. H., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarján, P., Tennant, E., Themann, H., Thomas, D., Thomas, T. L., Tieulent, R., Timilsina, A., Todoroki, T., Togawa, M., Toia, A., Tojo, J., Tomášek, L., Tomášek, M., Torii, H., Towell, C. L., Towell, R., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Tuli, S. K., Tydesjö, H., Tyurin, N., Vale, C., Valle, H., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Vértesi, R., Vinogradov, A. A., Virius, M., Voas, B., Vossen, A., Vrba, V., Vznuzdaev, E., Wagner, M., Walker, D., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., Wessels, J., Whitaker, S., White, A. S., White, S. N., Willis, N., Winter, D., Wolin, S., Woody, C. L., Wright, R. M., Wysocki, M., Xia, B., Xie, W., Xue, L., Yalcin, S., Yamaguchi, Y. L., Yamaura, K., Yang, R., Yanovich, A., Yasin, Z., Ying, J., Yokkaichi, S., Yoo, J. H., Yoon, I., You, Z., Young, G. R., Younus, I., Yu, H., Yushmanov, I. E., Zajc, W. A., Zaudtke, O., Zelenski, A., Zhang, C., Zhou, S., Zimamyi, J., Zolin, L., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems., Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010, 2011, and 2012 data. v2 is version accepted for publication in Phys. Rev. C
- Published
- 2015
- Full Text
- View/download PDF
21. The O(3,2) Symmetry derivable from the Poincar\'e Sphere
- Author
-
Kim, Y. S.
- Subjects
Mathematical Physics ,High Energy Physics - Theory ,Quantum Physics - Abstract
Henri Poincar\'e formulated the mathematics of the Lorentz transformations, known as the Poincar\'e group. He also formulated the Poincar\'e sphere for polarization optics. It is noted that his sphere contains the symmetry of the Lorentz group applicable to the momentum-energy four-vector of a particle in the Lorentz-covariant world. Since the particle mass is a Lorentz-invariant quantity, the Lorentz group does not allow its variations. However, the Poincar\'e sphere contains the symmetry corresponding to the mass variation, leading to the $O(3,2)$ symmetry. An illustrative calculation is given., Comment: LaTex 14 pages, 1 figure, included in the Nova Editorial Book: Relativity, Gravitation, Cosmology: Foundations, edited by Valeriy Dvoeglazov (2015). arXiv admin note: text overlap with arXiv:1203.4539
- Published
- 2015
22. Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\sqrt{s_{_{NN}}} = 62.4$ and 200 GeV
- Author
-
Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Al-Bataineh, H., Al-Jamel, A., Alexander, J., Aoki, K., Aphecetche, L., Armendariz, R., Aronson, S. H., Asai, J., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Baksay, G., Baksay, L., Baldisseri, A., Barish, K. N., Barnes, P. D., Bassalleck, B., Bathe, S., Batsouli, S., Baublis, V., Bauer, F., Bazilevsky, A., Belikov, S., Bennett, R., Berdnikov, Y., Bickley, A. A., Bjorndal, M. T., Boissevain, J. G., Borel, H., Boyle, K., Brooks, M. L., Brown, D. S., Bucher, D., Buesching, H., Bumazhnov, V., Bunce, G., Burward-Hoy, J. M., Butsyk, S., Campbell, S., Chai, J. -S., Chang, B. S., Charvet, J. -L., Chernichenko, S., Chi, C. Y., Chiba, J., Chiu, M., Choi, I. J., Chujo, T., Chung, P., Churyn, A., Cianciolo, V., Cleven, C. R., Cobigo, Y., Cole, B. A., Comets, M. P., Constantin, P., Csanád, M., Csörgő, T., Dahms, T., Das, K., David, G., Deaton, M. B., Dehmelt, K., Delagrange, H., Denisov, A., d'Enterria, D., Deshpande, A., Desmond, E. J., Dietzsch, O., Dion, A., Donadelli, M., Drachenberg, J. L., Drapier, O., Drees, A., Dubey, A. K., Durum, A., Dzhordzhadze, V., Efremenko, Y. V., Egdemir, J., Ellinghaus, F., Emam, W. S., Enokizono, A., En'yo, H., Espagnon, B., Esumi, S., Eyser, K. O., Fields, D. E., Finger, M., Finger, Jr., M., Fleuret, F., Fokin, S. L., Forestier, B., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fung, S. -Y., Fusayasu, T., Gadrat, S., Garishvili, I., Gastineau, F., Germain, M., Glenn, A., Gong, H., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Gustafsson, H. -Å., Hachiya, T., Henni, A. Hadj, Haegemann, C., Haggerty, J. S., Hagiwara, M. N., Hamagaki, H., Han, R., Harada, H., Hartouni, E. P., Haruna, K., Harvey, M., Haslum, E., Hasuko, K., Hayano, R., He, X., Heffner, M., Hemmick, T. K., Hester, T., Heuser, J. M., Hiejima, H., Hill, J. C., Hobbs, R., Hohlmann, M., Holmes, M., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hornback, D., Huang, S., Hur, M. G., Ichihara, T., Iinuma, H., Imai, K., Inaba, M., Inoue, Y., Isenhower, D., Isenhower, L., Ishihara, M., Isobe, T., Issah, M., Isupov, A., Jacak, B. V., Jia, J., Jin, J., Jinnouchi, O., Johnson, B. M., Joo, K. S., Jouan, D., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kaneta, M., Kang, J. H., Kanou, H., Kawagishi, T., Kawall, D., Kazantsev, A. V., Kelly, S., Khanzadeev, A., Kikuchi, J., Kim, D. H., Kim, D. J., Kim, E., Kim, Y. -S., Kinney, E., Kiss, Á., Kistenev, E., Kiyomichi, A., Klay, J., Klein-Boesing, C., Kochenda, L., Kochetkov, V., Komkov, B., Konno, M., Kotchetkov, D., Kozlov, A., Král, A., Kravitz, A., Kroon, P. J., Kubart, J., Kunde, G. J., Kurihara, N., Kurita, K., Kweon, M. J., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Lebedev, A., Bornec, Y. Le, Leckey, S., Lee, D. M., Lee, M. K., Lee, T., Leitch, M. J., Leite, M. A. L., Lenzi, B., Li, X., Li, X. H., Lim, H., Liška, T., Litvinenko, A., Liu, M. X., Love, B., Lynch, D., Maguire, C. F., Makdisi, Y. I., Malakhov, A., Malik, M. D., Manko, V. I., Mao, Y., Mašek, L., Masui, H., Matathias, F., McCain, M. C., McCumber, M., McGaughey, P. L., Miake, Y., Mikeš, P., Miki, K., Miller, T. E., Milov, A., Mioduszewski, S., Mishra, G. C., Mishra, M., Mitchell, J. T., Mitrovski, M., Morreale, A., Morrison, D. P., Moss, J. M., Moukhanova, T. V., Mukhopadhyay, D., Murata, J., Nagamiya, S., Nagata, Y., Nagle, J. L., Naglis, M., Nakagawa, I., Nakamiya, Y., Nakamura, T., Nakano, K., Newby, J., Nguyen, M., Norman, B. E., Nouicer, R., Nyanin, A. S., Nystrand, J., O'Brien, E., Oda, S. X., Ogilvie, C. A., Ohnishi, H., Ojha, I. D., Oka, M., Okada, K., Omiwade, O. O., Oskarsson, A., Otterlund, I., Ouchida, M., Ozawa, K., Pak, R., Pal, D., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, J., Park, W. J., Pate, S. F., Pei, H., Peng, J. -C., Pereira, H., Peresedov, V., Peressounko, D. Yu., Pinkenburg, C., Pisani, R. P., Purschke, M. L., Purwar, A. K., Qu, H., Rak, J., Rakotozafindrabe, A., Ravinovich, I., Read, K. F., Rembeczki, S., Reuter, M., Reygers, K., Riabov, V., Riabov, Y., Roche, G., Romana, A., Rosati, M., Rosendahl, S. S. E., Rosnet, P., Rukoyatkin, P., Rykov, V. L., Ryu, S. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Sakata, H., Samsonov, V., Sato, H. D., Sato, S., Sawada, S., Seele, J., Seidl, R., Semenov, V., Seto, R., Sharma, D., Shea, T. K., Shein, I., Shevel, A., Shibata, T. -A., Shigaki, K., Shimomura, M., Shohjoh, T., Shoji, K., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, C. P., Singh, V., Skutnik, S., Slunečka, M., Smith, W. C., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Staley, F., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Suire, C., Sullivan, J. P., Sziklai, J., Tabaru, T., Takagi, S., Takagui, E. M., Taketani, A., Tanaka, K. H., Tanaka, Y., Tanida, K., Tannenbaum, M. J., Taranenko, A., Tarján, P., Thomas, T. L., Todoroki, T., Togawa, M., Toia, A., Tojo, J., Tomášek, L., Torii, H., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Tuli, S. K., Tydesjö, H., Tyurin, N., Vale, C., Valle, H., van Hecke, H. W., Velkovska, J., Vértesi, R., Vinogradov, A. A., Virius, M., Vrba, V., Vznuzdaev, E., Wagner, M., Walker, D., Wang, X. R., Watanabe, Y., Wessels, J., White, S. N., Willis, N., Winter, D., Woody, C. L., Wysocki, M., Xie, W., Yamaguchi, Y. L., Yanovich, A., Yasin, Z., Ying, J., Yokkaichi, S., Young, G. R., Younus, I., Yushmanov, I. E., Zajc, W. A., Zaudtke, O., Zhang, C., Zhou, S., Zimányi, J., and Zolin, L.
- Subjects
Nuclear Experiment - Abstract
We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV and 62.4 GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\rm part}$. We observe that $v_2$ divided by eccentricity ($\varepsilon$) monotonically increases with $N_{\rm part}$ and scales as ${N_{\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1
- Published
- 2014
- Full Text
- View/download PDF
23. The first experimental results from W divertor utilizing x-ray imaging crystal spectrometer on KSTAR.
- Author
-
Lee, S. G., Kim, M. K., and Kim, Y. S.
- Abstract
The x-ray imaging crystal spectrometer (XICS) for Korea Superconducting Tokamak Advanced Research is applied to measure multiple atomic states, such as Ar
16+ , Ar17+ , W43+ , and W44+ , with keeping the same spectrometer configuration because all spectra are well separated within the detector boundary. The first experimental results from the recently installed full W tiles in the lower divertor utilizing the XICS are discussed. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
24. P1107 Clinical characteristics and prognosis of very young adult-onset Crohn's disease: Results from the Prospective CONNECT Study
- Author
-
Kim, M K, primary, Jung, Y, additional, Jang, B I, additional, Jung, S A, additional, Im, J P, additional, Cheon, J H, additional, Kim, Y S, additional, Kim, Y H, additional, Kim, J S, additional, and Ye, B D, additional
- Published
- 2024
- Full Text
- View/download PDF
25. A note on a hypergeometric transformation formula due to Slater with an application
- Author
-
Kim, Y. S., Rathie, A. K., and Paris, R. B.
- Subjects
Mathematics - Classical Analysis and ODEs ,33C20 - Abstract
In this note we state (with minor corrections) and give an alternative proof of a very general hypergeometric transformation formula due to Slater. As an application, we obtain a new hypergeometric transformation formula for a ${}_5F_4(-1)$ series with one pair of parameters differing by unity expressed as a linear combination of two ${}_3F_2(1)$ series., Comment: 5 pages, 0 figures
- Published
- 2014
26. QCD. What else is needed for the Proton Structure Function?
- Author
-
Kim, Y. S.
- Subjects
High Energy Physics - Phenomenology ,Quantum Physics - Abstract
While QCD can provide corrections to the parton distribution function, it cannot produce the distribution. Where is then the starting point for the proton structure function? The only known source is the quark-model wave function for the proton at rest. The harmonic oscillator is used for the trial wave function. When Lorentz-boosted, this wave function exhibits all the peculiarities of Feynman's parton picture. The time-separation between the quarks plays the key role in the boosting process. This variable is hidden in the present form of quantum mechanics, and the failure to measure it leads to an increase in entropy. This leads to a picture of boiling quarks which become partons in their plasma state., Comment: Latex 9 pages, 4 figures
- Published
- 2014
27. Poincar\'e Sphere and a Unified Picture of Wigner's Little Groups
- Author
-
Kim, Y. S.
- Subjects
Mathematical Physics ,High Energy Physics - Theory ,Quantum Physics - Abstract
It is noted that the Poincar\'e sphere for polarization optics contains the symmetries of the Lorentz group. The sphere is thus capable of describing the internal space-time symmetries dictated by Wigner's little groups. For massive particles, the little group is like the three-dimensional rotation group, while it is like the two-dimensional Euclidean group for massless particles. It is shown that the Poincar\'e sphere, in addition, has a symmetry parameter corresponding to reducing the particle mass from a positive value to zero. The Poincar\'e sphere thus the gives one unified picture of Wigner's little groups for massive and massless particles., Comment: Latex 9 pages, 2 figures, based on a plenary talk delivered at the Wigner Research Symposium entitled "Wigner 111 - Colourful and Deep" (Budapest, Hungary, November 2013), to be published in the Proceedings
- Published
- 2014
28. Generalization of a quadratic transformation due to Exton
- Author
-
Kim, Y S, Rathie, A K, and Paris, R B
- Subjects
Mathematics - Classical Analysis and ODEs ,33C20 - Abstract
Exton [Ganita 54(2003)13-15] obtained numerous new quadratic transformations involving hypergeometric functions of order two and of higher order by applying various known classical summation theorems to a general transformation formula based on the Bailey transformation. We obtain the generalization of one of the Exton quadratic transformations. The results are derived with the help of a generalization of Dixon's summation theorem for the series ${}_3F_2$ obtained earlier by Lavoie {\em et al}. Several interesting known as well as new special cases and limiting cases are also given., Comment: 7 pages, no figures
- Published
- 2014
29. Evaluations of some terminating hypergeometric ${}_2F_1(2)$ series
- Author
-
Kim, Y S, Rathie, A K, and Paris, R B
- Subjects
Mathematics - Complex Variables ,33C15, 33C20 - Abstract
Explicit expressions for the hypergeometric series ${}_2F_1(-n, a; 2a\pm j;2)$ and ${}_2F_1(-n, a; -2n\pm j;2)$ for positive integer $n$ and arbitrary integer $j$ are obtained with the help of generalizations of Kummer's second and third summation theorems obtained earlier by Rakha and Rathie. Results for $|j|\leq 5$ derived previously using different methods are also obtained as special cases., Comment: 7 pages, no figures
- Published
- 2014
30. On extensions of two results due to Ramanujan
- Author
-
Kim, Y. S., Rathie, A. K., and Paris, R. B.
- Subjects
Mathematics - Complex Variables ,33C15, 33C20 - Abstract
The aim in this note is to provide a generalization of an interesting entry in Ramanujan's Notebooks that relate sums involving the derivatives of a function Phi(t) evaluated at 0 and 1. The generalization obtained is derived with the help of expressions for the sum of terminating 3F2 hypergeometric functions of argument equal to 2, recently obtained in Kim et al. [Two results for the terminating 3F2(2) with applications, Bull. Korean Math. Soc. 49 (2012) pp. 621{633]. Several special cases are given. In addition we generalize a summation formula to include integral parameter differences., Comment: 7 pages
- Published
- 2014
31. Lens optics and the continuity problems of the ABCD matrix
- Author
-
Baskal, S. and Kim, Y. S.
- Subjects
Physics - Optics ,Quantum Physics - Abstract
Paraxial lens optics is discussed to study the continuity properties of the $ABCD$ beam transfer matrix. The two-by-two matrix for the one-lens camera-like system can be converted to an equi-diagonal form by a scale transformation, leaving the off-diagonal elements invariant. It is shown that the matrix remains continuous during the focusing process, but this transition is not analytic. However, its first derivative is still continuous, which leads to the concept of "tangential continuity." It is then shown that this tangential continuity is applicable to $ABCD$ matrices pertinent to periodic optical systems, where the equi-diagonalization is achieved by a similarity transformation using rotations. It is also noted that both the scale transformations and the rotations can be unified within the framework of Hermitian transformations., Comment: Latex 11 pages with 2 figures, to be published in the Journal of Modern Optics
- Published
- 2014
- Full Text
- View/download PDF
32. Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models
- Author
-
Adler, S. S., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Al-Jamel, A., Alexander, J., Aoki, K., Aphecetche, L., Armendariz, R., Aronson, S. H., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Baldisseri, A., Barish, K. N., Barnes, P. D., Bassalleck, B., Bathe, S., Batsouli, S., Baublis, V., Bauer, F., Bazilevsky, A., Belikov, S., Bennett, R., Berdnikov, Y., Bjorndal, M. T., Boissevain, J. G., Borel, H., Boyle, K., Brooks, M. L., Brown, D. S., Bruner, N., Bucher, D., Buesching, H., Bumazhnov, V., Bunce, G., Burward-Hoy, J. M., Butsyk, S., Camard, X., Campbell, S., Chai, J. -S., Chand, P., Chang, W. C., Chernichenko, S., Chi, C. Y., Chiba, J., Chiu, M., Choi, I. J., Choudhury, R. K., Chujo, T., Cianciolo, V., Cleven, C. R., Cobigo, Y., Cole, B. A., Comets, M. P., Constantin, P., Csanád, M., Csörgő, T., Cussonneau, J. P., Dahms, T., Das, K., David, G., Deák, F., Delagrange, H., Denisov, A., d'Enterria, D., Deshpande, A., Desmond, E. J., Devismes, A., Dietzsch, O., Dion, A., Drachenberg, J. L., Drapier, O., Drees, A., Dubey, A. K., Durum, A., Dutta, D., Dzhordzhadze, V., Efremenko, Y. V., Egdemir, J., Enokizono, A., En'yo, H., Espagnon, B., Esumi, S., Fields, D. E., Finck, C., Fleuret, F., Fokin, S. L., Forestier, B., Fox, B. D., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fukao, Y., Fung, S. -Y., Gadrat, S., Gastineau, F., Germain, M., Glenn, A., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Gustafsson, H. -Å., Hachiya, T., Henni, A. Hadj, Haggerty, J. S., Hagiwara, M. N., Hamagaki, H., Hansen, A. G., Harada, H., Hartouni, E. P., Haruna, K., Harvey, M., Haslum, E., Hasuko, K., Hayano, R., He, X., Heffner, M., Hemmick, T. K., Heuser, J. M., Hidas, P., Hiejima, H., Hill, J. C., Hobbs, R., Holmes, M., Holzmann, W., Homma, K., Hong, B., Hoover, A., Horaguchi, T., Hur, M. G., Ichihara, T., Iinuma, H., Ikonnikov, V. V., Imai, K., Inaba, M., Inuzuka, M., Isenhower, D., Isenhower, L., Ishihara, M., Isobe, T., Issah, M., Isupov, A., Jacak, B. V., Jia, J., Jin, J., Jinnouchi, O., Johnson, B. M., Johnson, S. C., Joo, K. S., Jouan, D., Kajihara, F., Kametani, S., Kamihara, N., Kaneta, M., Kang, J. H., Katou, K., Kawabata, T., Kawagishi, T., Kazantsev, A. V., Kelly, S., Khachaturov, B., Khanzadeev, A., Kikuchi, J., Kim, D. J., Kim, E., Kim, E. J., Kim, G. -B., Kim, H. J., Kim, Y. -S., Kinney, E., Kiss, Á., Kistenev, E., Kiyomichi, A., Klein-Boesing, C., Kobayashi, H., Kochenda, L., Kochetkov, V., Kohara, R., Komkov, B., Konno, M., Kotchetkov, D., Kozlov, A., Kroon, P. J., Kuberg, C. H., Kunde, G. J., Kurihara, N., Kurita, K., Kweon, M. J., Kwon, Y., Kyle, G. S., Lacey, R., Lajoie, J. G., Lebedev, A., Bornec, Y. Le, Leckey, S., Lee, D. M., Lee, M. K., Leitch, M. J., Leite, M. A. L., Li, X. H., Lim, H., Litvinenko, A., Liu, M. X., Maguire, C. F., Makdisi, Y. I., Malakhov, A., Malik, M. D., Manko, V. I., Mao, Y., Martinez, G., Masui, H., Matathias, F., Matsumoto, T., McCain, M. C., McGaughey, P. L., Miake, Y., Miller, T. E., Milov, A., Mioduszewski, S., Mishra, G. C., Mitchell, J. T., Mohanty, A. K., Morrison, D. P., Moss, J. M., Moukhanova, T. V., Mukhopadhyay, D., Muniruzzaman, M., Murata, J., Nagamiya, S., Nagata, Y., Nagle, J. L., Naglis, M., Nakamura, T., Newby, J., Nguyen, M., Norman, B. E., Nyanin, A. S., Nystrand, J., O'Brien, E., Ogilvie, C. A., Ohnishi, H., Ojha, I. D., Okada, K., Omiwade, O. O., Oskarsson, A., Otterlund, I., Oyama, K., Ozawa, K., Pal, D., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, J., Park, W. J., Pate, S. F., Pei, H., Penev, V., Peng, J. -C., Pereira, H., Peresedov, V., Peressounko, D. Yu., Pierson, A., Pinkenburg, C., Pisani, R. P., Purschke, M. L., Purwar, A. K., Qu, H., Qualls, J. M., Rak, J., Ravinovich, I., Read, K. F., Reuter, M., Reygers, K., Riabov, V., Riabov, Y., Roche, G., Romana, A., Rosati, M., Rosendahl, S. S. E., Rosnet, P., Rukoyatkin, P., Rykov, V. L., Ryu, S. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Samsonov, V., Sanfratello, L., Santo, R., Sato, H. D., Sato, S., Sawada, S., Schutz, Y., Semenov, V., Seto, R., Sharma, D., Shea, T. K., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shohjoh, T., Shoji, K., Sickles, A., Silva, C. L., Silvermyr, D., Sim, K. S., Singh, C. P., Singh, V., Skutnik, S., Smith, W. C., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Staley, F., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Suire, C., Sullivan, J. P., Sziklai, J., Tabaru, T., Takagi, S., Takagui, E. M., Taketani, A., Tanaka, K. H., Tanaka, Y., Tanida, K., Tannenbaum, M. J., Taranenko, A., Tarján, P., Thomas, T. L., Togawa, M., Tojo, J., Torii, H., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Tuli, S. K., Tydesjö, H., Tyurin, N., Uam, T. J., Vale, C., Valle, H., van Hecke, H. W., Velkovska, J., Velkovsky, M., Vértesi, R., Veszprémi, V., Vinogradov, A. A., Volkov, M. A., Vznuzdaev, E., Wagner, M., Wang, X. R., Watanabe, Y., Wessels, J., White, S. N., Willis, N., Winter, D., Wohn, F. K., Woody, C. L., Wysocki, M., Xie, W., Yanovich, A., Yokkaichi, S., Young, G. R., Younus, I., Yushmanov, I. E., Zajc, W. A., Zaudtke, O., Zhang, C., Zhou, S., Zimányi, J., Zolin, L., and Zong, X.
- Subjects
Nuclear Experiment - Abstract
Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not., Comment: 391 authors, 24 pages, 19 figures, and 15 Tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2013
- Full Text
- View/download PDF
33. Expression of Ganglioside GD2 on Colorectal Adenocarcinoma Cells
- Author
-
Lupatov, A. Yu., Gisina, A. M., Kim, Y. S., Bykasov, S. A., Volchenko, N. N., Sidorov, D. V., Yarygin, K. N., and Kholodenko, R. V.
- Published
- 2020
- Full Text
- View/download PDF
34. Design of Near Infrared Reflective Effective Pigment for LiDAR Detectable Paint
- Author
-
Kim, J. H., Patil, V., Chun, J. M., Park, H. S., Seo, S. W., and Kim, Y. S.
- Published
- 2020
- Full Text
- View/download PDF
35. Impact of Time-to-Reperfusion on Outcome in Patients with Poor Collaterals
- Author
-
Hwang, Y-H, Kang, D-H, Kim, Y-W, Kim, Y-S, Park, S-P, and Liebeskind, DS
- Subjects
Neurosciences ,Brain Disorders ,Aged ,Brain Infarction ,Collateral Circulation ,Female ,Humans ,Male ,Middle Aged ,Reperfusion ,Stroke ,Time-to-Treatment ,Clinical Sciences ,Nuclear Medicine & Medical Imaging - Abstract
Background and purposeThe relationship between reperfusion and clinical outcome is time-dependent, and the effect of reperfusion on outcome can vary on the basis of the extent of collateral flow. We aimed to identify the impact of time-to-reperfusion on outcome relative to baseline angiographic collateral grade in patients successfully treated with endovascular revascularization for acute large-vessel anterior circulation stroke.Materials and methodsTwo hundred seven patients were selected for analysis from our prospectively maintained registry. Inclusion criteria were M1 MCA ± ICA occlusions, onset-to-puncture time within 8 hours, and successful endovascular reperfusion. Baseline angiographic collateral grades were independently evaluated and dichotomized into poor (0-1) versus good (2-4). Multivariable analyses were performed to identify the effect of collateral-flow adequacy on favorable outcome on the basis of onset-to-reperfusion time and puncture-to-reperfusion time.ResultsIn the poor collateral group, the odds of favorable outcome significantly dropped for patients with onset-to-reperfusion time of >300 minutes or puncture-to-reperfusion time of >60 minutes (onset-to-puncture time: ≤300, 59% versus >300, 32%; OR, 0.24; P = .011; puncture-to-reperfusion time: ≤60, 73% versus >60, 32%; OR, 0.21, P = .011), whereas the probability of favorable outcome in the good collateral group was not significantly influenced by onset-to-reperfusion time or puncture-to-reperfusion time. In the subgroup lesion-volume growth analysis by using DWI, the effect of puncture-to-reperfusion time of >60 minutes was significantly greater compared with the effect of puncture-to-reperfusion time of
- Published
- 2015
36. An alternative proof of the extended Saalschutz summation theorem for the r+3Fr+2(1) series with applications
- Author
-
Kim, Y. S., Rathie, Arjun K., and Paris, R. B.
- Subjects
Mathematics - Complex Variables ,33C15, 33C20 - Abstract
A simple proof of a new summation formula for a terminating r+3Fr+2(1) hypergeometric series, representing an extension of Saalschutz's formula for a 3F2(1) series, is given for the case of r pairs of numeratorial and denominatorial parameters differing by positive integers. Two applications of this extended summation theorem are discussed. The first application extends two identities given by Ramanujan and the second, which also employs a similar extension of the Vandermonde-Chu summation theorem for the 2F1 series, extends certain reduction formulas for the Kamp?e de F?eriet function of two variables given by Exton and Cvijovi?c and Miller., Comment: 12 pages
- Published
- 2013
37. A note on a series containing the Laguerre polynomials
- Author
-
Kim, Y. S., Rathie, A. K., and Paris, R. B.
- Subjects
Mathematics - Complex Variables ,33C15, 33C20 - Abstract
Expressions for the summation of a new series involving the Laguerre polynomials are obtained in terms of generalized hypergeometric functions. These results provide alternative, and in some cases simpler, expressions to those recently obtained in the literature., Comment: 4 pages
- Published
- 2013
38. On two Thomae-type transformations for hypergeometric series with integral parameter differences
- Author
-
Kim, Y. S., Rathie, Arjun. K., and Paris, R. B.
- Subjects
Mathematics - Complex Variables ,Mathematics - Classical Analysis and ODEs ,33C15, 33C20 - Abstract
We obtain two new Thomae-type transformations for hypergeometric series with r pairs of numeratorial and denominatorial parameters differing by positive integers. This is achieved by application of the so-called Beta integral method developed by Krattenthaler and Rao [Symposium on Symmetries in Science (ed. B. Gruber), Kluwer (2004)] to two recently obtained Euler-type transformations. Some special cases are given., Comment: 6 pages
- Published
- 2013
39. Historical Approach to Physics according to Kant, Einstein, and Hegel
- Author
-
Kim, Y. S.
- Subjects
Physics - History and Philosophy of Physics ,Physics - Popular Physics - Abstract
It is known that Einstein's conceptual base for his theory of relativity was the philosophy formulated by Immanuel Kant. Things appear differently to observers in different frames. However, Kant's Ding-an-Sich leads to the existence of the absolute reference frame which is not acceptable in Einstein's theory. It is possible to avoid this conflict using the ancient Chinese philosophy of Taoism where two different views can co-exist in harmony. This is not enough to explain Einstein's discovery of the mass-energy relation. The energy-momentum relations for slow and ultra-fast particles take different forms. Einstein was able to synthesize these two formulas to create his energy-mass relation. Indeed, this is what Hegelianism is about in physics. Isaac Newton synthesized open orbits for comets and closed orbits for planets to create his second law of motion. Maxwell combined electricity and magnetism to create his four equations to the present-day wireless world. In order to synthesize wave and particle views of matter, Heisenberg formulated his uncertainty principle. Relativity and quantum mechanics are the two greatest theories formulated in the 20th Century. Efforts to synthesize these two theories are discussed in detail., Comment: Latex 10 pages with 6 figures, based on an invited presented at the 32nd Congress of the Italian Society of Historians of Physics and Astronomy (Rome, Italy, September 2012)
- Published
- 2013
40. Bulging rupture and caustic corrosion of a boiler tube in a thermal power plant
- Author
-
Kim, Y.-S., Kim, W.-C., and Kim, J.-G.
- Published
- 2019
- Full Text
- View/download PDF
41. Impact of antimicrobial treatment duration on outcome of Staphylococcus aureus bacteraemia: a cohort study
- Author
-
Cho, J.E., Choi, Y.J., Park, J.I., Jung, S.-I., Kim, N.J., Park, W.B., Choe, P.G., Kim, N.-H., Lee, M.J., Kim, K.H., Kim, Y.K., Choi, H.K., Han, M.S., Kim, Y.-S., Cho, C.R., Song, H.S., Lee, Y.S., Kim, H.-I., Kiem, S.M., Kim, D.-K., Song, S.-A., Kang, M.J., Shin, J.G., Kim, C.-J., Song, K.-H., Park, K.-H., Kim, M., Oh, M.-d., Lee, S.H., Jang, H.-C., Kang, S.-J., Kim, H.Y., Cheon, S., Kwak, Y.G., Choi, H.J., Kwon, K.T., Jeon, J.H., Kim, E.S., and Kim, H.B.
- Published
- 2019
- Full Text
- View/download PDF
42. Measurement of Direct Photons in Au+Au Collisions at sqrt(s_NN) = 200 GeV
- Author
-
Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Al-Jamel, A., Alexander, J., Aoki, K., Aphecetche, L., Armendariz, R., Aronson, S. H., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Baldisseri, A., Barish, K. N., Barnes, P. D., Bassalleck, B., Bathe, S., Batsouli, S., Baublis, V., Bauer, F., Bazilevsky, A., Belikov, S., Bennett, R., Berdnikov, Y., Bjorndal, M. T., Boissevain, J. G., Borel, H., Boyle, K., Brooks, M. L., Brown, D. S., Bucher, D., Buesching, H., Bumazhnov, V., Bunce, G., Burward-Hoy, J. M., Butsyk, S., Campbell, S., Chai, J. -S., Chernichenko, S., Chi, C. Y., Chiba, J., Chiu, M., Choi, I. J., Chujo, T., Cianciolo, V., Cleven, C. R., Cobigo, Y., Cole, B. A., Comets, M. P., Connors, M., Constantin, P., Csanád, M., Csörgő, T., Dahms, T., Das, K., David, G., Delagrange, H., Denisov, A., d'Enterria, D., Deshpande, A., Desmond, E. J., Dietzsch, O., Dion, A., Drachenberg, J. L., Drapier, O., Drees, A., Dubey, A. K., Durum, A., Dzhordzhadze, V., Efremenko, Y. V., Egdemir, J., Enokizono, A., En'yo, H., Espagnon, B., Esumi, S., Fields, D. E., Fleuret, F., Fokin, S. L., Forestier, B., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fukao, Y., Fung, S. -Y., Gadrat, S., Gastineau, F., Germain, M., Glenn, A., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Gustafsson, H. -Å., Hachiya, T., Henni, A. Hadj, Haggerty, J. S., Hagiwara, M. N., Hamagaki, H., Harada, H., Hartouni, E. P., Haruna, K., Harvey, M., Haslum, E., Hasuko, K., Hayano, R., He, X., Heffner, M., Hemmick, T. K., Heuser, J. M., Hiejima, H., Hill, J. C., Hobbs, R., Holmes, M., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hur, M. G., Ichihara, T., Iinuma, H., Imai, K., Imrek, J., Inaba, M., Isenhower, D., Isenhower, L., Ishihara, M., Isobe, T., Issah, M., Isupov, A., Jacak, B. V., Jia, J., Jin, J., Jinnouchi, O., Johnson, B. M., Joo, K. S., Jouan, D., Kajihara, F., Kametani, S., Kamihara, N., Kaneta, M., Kang, J. H., Kawagishi, T., Kazantsev, A. V., Kelly, S., Khanzadeev, A., Kim, D. J., Kim, E., Kim, Y. -S., Kinney, E., Kiss, Á., Kistenev, E., Kiyomichi, A., Klein-Boesing, C., Kochenda, L., Kochetkov, V., Komkov, B., Konno, M., Kotchetkov, D., Kozlov, A., Kroon, P. J., Kunde, G. J., Kurihara, N., Kurita, K., Kweon, M. J., Kwon, Y., Kyle, G. S., Lacey, R., Lajoie, J. G., Lebedev, A., Bornec, Y. Le, Leckey, S., Lee, D. M., Lee, M. K., Leitch, M. J., Leite, M. A. L., Li, X. H., Lim, H., Litvinenko, A., Liu, M. X., Maguire, C. F., Makdisi, Y. I., Malakhov, A., Malik, M. D., Manko, V. I., Masui, H., Matathias, F., McCain, M. C., McGaughey, P. L., Miake, Y., Miller, T. E., Milov, A., Mioduszewski, S., Mishra, G. C., Mitchell, J. T., Morrison, D. P., Moss, J. M., Moukhanova, T. V., Mukhopadhyay, D., Murata, J., Nagamiya, S., Nagata, Y., Nagle, J. L., Naglis, M., Nakamura, T., Newby, J., Nguyen, M., Norman, B. E., Nyanin, A. S., Nystrand, J., O'Brien, E., Ogilvie, C. A., Ohnishi, H., Ojha, I. D., Okada, K., Omiwade, O. O., Oskarsson, A., Otterlund, I., Ozawa, K., Pal, D., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, J., Park, W. J., Pate, S. F., Pei, H., Peng, J. -C., Pereira, H., Peresedov, V., Peressounko, D. Yu., Pinkenburg, C., Pisani, R. P., Purschke, M. L., Purwar, A. K., Qu, H., Rak, J., Ravinovich, I., Read, K. F., Reuter, M., Reygers, K., Riabov, V., Riabov, Y., Roche, G., Romana, A., Rosati, M., Rosendahl, S. S. E., Rosnet, P., Rukoyatkin, P., Rykov, V. L., Ryu, S. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Samsonov, V., Sato, H. D., Sato, S., Sawada, S., Semenov, V., Seto, R., Sharma, D., Shea, T. K., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shohjoh, T., Shoji, K., Sickles, A., Silva, C. L., Silvermyr, D., Sim, K. S., Singh, C. P., Singh, V., Skutnik, S., Smith, W. C., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Staley, F., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Suire, C., Sullivan, J. P., Sziklai, J., Tabaru, T., Takagi, S., Takagui, E. M., Taketani, A., Tanaka, K. H., Tanaka, Y., Tanida, K., Tannenbaum, M. J., Taranenko, A., Tarján, P., Thomas, T. L., Togawa, M., Tojo, J., Torii, H., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Tuli, S. K., Tydesjö, H., Tyurin, N., Vale, C., Valle, H., van Hecke, H. W., Velkovska, J., Vértesi, R., Vinogradov, A. A., Vznuzdaev, E., Wagner, M., Wang, X. R., Watanabe, Y., Wessels, J., White, S. N., Willis, N., Winter, D., Woody, C. L., Wysocki, M., Xie, W., Yanovich, A., Yokkaichi, S., Young, G. R., Younus, I., Yushmanov, I. E., Zajc, W. A., Zaudtke, O., Zhang, C., Zimányi, J., and Zolin, L.
- Subjects
Nuclear Experiment - Abstract
We report the measurement of direct photons at midrapidity in Au+Au collisions at sqrt{s_NN} = 200 GeV. The direct photon signal was extracted for the transverse-momentum range of 4 GeV/c < p_T < 22 GeV/c, using a statistical method to subtract decay photons from the inclusive-photon sample. The direct-photon nuclear-modification factor R_AA was calculated as a function of p_T for different Au+Au collision centralities using the measured p+p direct-photon spectrum and compared to theoretical predictions. R_AA was found to be consistent with unity for all centralities over the entire measured p_T range. Theoretical models that account for modifications of initial-direct-photon production due to modified-parton-distribution functions in Au and the different isospin composition of the nuclei, predict a modest change of R_AA from unity and are consistent with the data. Models with compensating effects of the quark-gluon plasma on high-energy photons, such as suppression of jet-fragmentation photons and induced-photon bremsstrahlung from partons traversing the medium, are also consistent with this measurement., Comment: PHENIX Collaboration, 346 authors, 8 pages, 4 figures, 1 table. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2012
- Full Text
- View/download PDF
43. Lorentz Group in Ray and Polarization Optics
- Author
-
Baskal, S. and Kim, Y. S.
- Subjects
Mathematical Physics ,High Energy Physics - Theory ,Quantum Physics - Abstract
While the Lorentz group serves as the basic language for Einstein's special theory of relativity, it is turning out to be the basic mathematical instrument in optical sciences, particularly in ray optics and polarization optics. The beam transfer matrix, commonly called the $ABCD$ matrix, is shown to be a two-by-two representation of the Lorentz group applicable to the three-dimensional space-time consisting of two space and one time dimensions. The Jones matrix applicable to polarization states turns out to be the two-by-two representations of the Lorentz group applicable to the four-dimensional space-time consisting of three space and one time dimensions. The four-by-four Mueller matrix applicable to the Stokes parameters as well as the Poincar\'e sphere are both shown to be the representations of the Lorentz group., Comment: Latex 47 pages, 5 figure, to be included as Chapter 10 in "Mathematical Optics: Classical, Quantum and Imaging Methods" edited by Vasudevan Lakshminarayanan (Taylor and Francis, New York)
- Published
- 2012
44. Poincar\'e Sphere and Decoherence Problems
- Author
-
Kim, Y. S.
- Subjects
Mathematical Physics ,High Energy Physics - Theory ,Quantum Physics - Abstract
Henri Poincar\'e formulated the mathematics of the Lorentz transformations, known as the Poincar\'e group. He also formulated the Poincar\'e sphere for polarization optics. It is shown that these two mathematical instruments can be combined into one mathematical device which can address the internal space-time symmetries of elementary particles, decoherence problems in polarization optics, entropy problems, and Feynman's rest of the universe., Comment: LaTex 21 pages with 2 figures, based on an invited talk presented at the Fedorov Memorial Symposium: International Conference "Spins and Photonic Beams at Interface," dedicated to the 100th anniversary of F.I.Fedorov (Minsk, Belarus, 2011); minor corrections; more references added
- Published
- 2012
45. The Language of Two-by-two Matrices spoken by Optical Devices
- Author
-
Kim, Y. S.
- Subjects
Mathematical Physics ,High Energy Physics - Theory ,Quantum Physics - Abstract
With its three independent parameters, the $ABCD$ matrix serves as the beam transfer matrix in optics. If it is transformed to an equi-diagonal form, the matrix has only two independent parameters determined by optical devices. It is shown that this two-parameter mathematical device contains enough information to describe the basic space-time symmetry of elementary particles. If its trace is smaller than two, this matrix can represent the internal space-time symmetry of massive particles. If equal to two, the matrix is of massless particles. If the trace is greater than two, this matrix describes imaginary-mass particles. This matrix speaks Einstein's language for space-time structure of elementary particles. As for the optical devices, the laser cavity and the multilayer system are discussed as illustrative physical examples., Comment: LaTex 15 pages, 2 figures, presented at the 19th International Conference on Composites or Nano Engineering, Shanghai (China 2011), to be published in the proceedings
- Published
- 2011
46. Einstein's Hydrogen Atom
- Author
-
Kim, Y. S.
- Subjects
Quantum Physics ,Physics - History and Philosophy of Physics - Abstract
In 1905, Einstein formulated his special relativity for point particles. For those particles, his Lorentz covariance and energy-momentum relation are by now firmly established. How about the hydrogen atom? It is possible to perform Lorentz boosts on the proton assuming that it is a point particle. Then what happens to the electron orbit? The orbit could go through an elliptic deformation, but it is not possible to understand this problem without quantum mechanics, where the orbit is a standing wave leading to a localized probability distribution. Is this concept consistent with Einstein's Lorentz covariance? Dirac, Wigner, and Feynman contributed important building blocks for understanding this problem. The remaining problem is to assemble those blocks to construct a Lorentz-covariant picture of quantum bound states based on standing waves. It is shown possible to assemble those building blocks using harmonic oscillators., Comment: LaTex 15 pages, 5 figures, presented at the International Workshop on Physics and Mathematics (Hangzhou, China, July 2011), to be published in the proceddings
- Published
- 2011
47. Central-moment description of polarization for quantum states of light
- Author
-
Björk, G., Söderholm, J., Kim, Y. -S., Ra, Y. -S., Lim, H. -T., Kothe, C., Kim, Y. -H., Sánchez-Soto, L. L., and Klimov, A. B.
- Subjects
Quantum Physics - Abstract
We present a moment expansion method for the systematic characterization of the polarization properties of quantum states of light. Specifically, we link the method to the measurements of the Stokes operator in different directions on the Poincar\'{e} sphere, and provide a method of polarization tomography without resorting to full state tomography. We apply these ideas to the experimental first- and second-order polarization characterization of some two-photon quantum states. In addition, we show that there are classes of states whose polarization characteristics are dominated not by their first-order moments (i.e., the Stokes vector) but by higher-order polarization moments., Comment: 11 pages, 7 figures, 4 tables, In version 2, Figs. 2 and 4 are replaced, Sec. IV extended, Sec. VIII revised, a few references added
- Published
- 2011
48. Production of omega mesons in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN)=200 GeV
- Author
-
Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Al-Bataineh, H., Al-Jamel, A., Alexander, J., Angerami, A., Aoki, K., Apadula, N., Aphecetche, L., Aramaki, Y., Armendariz, R., Aronson, S. H., Asai, J., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Baksay, G., Baksay, L., Baldisseri, A., Barish, K. N., Barnes, P. D., Bassalleck, B., Basye, A. T., Bathe, S., Batsouli, S., Baublis, V., Bauer, F., Baumann, C., Bazilevsky, A., Belikov, S., Belmont, R., Bennett, R., Berdnikov, A., Berdnikov, Y., Bhom, J. H., Bickley, A. A., Bjorndal, M. T., Blau, D. S., Boissevain, J. G., Bok, J. S., Borel, H., Boyle, K., Brooks, M. L., Brown, D. S., Bucher, D., Buesching, H., Bumazhnov, V., Bunce, G., Burward-Hoy, J. M., Butsyk, S., Camacho, C. M., Campbell, S., Caringi, A., Chai, J. -S., Chang, B. S., Charvet, J. -L., Chen, C. -H., Chernichenko, S., Chi, C. Y., Chiba, J., Chiu, M., Choi, I. J., Choi, J. B., Choudhury, R. K., Christiansen, P., Chujo, T., Chung, P., Churyn, A., Chvala, O., Cianciolo, V., Citron, Z., Cleven, C. R., Cobigo, Y., Cole, B. A., Comets, M. P., del Valle, Z. Conesa, Connors, M., Constantin, P., Csanád, M., Csörgő, T., Dahms, T., Dairaku, S., Danchev, I., Das, K., Datta, A., David, G., Dayananda, M. K., Deaton, M. B., Dehmelt, K., Delagrange, H., Denisov, A., d'Enterria, D., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Dion, A., Donadelli, M., Drachenberg, J. L., Drapier, O., Drees, A., Drees, K. A., Dubey, A. K., Durham, J. M., Durum, A., Dutta, D., Dzhordzhadze, V., D'Orazio, L., Edwards, S., Efremenko, Y. V., Egdemir, J., Ellinghaus, F., Emam, W. S., Engelmore, T., Enokizono, A., En'yo, H., Espagnon, B., Esumi, S., Eyser, K. O., Fadem, B., Fields, D. E., Finger, M., Finger Jr, M., Fleuret, F., Fokin, S. L., Forestier, B., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fung, S. -Y., Fusayasu, T., Gadrat, S., Garishvili, I., Gastineau, F., Germain, M., Glenn, A., Gong, H., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Grim, G., Perdekamp, M. Grosse, Gunji, T., Gustafsson, H. -Å., Hachiya, T., Henni, A. Hadj, Haegemann, C., Haggerty, J. S., Hagiwara, M. N., Hahn, K. I., Hamagaki, H., Hamblen, J., Han, R., Hanks, J., Harada, H., Hartouni, E. P., Haruna, K., Harvey, M., Haslum, E., Hasuko, K., Hayano, R., He, X., Heffner, M., Hemmick, T. K., Hester, T., Heuser, J. M., Hiejima, H., Hill, J. C., Hobbs, R., Hohlmann, M., Holmes, M., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hornback, D., Huang, S., Hur, M. G., Ichihara, T., Ichimiya, R., Ide, J., Iinuma, H., Ikeda, Y., Imai, K., Inaba, M., Inoue, Y., Isenhower, D., Isenhower, L., Ishihara, M., Isobe, T., Issah, M., Isupov, A., Ivanischev, D., Iwanaga, Y., Jacak, B. V., Jia, J., Jiang, X., Jin, J., Jinnouchi, O., Johnson, B. M., Jones, T., Joo, K. S., Jouan, D., Jumper, D. S., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kaneta, M., Kang, J. H., Kanou, H., Kapustinsky, J., Karatsu, K., Kasai, M., Kawagishi, T., Kawall, D., Kawashima, M., Kazantsev, A. V., Kelly, S., Kempel, T., Khanzadeev, A., Kijima, K. M., Kikuchi, J., Kim, A., Kim, B. I., Kim, D. H., Kim, D. J., Kim, E., Kim, E. J., Kim, S. H., Kim, Y. -J., Kim, Y. -S., Kim, Y. J., Kinney, E., Kiriluk, K., Kiss, Á., Kistenev, E., Kiyomichi, A., Klay, J., Klein-Boesing, C., Kochenda, L., Kochetkov, V., Komkov, B., Konno, M., Koster, J., Kotchetkov, D., Kozlov, A., Král, A., Kravitz, A., Kroon, P. J., Kubart, J., Kunde, G. J., Kurihara, N., Kurita, K., Kurosawa, M., Kweon, M. J., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Lebedev, A., Bornec, Y. Le, Leckey, S., Lee, D. M., Lee, J., Lee, K., Lee, K. B., Lee, K. S., Lee, M. K., Lee, T., Leitch, M. J., Leite, M. A. L., Leitner, E., Lenzi, B., Li, X., Li, X. H., Lichtenwalner, P., Liebing, P., Lim, H., Levy, L. A. Linden, Liška, T., Litvinenko, A., Liu, H., Liu, M. X., Love, B., Luechtenborg, R., Lynch, D., Maguire, C. F., Makdisi, Y. I., Malakhov, A., Malik, M. D., Manko, V. I., Mannel, E., Mao, Y., Mašek, L., Masui, H., Matathias, F., McCain, M. C., McCumber, M., McGaughey, P. L., Means, N., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Mikeš, P., Miki, K., Miller, T. E., Milov, A., Mioduszewski, S., Mishra, G. C., Mishra, M., Mitchell, J. T., Mitrovski, M., Mohanty, A. K., Moon, H. J., Morino, Y., Morreale, A., Morrison, D. P., Moss, J. M., Moukhanova, T. V., Mukhopadhyay, D., Murakami, T., Murata, J., Nagamiya, S., Nagata, Y., Nagle, J. L., Naglis, M., Nagy, M. I., Nakagawa, I., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nam, S., Newby, J., Nguyen, M., Nihashi, M., Norman, B. E., Nouicer, R., Nyanin, A. S., Nystrand, J., Oakley, C., O'Brien, E., Oda, S. X., Ogilvie, C. A., Ohnishi, H., Ojha, I. D., Oka, M., Okada, K., Omiwade, O. O., Onuki, Y., Oskarsson, A., Otterlund, I., Ouchida, M., Ozawa, K., Pak, R., Pal, D., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, I. H., Park, J., Park, S. K., Park, W. J., Pate, S. F., Pei, H., Peng, J. -C., Pereira, H., Peresedov, V., Peressounko, D. Yu., Petti, R., Pinkenburg, C., Pisani, R. P., Proissl, M., Purschke, M. L., Purwar, A. K., Qu, H., Rak, J., Rakotozafindrabe, A., Ravinovich, I., Read, K. F., Rembeczki, S., Reuter, M., Reygers, K., Riabov, V., Riabov, Y., Richardson, E., Roach, D., Roche, G., Rolnick, S. D., Romana, A., Rosati, M., Rosen, C. A., Rosendahl, S. S. E., Rosnet, P., Rukoyatkin, P., Ružička, P., Rykov, V. L., Ryu, S. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Sakashita, K., Sakata, H., Samsonov, V., Sano, S., Sato, H. D., Sato, S., Sato, T., Sawada, S., Sedgwick, K., Seele, J., Seidl, R., Semenov, A. Yu., Semenov, V., Seto, R., Sharma, D., Shea, T. K., Shein, I., Shevel, A., Shibata, T. -A., Shigaki, K., Shimomura, M., Shohjoh, T., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Skutnik, S., Slunečka, M., Smith, W. C., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Sparks, N. A., Staley, F., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Suire, C., Sukhanov, A., Sullivan, J. P., Sziklai, J., Tabaru, T., Takagi, S., Takagui, E. M., Taketani, A., Tanabe, R., Tanaka, K. H., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarján, P., Themann, H., Thomas, D., Thomas, T. L., Togawa, M., Toia, A., Tojo, J., Tomášek, L., Torii, H., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Tuli, S. K., Tydesjö, H., Tyurin, N., Vale, C., Valle, H., van Hecke, H. W., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Vértesi, R., Vinogradov, A. A., Virius, M., Vrba, V., Vznuzdaev, E., Wagner, M., Walker, D., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Wei, F., Wei, R., Wessels, J., White, S. N., Willis, N., Winter, D., Wood, J. P., Woody, C. L., Wright, R. M., Wysocki, M., Xie, W., Yamaguchi, Y. L., Yamaura, K., Yang, R., Yanovich, A., Yasin, Z., Ying, J., Yokkaichi, S., You, Z., Young, G. R., Younus, I., Yushmanov, I. E., Zajc, W. A., Zaudtke, O., Zhang, C., Zhou, S., Zimányi, J., and Zolin, L.
- Subjects
Nuclear Experiment - Abstract
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured omega meson production via leptonic and hadronic decay channels in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN) = 200 GeV. The invariant transverse momentum spectra measured in different decay modes give consistent results. Measurements in the hadronic decay channel in Cu+Cu and Au+Au collisions show that omega production has a suppression pattern at high transverse momentum, similar to that of pi^0 and eta in central collisions, but no suppression is observed in peripheral collisions. The nuclear modification factors, R_AA, are consistent in Cu+Cu and Au+Au collisions at similar numbers of participant nucleons., Comment: 542 authors, pages, 11 figures, 3 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2011
- Full Text
- View/download PDF
49. Sr flux stability against oxidation in oxide-MBE environment: flux, geometry, and pressure dependence
- Author
-
Kim, Y. S., Bansal, Namrata, Chaparro, Carlos, Gross, Heiko, and Oh, Seongshik
- Subjects
Condensed Matter - Materials Science - Abstract
Maintaining stable fluxes for multiple source elements is a challenging task when the source materials have significantly different oxygen affinities in a complex-oxide molecular-beam-epitaxy (MBE) environment. Considering that Sr is one of the most easily oxidized and widely used element in various complex oxides, we took Sr as a probe to investigate the flux stability problem in a number of different conditions. Source oxidation was less for higher flux, extended port geometry, and un-melted source shape. The extended port geometry also eliminated the flux transient after opening a source shutter as observed in the standard port. We also found that the source oxidation occurred more easily on the crucible wall than on the surface of the source material. Atomic oxygen, in spite of its stronger oxidation effectiveness, did not make any difference in source oxidation as compared to molecular oxygen in this geometry. Our results may provide a guide for solutions to the source oxidation problem in oxide-MBE system., Comment: 22 pages, 7 figures
- Published
- 2011
- Full Text
- View/download PDF
50. Time separation as a hidden variable to the Copenhagen school of quantum mechanics
- Author
-
Kim, Y. S. and Noz, Marilyn E.
- Subjects
Quantum Physics ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty., Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings series
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.