27 results on '"Khomik M"'
Search Results
2. Global covariation of carbon turnover times with climate in terrestrial ecosystems
- Author
-
Carvalhais, N, Forkel, M, Khomik, M, Bellarby, J, Jung, M, Migliavacca, M, Μu, M, Saatchi, S, Santoro, M, Thurner, M, Weber, U, Ahrens, B, Beer, C, Cescatti, A, Randerson, JT, and Reichstein, M
- Subjects
General Science & Technology - Abstract
© 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.
- Published
- 2014
3. Evaluating the impacts of climate variability and disturbance regimes on the historic carbon budget of a forest landscape
- Author
-
Chen, B., Arain, M.A., Khomik, M., Trofymow, J.A., Grant, R.F., Kurz, W.A., Yeluripati, J., and Wang, Z.
- Published
- 2013
- Full Text
- View/download PDF
4. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data (vol 7, 225, 2020)
- Author
-
Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Reichstein, M, Ribeca, A, van Ingen, C, Vuichard, N, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardo, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Brummer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D'Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrene, E, Dunn, A, Dusek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Grunwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hortnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janous, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, Lopez-Ballesteros, A, Lopez-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Luers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, U, Raz-Yaseef, N, Rebmann, C, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sanchez-Canete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlak, P, Serrano-Ortiz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Sigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, Papale, D, Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Reichstein, M, Ribeca, A, van Ingen, C, Vuichard, N, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardo, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Brummer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D'Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrene, E, Dunn, A, Dusek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Grunwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hortnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janous, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, Lopez-Ballesteros, A, Lopez-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Luers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, U, Raz-Yaseef, N, Rebmann, C, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sanchez-Canete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlak, P, Serrano-Ortiz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Sigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, and Papale, D
- Abstract
A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00851-9.
- Published
- 2021
5. Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
- Author
-
Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Reichstein, M, Ribeca, A, van Ingen, C, Vuichard, N, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardö, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Brümmer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D’Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrêne, E, Dunn, A, Dušek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Grünwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hörtnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janouš, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, López-Ballesteros, A, López-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Lüers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, Ü, Raz-Yaseef, N, Rebmann, C, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sánchez-Cañete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlák, P, Serrano-Ortíz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Šigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, Papale, D, Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Reichstein, M, Ribeca, A, van Ingen, C, Vuichard, N, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardö, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Brümmer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D’Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrêne, E, Dunn, A, Dušek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Grünwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hörtnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janouš, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, López-Ballesteros, A, López-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Lüers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, Ü, Raz-Yaseef, N, Rebmann, C, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sánchez-Cañete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlák, P, Serrano-Ortíz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Šigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, and Papale, D
- Abstract
The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions.
- Published
- 2021
6. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
- Author
-
Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Ribeca, A, van Ingen, C, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardo, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Bruemmer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D'Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrene, E, Dunn, A, Dusek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Gruenwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hoertnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janous, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, Lopez-Ballesteros, A, Lopez-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Lueers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, U, Raz-Yaseef, N, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sanchez-Canete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlak, P, Serrano-Ortiz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Sigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tiedemann, F, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, Papale, D, Pastorello, G, Trotta, C, Canfora, E, Chu, H, Christianson, D, Cheah, Y-W, Poindexter, C, Chen, J, Elbashandy, A, Humphrey, M, Isaac, P, Polidori, D, Ribeca, A, van Ingen, C, Zhang, L, Amiro, B, Ammann, C, Arain, MA, Ardo, J, Arkebauer, T, Arndt, SK, Arriga, N, Aubinet, M, Aurela, M, Baldocchi, D, Barr, A, Beamesderfer, E, Marchesini, LB, Bergeron, O, Beringer, J, Bernhofer, C, Berveiller, D, Billesbach, D, Black, TA, Blanken, PD, Bohrer, G, Boike, J, Bolstad, PV, Bonal, D, Bonnefond, J-M, Bowling, DR, Bracho, R, Brodeur, J, Bruemmer, C, Buchmann, N, Burban, B, Burns, SP, Buysse, P, Cale, P, Cavagna, M, Cellier, P, Chen, S, Chini, I, Christensen, TR, Cleverly, J, Collalti, A, Consalvo, C, Cook, BD, Cook, D, Coursolle, C, Cremonese, E, Curtis, PS, D'Andrea, E, da Rocha, H, Dai, X, Davis, KJ, De Cinti, B, de Grandcourt, A, De Ligne, A, De Oliveira, RC, Delpierre, N, Desai, AR, Di Bella, CM, di Tommasi, P, Dolman, H, Domingo, F, Dong, G, Dore, S, Duce, P, Dufrene, E, Dunn, A, Dusek, J, Eamus, D, Eichelmann, U, ElKhidir, HAM, Eugster, W, Ewenz, CM, Ewers, B, Famulari, D, Fares, S, Feigenwinter, I, Feitz, A, Fensholt, R, Filippa, G, Fischer, M, Frank, J, Galvagno, M, Gharun, M, Gianelle, D, Gielen, B, Gioli, B, Gitelson, A, Goded, I, Goeckede, M, Goldstein, AH, Gough, CM, Goulden, ML, Graf, A, Griebel, A, Gruening, C, Gruenwald, T, Hammerle, A, Han, S, Han, X, Hansen, BU, Hanson, C, Hatakka, J, He, Y, Hehn, M, Heinesch, B, Hinko-Najera, N, Hoertnagl, L, Hutley, L, Ibrom, A, Ikawa, H, Jackowicz-Korczynski, M, Janous, D, Jans, W, Jassal, R, Jiang, S, Kato, T, Khomik, M, Klatt, J, Knohl, A, Knox, S, Kobayashi, H, Koerber, G, Kolle, O, Kosugi, Y, Kotani, A, Kowalski, A, Kruijt, B, Kurbatova, J, Kutsch, WL, Kwon, H, Launiainen, S, Laurila, T, Law, B, Leuning, R, Li, Y, Liddell, M, Limousin, J-M, Lion, M, Liska, AJ, Lohila, A, Lopez-Ballesteros, A, Lopez-Blanco, E, Loubet, B, Loustau, D, Lucas-Moffat, A, Lueers, J, Ma, S, Macfarlane, C, Magliulo, V, Maier, R, Mammarella, I, Manca, G, Marcolla, B, Margolis, HA, Marras, S, Massman, W, Mastepanov, M, Matamala, R, Matthes, JH, Mazzenga, F, McCaughey, H, McHugh, I, McMillan, AMS, Merbold, L, Meyer, W, Meyers, T, Miller, SD, Minerbi, S, Moderow, U, Monson, RK, Montagnani, L, Moore, CE, Moors, E, Moreaux, V, Moureaux, C, Munger, JW, Nakai, T, Neirynck, J, Nesic, Z, Nicolini, G, Noormets, A, Northwood, M, Nosetto, M, Nouvellon, Y, Novick, K, Oechel, W, Olesen, JE, Ourcival, J-M, Papuga, SA, Parmentier, F-J, Paul-Limoges, E, Pavelka, M, Peichl, M, Pendall, E, Phillips, RP, Pilegaard, K, Pirk, N, Posse, G, Powell, T, Prasse, H, Prober, SM, Rambal, S, Rannik, U, Raz-Yaseef, N, Reed, D, de Dios, VR, Restrepo-Coupe, N, Reverter, BR, Roland, M, Sabbatini, S, Sachs, T, Saleska, SR, Sanchez-Canete, EP, Sanchez-Mejia, ZM, Schmid, HP, Schmidt, M, Schneider, K, Schrader, F, Schroder, I, Scott, RL, Sedlak, P, Serrano-Ortiz, P, Shao, C, Shi, P, Shironya, I, Siebicke, L, Sigut, L, Silberstein, R, Sirca, C, Spano, D, Steinbrecher, R, Stevens, RM, Sturtevant, C, Suyker, A, Tagesson, T, Takanashi, S, Tang, Y, Tapper, N, Thom, J, Tiedemann, F, Tomassucci, M, Tuovinen, J-P, Urbanski, S, Valentini, R, van der Molen, M, van Gorsel, E, van Huissteden, K, Varlagin, A, Verfaillie, J, Vesala, T, Vincke, C, Vitale, D, Vygodskaya, N, Walker, JP, Walter-Shea, E, Wang, H, Weber, R, Westermann, S, Wille, C, Wofsy, S, Wohlfahrt, G, Wolf, S, Woodgate, W, Zampedri, R, Zhang, J, Zhou, G, Zona, D, Agarwal, D, Biraud, S, Torn, M, and Papale, D
- Abstract
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
- Published
- 2020
7. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
- Author
-
Pastorello, G. (Gilberto), Trotta, C. (Carlo), Canfora, E. (Eleonora), Chu, H. (Housen), Christianson, D. (Danielle), Cheah, Y.-W. (You-Wei), Poindexter, C. (Cristina), Chen, J. (Jiquan), Elbashandy, A. (Abdelrahman), Humphrey, M. (Marty), Isaac, P. (Peter), Polidori, D. (Diego), Ribeca, A. (Alessio), van Ingen, C. (Catharine), Zhang, L. (Leiming), Amiro, B. (Brian), Ammann, C. (Christof), Arain, M. A. (M. Altaf), Ardo, J. (Jonas), Arkebauer, T. (Timothy), Arndt, S. K. (Stefan K.), Arriga, N. (Nicola), Aubinet, M. (Marc), Aurela, M. (Mika), Baldocchi, D. (Dennis), Barr, A. (Alan), Beamesderfer, E. (Eric), Marchesini, L. B. (Luca Belelli), Bergeron, O. (Onil), Beringer, J. (Jason), Bernhofer, C. (Christian), Berveiller, D. (Daniel), Billesbach, D. (Dave), Black, T. A. (Thomas Andrew), Blanken, P. D. (Peter D.), Bohrer, G. (Gil), Boike, J. (Julia), Bolstad, P. V. (Paul V.), Bonal, D. (Damien), Bonnefond, J.-M. (Jean-Marc), Bowling, D. R. (David R.), Bracho, R. (Rosvel), Brodeur, J. (Jason), Bruemmer, C. (Christian), Buchmann, N. (Nina), Burban, B. (Benoit), Burns, S. P. (Sean P.), Buysse, P. (Pauline), Cale, P. (Peter), Cavagna, M. (Mauro), Cellier, P. (Pierre), Chen, S. (Shiping), Chini, I. (Isaac), Christensen, T. R. (Torben R.), Cleverly, J. (James), Collalti, A. (Alessio), Consalvo, C. (Claudia), Cook, B. D. (Bruce D.), Cook, D. (David), Coursolle, C. (Carole), Cremonese, E. (Edoardo), Curtis, P. S. (Peter S.), D'Andrea, E. (Ettore), da Rocha, H. (Humberto), Dai, X. (Xiaoqin), Davis, K. J. (Kenneth J.), De Cinti, B. (Bruno), de Grandcourt, A. (Agnes), De Ligne, A. (Anne), De Oliveira, R. C. (Raimundo C.), Delpierre, N. (Nicolas), Desai, A. R. (Ankur R.), Di Bella, C. M. (Carlos Marcelo), di Tommasi, P. (Paul), Dolman, H. (Han), Domingo, F. (Francisco), Dong, G. (Gang), Dore, S. (Sabina), Duce, P. (Pierpaolo), Dufrene, E. (Eric), Dunn, A. (Allison), Dusek, J. (Jiri), Eamus, D. (Derek), Eichelmann, U. (Uwe), ElKhidir, H. A. (Hatim Abdalla M.), Eugster, W. (Werner), Ewenz, C. M. (Cacilia M.), Ewers, B. (Brent), Famulari, D. (Daniela), Fares, S. (Silvano), Feigenwinter, I. (Iris), Feitz, A. (Andrew), Fensholt, R. (Rasmus), Filippa, G. (Gianluca), Fischer, M. (Marc), Frank, J. (John), Galvagno, M. (Marta), Gharun, M. (Mana), Gianelle, D. (Damiano), Gielen, B. (Bert), Gioli, B. (Beniamino), Gitelson, A. (Anatoly), Goded, I. (Ignacio), Goeckede, M. (Mathias), Goldstein, A. H. (Allen H.), Gough, C. M. (Christopher M.), Goulden, M. L. (Michael L.), Graf, A. (Alexander), Griebel, A. (Anne), Gruening, C. (Carsten), Gruenwald, T. (Thomas), Hammerle, A. (Albin), Han, S. (Shijie), Han, X. (Xingguo), Hansen, B. U. (Birger Ulf), Hanson, C. (Chad), Hatakka, J. (Juha), He, Y. (Yongtao), Hehn, M. (Markus), Heinesch, B. (Bernard), Hinko-Najera, N. (Nina), Hoertnagl, L. (Lukas), Hutley, L. (Lindsay), Ibrom, A. (Andreas), Ikawa, H. (Hiroki), Jackowicz-Korczynski, M. (Marcin), Janous, D. (Dalibor), Jans, W. (Wilma), Jassal, R. (Rachhpal), Jiang, S. (Shicheng), Kato, T. (Tomomichi), Khomik, M. (Myroslava), Klatt, J. (Janina), Knohl, A. (Alexander), Knox, S. (Sara), Kobayashi, H. (Hideki), Koerber, G. (Georgia), Kolle, O. (Olaf), Kosugi, Y. (Yoshiko), Kotani, A. (Ayumi), Kowalski, A. (Andrew), Kruijt, B. (Bart), Kurbatova, J. (Julia), Kutsch, W. L. (Werner L.), Kwon, H. (Hyojung), Launiainen, S. (Samuli), Laurila, T. (Tuomas), Law, B. (Bev), Leuning, R. (Ray), Li, Y. (Yingnian), Liddell, M. (Michael), Limousin, J.-M. (Jean-Marc), Lion, M. (Marryanna), Liska, A. J. (Adam J.), Lohila, A. (Annalea), Lopez-Ballesteros, A. (Ana), Lopez-Blanco, E. (Efren), Loubet, B. (Benjamin), Loustau, D. (Denis), Lucas-Moffat, A. (Antje), Lueers, J. (Johannes), Ma, S. (Siyan), Macfarlane, C. (Craig), Magliulo, V. (Vincenzo), Maier, R. (Regine), Mammarella, I. (Ivan), Manca, G. (Giovanni), Marcolla, B. (Barbara), Margolis, H. A. (Hank A.), Marras, S. (Serena), Massman, W. (William), Mastepanov, M. (Mikhail), Matamala, R. (Roser), Matthes, J. H. (Jaclyn Hatala), Mazzenga, F. (Francesco), McCaughey, H. (Harry), McHugh, I. (Ian), McMillan, A. M. (Andrew M. S.), Merbold, L. (Lutz), Meyer, W. (Wayne), Meyers, T. (Tilden), Miller, S. D. (Scott D.), Minerbi, S. (Stefano), Moderow, U. (Uta), Monson, R. K. (Russell K.), Montagnani, L. (Leonardo), Moore, C. E. (Caitlin E.), Moors, E. (Eddy), Moreaux, V. (Virginie), Moureaux, C. (Christine), Munger, J. W. (J. William), Nakai, T. (Taro), Neirynck, J. (Johan), Nesic, Z. (Zoran), Nicolini, G. (Giacomo), Noormets, A. (Asko), Northwood, M. (Matthew), Nosetto, M. (Marcelo), Nouvellon, Y. (Yann), Novick, K. (Kimberly), Oechel, W. (Walter), Olesen, J. E. (Jorgen Eivind), Ourcival, J.-M. (Jean-Marc), Papuga, S. A. (Shirley A.), Parmentier, F.-J. (Frans-Jan), Paul-Limoges, E. (Eugenie), Pavelka, M. (Marian), Peichl, M. (Matthias), Pendall, E. (Elise), Phillips, R. P. (Richard P.), Pilegaard, K. (Kim), Pirk, N. (Norbert), Posse, G. (Gabriela), Powell, T. (Thomas), Prasse, H. (Heiko), Prober, S. M. (Suzanne M.), Rambal, S. (Serge), Rannik, U. (Ullar), Raz-Yaseef, N. (Naama), Reed, D. (David), de Dios, V. R. (Victor Resco), Restrepo-Coupe, N. (Natalia), Reverter, B. R. (Borja R.), Roland, M. (Marilyn), Sabbatini, S. (Simone), Sachs, T. (Torsten), Saleska, S. R. (Scott R.), Sanchez-Canete, E. P. (Enrique P.), Sanchez-Mejia, Z. M. (Zulia M.), Schmid, H. P. (Hans Peter), Schmidt, M. (Marius), Schneider, K. (Karl), Schrader, F. (Frederik), Schroder, I. (Ivan), Scott, R. L. (Russell L.), Sedlak, P. (Pavel), Serrano-Ortiz, P. (Penelope), Shao, C. (Changliang), Shi, P. (Peili), Shironya, I. (Ivan), Siebicke, L. (Lukas), Sigut, L. (Ladislav), Silberstein, R. (Richard), Sirca, C. (Costantino), Spano, D. (Donatella), Steinbrecher, R. (Rainer), Stevens, R. M. (Robert M.), Sturtevant, C. (Cove), Suyker, A. (Andy), Tagesson, T. (Torbern), Takanashi, S. (Satoru), Tang, Y. (Yanhong), Tapper, N. (Nigel), Thom, J. (Jonathan), Tiedemann, F. (Frank), Tomassucci, M. (Michele), Tuovinen, J.-P. (Juha-Pekka), Urbanski, S. (Shawn), Valentini, R. (Riccardo), van der Molen, M. (Michiel), van Gorsel, E. (Eva), van Huissteden, K. (Ko), Varlagin, A. (Andrej), Verfaillie, J. (Joseph), Vesala, T. (Timo), Vincke, C. (Caroline), Vitale, D. (Domenico), Vygodskaya, N. (Natalia), Walker, J. P. (Jeffrey P.), Walter-Shea, E. (Elizabeth), Wang, H. (Huimin), Weber, R. (Robin), Westermann, S. (Sebastian), Wille, C. (Christian), Wofsy, S. (Steven), Wohlfahrt, G. (Georg), Wolf, S. (Sebastian), Woodgate, W. (William), Li, Y. (Yuelin), Zampedri, R. (Roberto), Zhang, J. (Junhui), Zhou, G. (Guoyi), Zona, D. (Donatella), Agarwal, D. (Deb), Biraud, S. (Sebastien), Torn, M. (Margaret), Papale, D. (Dario), Pastorello, G. (Gilberto), Trotta, C. (Carlo), Canfora, E. (Eleonora), Chu, H. (Housen), Christianson, D. (Danielle), Cheah, Y.-W. (You-Wei), Poindexter, C. (Cristina), Chen, J. (Jiquan), Elbashandy, A. (Abdelrahman), Humphrey, M. (Marty), Isaac, P. (Peter), Polidori, D. (Diego), Ribeca, A. (Alessio), van Ingen, C. (Catharine), Zhang, L. (Leiming), Amiro, B. (Brian), Ammann, C. (Christof), Arain, M. A. (M. Altaf), Ardo, J. (Jonas), Arkebauer, T. (Timothy), Arndt, S. K. (Stefan K.), Arriga, N. (Nicola), Aubinet, M. (Marc), Aurela, M. (Mika), Baldocchi, D. (Dennis), Barr, A. (Alan), Beamesderfer, E. (Eric), Marchesini, L. B. (Luca Belelli), Bergeron, O. (Onil), Beringer, J. (Jason), Bernhofer, C. (Christian), Berveiller, D. (Daniel), Billesbach, D. (Dave), Black, T. A. (Thomas Andrew), Blanken, P. D. (Peter D.), Bohrer, G. (Gil), Boike, J. (Julia), Bolstad, P. V. (Paul V.), Bonal, D. (Damien), Bonnefond, J.-M. (Jean-Marc), Bowling, D. R. (David R.), Bracho, R. (Rosvel), Brodeur, J. (Jason), Bruemmer, C. (Christian), Buchmann, N. (Nina), Burban, B. (Benoit), Burns, S. P. (Sean P.), Buysse, P. (Pauline), Cale, P. (Peter), Cavagna, M. (Mauro), Cellier, P. (Pierre), Chen, S. (Shiping), Chini, I. (Isaac), Christensen, T. R. (Torben R.), Cleverly, J. (James), Collalti, A. (Alessio), Consalvo, C. (Claudia), Cook, B. D. (Bruce D.), Cook, D. (David), Coursolle, C. (Carole), Cremonese, E. (Edoardo), Curtis, P. S. (Peter S.), D'Andrea, E. (Ettore), da Rocha, H. (Humberto), Dai, X. (Xiaoqin), Davis, K. J. (Kenneth J.), De Cinti, B. (Bruno), de Grandcourt, A. (Agnes), De Ligne, A. (Anne), De Oliveira, R. C. (Raimundo C.), Delpierre, N. (Nicolas), Desai, A. R. (Ankur R.), Di Bella, C. M. (Carlos Marcelo), di Tommasi, P. (Paul), Dolman, H. (Han), Domingo, F. (Francisco), Dong, G. (Gang), Dore, S. (Sabina), Duce, P. (Pierpaolo), Dufrene, E. (Eric), Dunn, A. (Allison), Dusek, J. (Jiri), Eamus, D. (Derek), Eichelmann, U. (Uwe), ElKhidir, H. A. (Hatim Abdalla M.), Eugster, W. (Werner), Ewenz, C. M. (Cacilia M.), Ewers, B. (Brent), Famulari, D. (Daniela), Fares, S. (Silvano), Feigenwinter, I. (Iris), Feitz, A. (Andrew), Fensholt, R. (Rasmus), Filippa, G. (Gianluca), Fischer, M. (Marc), Frank, J. (John), Galvagno, M. (Marta), Gharun, M. (Mana), Gianelle, D. (Damiano), Gielen, B. (Bert), Gioli, B. (Beniamino), Gitelson, A. (Anatoly), Goded, I. (Ignacio), Goeckede, M. (Mathias), Goldstein, A. H. (Allen H.), Gough, C. M. (Christopher M.), Goulden, M. L. (Michael L.), Graf, A. (Alexander), Griebel, A. (Anne), Gruening, C. (Carsten), Gruenwald, T. (Thomas), Hammerle, A. (Albin), Han, S. (Shijie), Han, X. (Xingguo), Hansen, B. U. (Birger Ulf), Hanson, C. (Chad), Hatakka, J. (Juha), He, Y. (Yongtao), Hehn, M. (Markus), Heinesch, B. (Bernard), Hinko-Najera, N. (Nina), Hoertnagl, L. (Lukas), Hutley, L. (Lindsay), Ibrom, A. (Andreas), Ikawa, H. (Hiroki), Jackowicz-Korczynski, M. (Marcin), Janous, D. (Dalibor), Jans, W. (Wilma), Jassal, R. (Rachhpal), Jiang, S. (Shicheng), Kato, T. (Tomomichi), Khomik, M. (Myroslava), Klatt, J. (Janina), Knohl, A. (Alexander), Knox, S. (Sara), Kobayashi, H. (Hideki), Koerber, G. (Georgia), Kolle, O. (Olaf), Kosugi, Y. (Yoshiko), Kotani, A. (Ayumi), Kowalski, A. (Andrew), Kruijt, B. (Bart), Kurbatova, J. (Julia), Kutsch, W. L. (Werner L.), Kwon, H. (Hyojung), Launiainen, S. (Samuli), Laurila, T. (Tuomas), Law, B. (Bev), Leuning, R. (Ray), Li, Y. (Yingnian), Liddell, M. (Michael), Limousin, J.-M. (Jean-Marc), Lion, M. (Marryanna), Liska, A. J. (Adam J.), Lohila, A. (Annalea), Lopez-Ballesteros, A. (Ana), Lopez-Blanco, E. (Efren), Loubet, B. (Benjamin), Loustau, D. (Denis), Lucas-Moffat, A. (Antje), Lueers, J. (Johannes), Ma, S. (Siyan), Macfarlane, C. (Craig), Magliulo, V. (Vincenzo), Maier, R. (Regine), Mammarella, I. (Ivan), Manca, G. (Giovanni), Marcolla, B. (Barbara), Margolis, H. A. (Hank A.), Marras, S. (Serena), Massman, W. (William), Mastepanov, M. (Mikhail), Matamala, R. (Roser), Matthes, J. H. (Jaclyn Hatala), Mazzenga, F. (Francesco), McCaughey, H. (Harry), McHugh, I. (Ian), McMillan, A. M. (Andrew M. S.), Merbold, L. (Lutz), Meyer, W. (Wayne), Meyers, T. (Tilden), Miller, S. D. (Scott D.), Minerbi, S. (Stefano), Moderow, U. (Uta), Monson, R. K. (Russell K.), Montagnani, L. (Leonardo), Moore, C. E. (Caitlin E.), Moors, E. (Eddy), Moreaux, V. (Virginie), Moureaux, C. (Christine), Munger, J. W. (J. William), Nakai, T. (Taro), Neirynck, J. (Johan), Nesic, Z. (Zoran), Nicolini, G. (Giacomo), Noormets, A. (Asko), Northwood, M. (Matthew), Nosetto, M. (Marcelo), Nouvellon, Y. (Yann), Novick, K. (Kimberly), Oechel, W. (Walter), Olesen, J. E. (Jorgen Eivind), Ourcival, J.-M. (Jean-Marc), Papuga, S. A. (Shirley A.), Parmentier, F.-J. (Frans-Jan), Paul-Limoges, E. (Eugenie), Pavelka, M. (Marian), Peichl, M. (Matthias), Pendall, E. (Elise), Phillips, R. P. (Richard P.), Pilegaard, K. (Kim), Pirk, N. (Norbert), Posse, G. (Gabriela), Powell, T. (Thomas), Prasse, H. (Heiko), Prober, S. M. (Suzanne M.), Rambal, S. (Serge), Rannik, U. (Ullar), Raz-Yaseef, N. (Naama), Reed, D. (David), de Dios, V. R. (Victor Resco), Restrepo-Coupe, N. (Natalia), Reverter, B. R. (Borja R.), Roland, M. (Marilyn), Sabbatini, S. (Simone), Sachs, T. (Torsten), Saleska, S. R. (Scott R.), Sanchez-Canete, E. P. (Enrique P.), Sanchez-Mejia, Z. M. (Zulia M.), Schmid, H. P. (Hans Peter), Schmidt, M. (Marius), Schneider, K. (Karl), Schrader, F. (Frederik), Schroder, I. (Ivan), Scott, R. L. (Russell L.), Sedlak, P. (Pavel), Serrano-Ortiz, P. (Penelope), Shao, C. (Changliang), Shi, P. (Peili), Shironya, I. (Ivan), Siebicke, L. (Lukas), Sigut, L. (Ladislav), Silberstein, R. (Richard), Sirca, C. (Costantino), Spano, D. (Donatella), Steinbrecher, R. (Rainer), Stevens, R. M. (Robert M.), Sturtevant, C. (Cove), Suyker, A. (Andy), Tagesson, T. (Torbern), Takanashi, S. (Satoru), Tang, Y. (Yanhong), Tapper, N. (Nigel), Thom, J. (Jonathan), Tiedemann, F. (Frank), Tomassucci, M. (Michele), Tuovinen, J.-P. (Juha-Pekka), Urbanski, S. (Shawn), Valentini, R. (Riccardo), van der Molen, M. (Michiel), van Gorsel, E. (Eva), van Huissteden, K. (Ko), Varlagin, A. (Andrej), Verfaillie, J. (Joseph), Vesala, T. (Timo), Vincke, C. (Caroline), Vitale, D. (Domenico), Vygodskaya, N. (Natalia), Walker, J. P. (Jeffrey P.), Walter-Shea, E. (Elizabeth), Wang, H. (Huimin), Weber, R. (Robin), Westermann, S. (Sebastian), Wille, C. (Christian), Wofsy, S. (Steven), Wohlfahrt, G. (Georg), Wolf, S. (Sebastian), Woodgate, W. (William), Li, Y. (Yuelin), Zampedri, R. (Roberto), Zhang, J. (Junhui), Zhou, G. (Guoyi), Zona, D. (Donatella), Agarwal, D. (Deb), Biraud, S. (Sebastien), Torn, M. (Margaret), and Papale, D. (Dario)
- Abstract
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
- Published
- 2020
8. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.
- Author
-
Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah Y-W, Poindexter C, Chen J, Elbashandy A, Humphrey M, Isaac P, Polidori D, Ribeca A, van Ingen C, Zhang L, Amiro B, Ammann C, Arain MA, Ardö J, Arkebauer T, Arndt SK, Arriga N, Aubinet M, Aurela M, Baldocchi D, Barr A, Beamesderfer E, Marchesini LB, Bergeron O, Beringer J, Bernhofer C, Berveiller D, Billesbach D, Black TA, Blanken PD, Bohrer G, Boike J, Bolstad PV, Bonal D, Bonnefond J-M, Bowling DR, Bracho R, Brodeur J, Brümmer C, Buchmann N, Burban B, Burns SP, Buysse P, Cale P, Cavagna M, Cellier P, Chen S, Chini I, Christensen TR, Cleverly J, Collalti A, Consalvo C, Cook BD, Cook D, Coursolle C, Cremonese E, Curtis PS, D'Andrea E, da Rocha H, Dai X, Davis KJ, De Cinti B, de Grandcourt A, De Ligne A, De Oliveira RC, Delpierre N, Desai AR, Di Bella CM, di Tommasi P, Dolman H, Domingo F, Dong G, Dore S, Duce P, Dufrêne E, Dunn A, Dušek J, Eamus D, Eichelmann U, ElKhidir HAM, Eugster W, Ewenz CM, Ewers B, Famulari D, Fares S, Feigenwinter I, Feitz A, Fensholt R, Filippa G, Fischer M, Frank J, Galvagno M, Gharun M, Gianelle D, Gielen B, Gioli B, Gitelson A, Goded I, Goeckede M, Goldstein AH, Gough CM, Goulden ML, Graf A, Griebel A, Gruening C, Grünwald T, Hammerle A, Han S, Han X, Hansen BU, Hanson C, Hatakka J, He Y, Hehn M, Heinesch B, Hinko-Najera N, Hörtnagl L, Hutley L, Ibrom A, Ikawa H, Jackowicz-Korczynski M, Janouš D, Jans W, Jassal R, Jiang S, Kato T, Khomik M, Klatt J, Knohl A, Knox S, Kobayashi H, Koerber G, Kolle O, Kosugi Y, Kotani A, Kowalski A, Kruijt B, Kurbatova J, Kutsch WL, Kwon H, Launiainen S, Laurila T, Law B, Leuning R, Li Y, Liddell M, Limousin J-M, Lion M, Liska AJ, Lohila A, López-Ballesteros A, López-Blanco E, Loubet B, Loustau D, Lucas-Moffat A, Lüers J, Ma S, Macfarlane C, Magliulo V, Maier R, Mammarella I, Manca G, Marcolla B, Margolis HA, Marras S, Massman W, Mastepanov M, Matamala R, Matthes JH, Mazzenga F, McCaughey H, McHugh I, McMillan AMS, Merbold L, Meyer W, Meyers T, Miller SD, Minerbi S, Moderow U, Monson RK, Montagnani L, Moore CE, Moors E, Moreaux V, Moureaux C, Munger JW, Nakai T, Neirynck J, Nesic Z, Nicolini G, Noormets A, Northwood M, Nosetto M, Nouvellon Y, Novick K, Oechel W, Olesen JE, Ourcival J-M, Papuga SA, Parmentier F-J, Paul-Limoges E, Pavelka M, Peichl M, Pendall E, Phillips RP, Pilegaard K, Pirk N, Posse G, Powell T, Prasse H, Prober SM, Rambal S, Rannik Ü, Raz-Yaseef N, Reed D, de Dios VR, Restrepo-Coupe N, Reverter BR, Roland M, Sabbatini S, Sachs T, Saleska SR, Sánchez-Cañete EP, Sanchez-Mejia ZM, Schmid HP, Schmidt M, Schneider K, Schrader F, Schroder I, Scott RL, Sedlák P, Serrano-Ortíz P, Shao C, Shi P, Shironya I, Siebicke L, Šigut L, Silberstein R, Sirca C, Spano D, Steinbrecher R, Stevens RM, Sturtevant C, Suyker A, Tagesson T, Takanashi S, Tang Y, Tapper N, Thom J, Tiedemann F, Tomassucci M, Tuovinen J-P, Urbanski S, Valentini R, van der Molen M, van Gorsel E, van Huissteden K, Varlagin A, Verfaillie J, Vesala T, Vincke C, Vitale D, Vygodskaya N, Walker JP, Walter-Shea E, Wang H, Weber R, Westermann S, Wille C, Wofsy S, Wohlfahrt G, Wolf S, Woodgate W, Zampedri R, Zhang J, Zhou G, Zona D, Agarwal D, Biraud S, Torn M, Papale D, Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah Y-W, Poindexter C, Chen J, Elbashandy A, Humphrey M, Isaac P, Polidori D, Ribeca A, van Ingen C, Zhang L, Amiro B, Ammann C, Arain MA, Ardö J, Arkebauer T, Arndt SK, Arriga N, Aubinet M, Aurela M, Baldocchi D, Barr A, Beamesderfer E, Marchesini LB, Bergeron O, Beringer J, Bernhofer C, Berveiller D, Billesbach D, Black TA, Blanken PD, Bohrer G, Boike J, Bolstad PV, Bonal D, Bonnefond J-M, Bowling DR, Bracho R, Brodeur J, Brümmer C, Buchmann N, Burban B, Burns SP, Buysse P, Cale P, Cavagna M, Cellier P, Chen S, Chini I, Christensen TR, Cleverly J, Collalti A, Consalvo C, Cook BD, Cook D, Coursolle C, Cremonese E, Curtis PS, D'Andrea E, da Rocha H, Dai X, Davis KJ, De Cinti B, de Grandcourt A, De Ligne A, De Oliveira RC, Delpierre N, Desai AR, Di Bella CM, di Tommasi P, Dolman H, Domingo F, Dong G, Dore S, Duce P, Dufrêne E, Dunn A, Dušek J, Eamus D, Eichelmann U, ElKhidir HAM, Eugster W, Ewenz CM, Ewers B, Famulari D, Fares S, Feigenwinter I, Feitz A, Fensholt R, Filippa G, Fischer M, Frank J, Galvagno M, Gharun M, Gianelle D, Gielen B, Gioli B, Gitelson A, Goded I, Goeckede M, Goldstein AH, Gough CM, Goulden ML, Graf A, Griebel A, Gruening C, Grünwald T, Hammerle A, Han S, Han X, Hansen BU, Hanson C, Hatakka J, He Y, Hehn M, Heinesch B, Hinko-Najera N, Hörtnagl L, Hutley L, Ibrom A, Ikawa H, Jackowicz-Korczynski M, Janouš D, Jans W, Jassal R, Jiang S, Kato T, Khomik M, Klatt J, Knohl A, Knox S, Kobayashi H, Koerber G, Kolle O, Kosugi Y, Kotani A, Kowalski A, Kruijt B, Kurbatova J, Kutsch WL, Kwon H, Launiainen S, Laurila T, Law B, Leuning R, Li Y, Liddell M, Limousin J-M, Lion M, Liska AJ, Lohila A, López-Ballesteros A, López-Blanco E, Loubet B, Loustau D, Lucas-Moffat A, Lüers J, Ma S, Macfarlane C, Magliulo V, Maier R, Mammarella I, Manca G, Marcolla B, Margolis HA, Marras S, Massman W, Mastepanov M, Matamala R, Matthes JH, Mazzenga F, McCaughey H, McHugh I, McMillan AMS, Merbold L, Meyer W, Meyers T, Miller SD, Minerbi S, Moderow U, Monson RK, Montagnani L, Moore CE, Moors E, Moreaux V, Moureaux C, Munger JW, Nakai T, Neirynck J, Nesic Z, Nicolini G, Noormets A, Northwood M, Nosetto M, Nouvellon Y, Novick K, Oechel W, Olesen JE, Ourcival J-M, Papuga SA, Parmentier F-J, Paul-Limoges E, Pavelka M, Peichl M, Pendall E, Phillips RP, Pilegaard K, Pirk N, Posse G, Powell T, Prasse H, Prober SM, Rambal S, Rannik Ü, Raz-Yaseef N, Reed D, de Dios VR, Restrepo-Coupe N, Reverter BR, Roland M, Sabbatini S, Sachs T, Saleska SR, Sánchez-Cañete EP, Sanchez-Mejia ZM, Schmid HP, Schmidt M, Schneider K, Schrader F, Schroder I, Scott RL, Sedlák P, Serrano-Ortíz P, Shao C, Shi P, Shironya I, Siebicke L, Šigut L, Silberstein R, Sirca C, Spano D, Steinbrecher R, Stevens RM, Sturtevant C, Suyker A, Tagesson T, Takanashi S, Tang Y, Tapper N, Thom J, Tiedemann F, Tomassucci M, Tuovinen J-P, Urbanski S, Valentini R, van der Molen M, van Gorsel E, van Huissteden K, Varlagin A, Verfaillie J, Vesala T, Vincke C, Vitale D, Vygodskaya N, Walker JP, Walter-Shea E, Wang H, Weber R, Westermann S, Wille C, Wofsy S, Wohlfahrt G, Wolf S, Woodgate W, Zampedri R, Zhang J, Zhou G, Zona D, Agarwal D, Biraud S, Torn M, and Papale D
- Abstract
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
- Published
- 2020
9. Changes in carbon flux and spectral reflectance of Sphagnum mosses as a result of simulated drought
- Author
-
Lees, K. J., Clark, J. M., Quaife, T., Khomik, M., and Artz, R. R. E.
- Subjects
fungi ,food and beverages - Abstract
Sphagnum is an important peat-forming genus which aids the carbon sequestration of peatlands. Sphagnum is sensitive to drought, however, and it is uncertain how well it can recover from long periods without rainfall. Spectral reflectance can be used to assess Sphagnum desiccation damage, and we also tested whether it can be used to detect recovery.Different rainfall simulations were applied to two species of Sphagnum to assess the impact of drought on carbon function. After eighty days all samples were rewetted to assess recovery.The rainfall simulations included inputs analogous to actual precipitation at the field site(Forsinard Flows reserve, Northern Scotland), potential future changes in rainfall, and extended total drought.During the experiment Gross Primary Productivity (GPP) and respiration were measured. Photosynthesis decreased after approximately 30days of continuous drought(ie. days without rain. Spectral reflectance was measured to assess Sphagnum bleaching. The spectral absorption feature of Sphagnum associated with red light (around 650nm) was affected by drought, and did not recover after rewetting during the experimental period. No significant difference was found between the two Sphagnum species studied with respect to their photosynthesis or respiration, but there was a significant difference in optimum water content and spectral reflectance between the two. The results from this study suggest that Sphagnum carbon function is resilient to quite long drought periods, but once damage has occurred recovery is likely to be difficult. The spectral reflectance of Sphagnum can give useful information in assessing whether significant desiccation damage has occurred.
- Published
- 2019
10. Potential for using remote sensing to estimate carbon fluxes across Northern peatlands: a review
- Author
-
Lees, K. J., Quaife, T., Artz, R. E. E., Khomik, M., and Clark, J. M.
- Abstract
Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth’s atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration.
- Published
- 2018
11. Carbon, water and energy exchange dynamics of a young pine plantation forest during the initial fourteen years of growth
- Author
-
Chan, FCC, Altaf Arain, M, Khomik, M, Brodeur, JJ, Peichl, M, Restrepo-Coupe, N, Thorne, R, Beamesderfer, E, McKenzie, S, Xu, B, Croft, H, Pejam, M, Trant, J, Kula, M, Skubel, R, Chan, FCC, Altaf Arain, M, Khomik, M, Brodeur, JJ, Peichl, M, Restrepo-Coupe, N, Thorne, R, Beamesderfer, E, McKenzie, S, Xu, B, Croft, H, Pejam, M, Trant, J, Kula, M, and Skubel, R
- Abstract
© 2017 Elsevier B.V. This study presents the energy, water, and carbon (C) flux dynamics of a young afforested temperate white pine (Pinus strobus L.) forest in southern Ontario, Canada during the initial fourteen years (2003–2016) of establishment. Energy fluxes, namely, net radiation (Rn), latent heat (LE), and sensible heat (H) flux increased over time, due to canopy development. Annual values of ground heat flux (G) peaked in 2007 and then gradually declined in response to canopy closure. The forest became a consistent C-sink only 5 years after establishment owing in part to low respiratory fluxes from the former agricultural, sandy soils with low residual soil organic matter. Mean annual values of gross ecosystem productivity (GEP), ecosystem respiration (RE), and net ecosystem productivity (NEP) ranged from 494 to 1913, 515 to 1774 and −126 to 216 g C m−2 year−1 respectively, over the study period. Annual evapotranspiration (ET) values ranged from 328 to 429 mm year−1 over the same period. Water use efficiency (WUE) increased with stand age with a mean WUE value of 3.92 g C kg−1 H2O from 2008 to 2016. Multivariable linear regression analysis conducted using observed data suggested that the overall, C and water dynamics of the stand were primarily driven by radiation and temperature, both of which explained 77%, 48%, 28%, and 76% of the variability in GEP, RE, NEP, and ET, respectively. However, late summer droughts, which were prevalent in the region, reduced NEP. The reduction in NEP was enhanced when summer drought events were accompanied by increased heat such as those in 2005, 2012 and 2016. This study contributes to our understanding of the energy, water and C dynamics of afforested temperate conifer plantations and how these forests may respond to changing climate conditions during the crucial initial stage of their life cycle. Our findings also demonstrate the potential of pine plantation stands to sequester atmospheric CO2 in eastern North America.
- Published
- 2018
12. Global patterns of increasing soil organic carbon turnover rates with increasing mean surface temperatures, across different forest biomes, are driven by boreal forests
- Author
-
Khomik M, Carvalhais N, Forkel M, Reichstein M, Schrumpf M, Beer C, Curiel Yuste J, Janssens I, Luyssaert S, Subke JA, Trumbore S, and Wutzler T.
- Published
- 2012
13. Biotic interactions and biogeochemical processes in the soil environment
- Author
-
Subke, Jens-Arne, Carbone, M S, Khomik, M, Stoy, P, and Bahn, Michael
- Subjects
Root respiration ,Rhizosphere ,terrestrial carbon cycle ,Partitioning ,Soil CO2 efflux - Abstract
Soils play a key role in the terrestrial carbon (C) cycle by storing and emitting large quantities of C. The impact of abiotic conditions (mainly soil temperature and moisture) on soil C turnover is well documented, but unravelling the influence of these drivers across temporal and spatial scales remains an important challenge. Biotic factors, such as microbial abundance and diversity, macro-faunal food webs and below-ground plant (i.e. root) biomass and diversity, play an important role in controlling soil C storage and emission, but remain under-investigated. To better understand the soil processes underlying terrestrial C cycling, the interactions between plants (autotrophs) and soil organisms (heterotrophs) need to be addressed more explicitly and integrated with short- and long-term effects of abiotic drivers. This special issue presents recent advances in field, laboratory, and modelling studies on soil C dynamics, with a particular emphasis on those aiming to resolve abiotic and biotic influences. The manuscripts highlight three areas of investigation that we suggest are central to current and future progress in ecosystem C dynamic research: (1) novel interpretations of abiotic controls on soil CO2 efflux, (2) legacy effects of abiotic drivers of soil C dynamics, and (3) the interaction between plant C dynamics and soil biological processes.
- Published
- 2012
14. Across-site variability of soil organic carbon turnover times derived from chamber and eddy covariance based measurements, as affected by climate and vegetation
- Author
-
Khomik M, Reichstein M, M. Schrumpf M, Beer C, Curiel Yuste J, Janssens I, Luyssaert S, Subke JA, Trumbore S, Wutzler T, Jung M, and Lasslop G.
- Published
- 2011
15. Carbon and greenhouse gas balances in an age sequence of temperate pine plantations
- Author
-
Peichl, M, Arain, AM, Moore, TR, Brodeur, JJ, Khomik, M, Ullah, S, Restrepo-Coupé, N, McLaren, J, Pejam, MR, Peichl, M, Arain, AM, Moore, TR, Brodeur, JJ, Khomik, M, Ullah, S, Restrepo-Coupé, N, McLaren, J, and Pejam, MR
- Abstract
© Author(s) 2014. This study investigated differences in the magnitude and partitioning of the carbon (C) and greenhouse gas (GHG) balances in an age sequence of four white pine (Pinus strobus L.) afforestation stands (7, 20, 35 and 70 years old as of 2009) in southern Ontario, Canada. The 4-year (2004-2008) mean annual carbon dioxide (CO2) exchanges, based on biometric and eddy covariance data, were combined with the 2-year means of static chamber measurements of methane (CH4) and nitrous oxide (N2O) fluxes (2006-2007) and dissolved organic carbon (DOC) export below 1 m soil depth (2004-2005). The total ecosystem C pool increased with age from 46 to 197 t C ha-1 across the four stands. Rates of organic matter cycling (i.e. litterfall and decomposition) were similar among the three older stands. In contrast, considerable differences related to stand age and site quality were observed in the magnitude and partitioning of individual CO2 fluxes, showing a peak in production and respiration rates in the middle-age (20-year-old) stand growing on fertile post-agricultural soil. The DOC export accounted for 10% of net ecosystem production (NEP) at the 7-year-old stand but <2% at the three older stands. The GHG balance from the combined exchanges of CO2, CH4 and N2O was 2.6, 21.6, 13.5 and 4.8 t CO2 equivalent ha-1 yearg-1 for the 7-, 20-, 35- and 70-year-old stands, respectively. The maximum annual contribution from the combined exchanges of CH4 and N2O to the GHG balance was 13 and 8% in the 7- and 70-year-old stands, respectively, but <1% in the two highly productive middle-age (20- and 35-year-old) stands. Averaged over the entire age sequence, the CO2 exchange was the main driver of the GHG balance in these forests. The cumulative CO2 sequestration over the 70 years was estimated at 129 t C and 297 t C ha-1 yearg-1 for stands growing on low- and high-productivity sites, respectively. This study highlights the importance of accounting for age and site quality effects on
- Published
- 2014
16. Carbon and greenhouse gas balances in an age sequence of temperate pine plantations
- Author
-
Peichl, M., primary, Arain, A. M., additional, Moore, T. R., additional, Brodeur, J. J., additional, Khomik, M., additional, Ullah, S., additional, Restrepo-Coupé, N., additional, McLaren, J., additional, and Pejam, M. R., additional
- Published
- 2014
- Full Text
- View/download PDF
17. On the causes of rising gross ecosystem productivity in a regenerating clearcut environment: leaf area vs. species composition
- Author
-
Khomik, M., primary, Williams, C. A., additional, Vanderhoof, M. K., additional, MacLean, R. G., additional, and Dillen, S. Y., additional
- Published
- 2014
- Full Text
- View/download PDF
18. Relative contributions of soil, foliar, and woody tissue respiration to total ecosystem respiration in four pine forests of different ages
- Author
-
Khomik, M, Arain, M, Brodeur, J, Peichl, M, Restrepo Coupe, N, McLaren, J, Khomik, M, Arain, M, Brodeur, J, Peichl, M, Restrepo Coupe, N, and McLaren, J
- Abstract
Carbon dioxide (CO2) emissions from soil, foliage, and live woody tissue were measured throughout the year in afforested, white pine (Pinus strobus L.) stands (67, 32, 17, and 4 years old as of 2006), growing in a northern temperate climate. The data were used to estimate annual ecosystem respiration (Re) and its component fluxes, including soil, foliar, and woody tissue respiration; to investigate major environmental factors causing intersite and temporal variability in the observed fluxes; and to compare chamber-based Re estimates with eddy covariance-based estimates. While temperature was the dominant driving factor of temporal variability in component fluxes, intersite variability in CO2 emissions was attributed to differences in stand physiological characteristics, such as the presence of the LFH soil horizon, its carbon-to-nitrogen ratio, and the amount of canopy cover. Additional factors that contributed to flux variability included the frequency of precipitation events, vapor pressure deficit and stem diameter, depending on the component considered. Estimated annual chamber-based totals of Re across the four stands were 1526 ? 137, 1278 ? 137, 1985 ? 293, and 773 ? 46 g C m-2 yr-1 for the 67-, 32-, 17-, and 4-year-old stands, respectively. Soil respiration dominated emissions at the 4-year-old stand, while foliar respiration dominated emissions at the 17-year-old stand.
- Published
- 2010
19. Preface "Biotic interactions and biogeochemical processes in the soil environment"
- Author
-
Subke, J.-A., primary, Carbone, M. S., additional, Khomik, M., additional, Stoy, P., additional, and Bahn, M., additional
- Published
- 2012
- Full Text
- View/download PDF
20. Assessment of effective LAI and water use efficiency using Eddy Covariance data.
- Author
-
Kompanizare M, Petrone RM, Macrae ML, De Haan K, and Khomik M
- Subjects
- Crops, Agricultural, Plant Leaves, Zea mays, Carbon Dioxide, Photosynthesis
- Abstract
Globally, maize (Zea mays, a C4-plant) and alfalfa (Medicago sativa, a C3-plant) are common and economically important crops. Predicting the response of their water use efficiency, WUE, to changing hydrologic and climatic conditions is vital in helping farmers adapt to a changing climate. In this study, we assessed the effective leaf area index (eLAI - the leaf area most involved in CO
2 and H2 O exchange) and stomatal conductance in canopy scale in maize and alfalfa fields. In the process we used a theoretically-based photosynthesis C3-C4 model (C3C4PM) and carbon and water vapour fluxes measured by Eddy Covariance towers at our study sites. We found that in our study sites the eLAI was in the range of 25-32% of the observed total LAI in these crops. WUEs were in range of 8-9 mmol/mol. C3C4PM can be used in predictions of stomatal conductance and eLAI responses in C3 and C4 agricultural crops to elevated CO2 concentration and changes in precipitation and temperature under future climate scenarios., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
21. Heat and drought impact on carbon exchange in an age-sequence of temperate pine forests.
- Author
-
Arain MA, Xu B, Brodeur JJ, Khomik M, Peichl M, Beamesderfer E, Restrepo-Couple N, and Thorne R
- Abstract
Background: Most North American temperate forests are plantation or regrowth forests, which are actively managed. These forests are in different stages of their growth cycles and their ability to sequester atmospheric carbon is affected by extreme weather events. In this study, the impact of heat and drought events on carbon sequestration in an age-sequence (80, 45, and 17 years as of 2019) of eastern white pine ( Pinus strobus L.) forests in southern Ontario, Canada was examined using eddy covariance flux measurements from 2003 to 2019., Results: Over the 17-year study period, the mean annual values of net ecosystem productivity (NEP) were 180 ± 96, 538 ± 177 and 64 ± 165 g C m
-2 yr-1 in the 80-, 45- and 17-year-old stands, respectively, with the highest annual carbon sequestration rate observed in the 45-year-old stand. We found that air temperature (Ta) was the dominant control on NEP in all three different-aged stands and drought, which was a limiting factor for both gross ecosystem productivity (GEP) and ecosystems respiration (RE), had a smaller impact on NEP. However, the simultaneous occurrence of heat and drought events during the early growing seasons or over the consecutive years had a significant negative impact on annual NEP in all three forests. We observed a similar trend of NEP decline in all three stands over three consecutive years that experienced extreme weather events, with 2016 being a hot and dry, 2017 being a dry, and 2018 being a hot year. The youngest stand became a net source of carbon for all three of these years and the oldest stand became a small source of carbon for the first time in 2018 since observations started in 2003. However, in 2019, all three stands reverted to annual net carbon sinks., Conclusions: Our study results indicate that the timing, frequency and concurrent or consecutive occurrence of extreme weather events may have significant implications for carbon sequestration in temperate conifer forests in Eastern North America. This study is one of few globally available to provide long-term observational data on carbon exchanges in different-aged temperate plantation forests. It highlights interannual variability in carbon fluxes and enhances our understanding of the responses of these forest ecosystems to extreme weather events. Study results will help in developing climate resilient and sustainable forestry practices to offset atmospheric greenhouse gas emissions and improving simulation of carbon exchange processes in terrestrial ecosystem models., Competing Interests: Competing interestsThe authors declare that they have no competing interests., (© The Author(s) 2022.)- Published
- 2022
- Full Text
- View/download PDF
22. Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale.
- Author
-
Lees KJ, Khomik M, Quaife T, Clark JM, Hill T, Klein D, Ritson J, and Artz RRE
- Abstract
Estimates of peatland carbon fluxes based on remote sensing data are a useful addition to monitoring methods in these remote and precious ecosystems, but there are questions as to whether large-scale estimates are reliable given the small-scale heterogeneity of many peatlands. Our objective was to consider the reliability of models based on Earth Observations for estimating ecosystem photosynthesis at different scales using the Forsinard Flows RSPB reserve in Northern Scotland as our study site. Three sites across the reserve were monitored during the growing season of 2017. One site is near-natural blanket bog, and the other two are at different stages of the restoration process after removal of commercial conifer forestry. At each site we measured small (flux chamber) and landscape scale (eddy covariance) CO
2 fluxes, small scale spectral data using a handheld spectrometer, and obtained corresponding satellite data from MODIS. The variables influencing GPP at small scale, including microforms and dominant vegetation species, were assessed using exploratory factor analysis. A GPP model using land surface temperature and a measure of greenness from remote sensing data was tested and compared to chamber and eddy covariance CO2 fluxes; this model returned good results at all scales (Pearson's correlations of 0.57 to 0.71 at small scale, 0.76 to 0.86 at large scale). We found that the effect of microtopography on GPP fluxes at the study sites was spatially and temporally inconsistent, although connected to water content and vegetation species. The GPP fluxes measured using EC were larger than those using chambers at all sites, and the reliability of the TG model at different scales was dependent on the measurement methods used for calibration and validation. This suggests that GPP measurements from remote sensing are robust at all scales, but that the methods used for calibration and validation will impact accuracy., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
23. Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.
- Author
-
Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah YW, Poindexter C, Chen J, Elbashandy A, Humphrey M, Isaac P, Polidori D, Reichstein M, Ribeca A, van Ingen C, Vuichard N, Zhang L, Amiro B, Ammann C, Arain MA, Ardö J, Arkebauer T, Arndt SK, Arriga N, Aubinet M, Aurela M, Baldocchi D, Barr A, Beamesderfer E, Marchesini LB, Bergeron O, Beringer J, Bernhofer C, Berveiller D, Billesbach D, Black TA, Blanken PD, Bohrer G, Boike J, Bolstad PV, Bonal D, Bonnefond JM, Bowling DR, Bracho R, Brodeur J, Brümmer C, Buchmann N, Burban B, Burns SP, Buysse P, Cale P, Cavagna M, Cellier P, Chen S, Chini I, Christensen TR, Cleverly J, Collalti A, Consalvo C, Cook BD, Cook D, Coursolle C, Cremonese E, Curtis PS, D'Andrea E, da Rocha H, Dai X, Davis KJ, De Cinti B, de Grandcourt A, De Ligne A, De Oliveira RC, Delpierre N, Desai AR, Di Bella CM, di Tommasi P, Dolman H, Domingo F, Dong G, Dore S, Duce P, Dufrêne E, Dunn A, Dušek J, Eamus D, Eichelmann U, ElKhidir HAM, Eugster W, Ewenz CM, Ewers B, Famulari D, Fares S, Feigenwinter I, Feitz A, Fensholt R, Filippa G, Fischer M, Frank J, Galvagno M, Gharun M, Gianelle D, Gielen B, Gioli B, Gitelson A, Goded I, Goeckede M, Goldstein AH, Gough CM, Goulden ML, Graf A, Griebel A, Gruening C, Grünwald T, Hammerle A, Han S, Han X, Hansen BU, Hanson C, Hatakka J, He Y, Hehn M, Heinesch B, Hinko-Najera N, Hörtnagl L, Hutley L, Ibrom A, Ikawa H, Jackowicz-Korczynski M, Janouš D, Jans W, Jassal R, Jiang S, Kato T, Khomik M, Klatt J, Knohl A, Knox S, Kobayashi H, Koerber G, Kolle O, Kosugi Y, Kotani A, Kowalski A, Kruijt B, Kurbatova J, Kutsch WL, Kwon H, Launiainen S, Laurila T, Law B, Leuning R, Li Y, Liddell M, Limousin JM, Lion M, Liska AJ, Lohila A, López-Ballesteros A, López-Blanco E, Loubet B, Loustau D, Lucas-Moffat A, Lüers J, Ma S, Macfarlane C, Magliulo V, Maier R, Mammarella I, Manca G, Marcolla B, Margolis HA, Marras S, Massman W, Mastepanov M, Matamala R, Matthes JH, Mazzenga F, McCaughey H, McHugh I, McMillan AMS, Merbold L, Meyer W, Meyers T, Miller SD, Minerbi S, Moderow U, Monson RK, Montagnani L, Moore CE, Moors E, Moreaux V, Moureaux C, Munger JW, Nakai T, Neirynck J, Nesic Z, Nicolini G, Noormets A, Northwood M, Nosetto M, Nouvellon Y, Novick K, Oechel W, Olesen JE, Ourcival JM, Papuga SA, Parmentier FJ, Paul-Limoges E, Pavelka M, Peichl M, Pendall E, Phillips RP, Pilegaard K, Pirk N, Posse G, Powell T, Prasse H, Prober SM, Rambal S, Rannik Ü, Raz-Yaseef N, Rebmann C, Reed D, de Dios VR, Restrepo-Coupe N, Reverter BR, Roland M, Sabbatini S, Sachs T, Saleska SR, Sánchez-Cañete EP, Sanchez-Mejia ZM, Schmid HP, Schmidt M, Schneider K, Schrader F, Schroder I, Scott RL, Sedlák P, Serrano-Ortíz P, Shao C, Shi P, Shironya I, Siebicke L, Šigut L, Silberstein R, Sirca C, Spano D, Steinbrecher R, Stevens RM, Sturtevant C, Suyker A, Tagesson T, Takanashi S, Tang Y, Tapper N, Thom J, Tomassucci M, Tuovinen JP, Urbanski S, Valentini R, van der Molen M, van Gorsel E, van Huissteden K, Varlagin A, Verfaillie J, Vesala T, Vincke C, Vitale D, Vygodskaya N, Walker JP, Walter-Shea E, Wang H, Weber R, Westermann S, Wille C, Wofsy S, Wohlfahrt G, Wolf S, Woodgate W, Li Y, Zampedri R, Zhang J, Zhou G, Zona D, Agarwal D, Biraud S, Torn M, and Papale D
- Published
- 2021
- Full Text
- View/download PDF
24. The Impact of Seasonal and Annual Climate Variations on the Carbon Uptake Capacity of a Deciduous Forest Within the Great Lakes Region of Canada.
- Author
-
Beamesderfer ER, Arain MA, Khomik M, and Brodeur JJ
- Abstract
In eastern North America, many deciduous forest ecosystems grow at the northernmost extent of their geographical ranges, where climate change could aid or impede their growth. This region experiences frequent extreme weather conditions, allowing us to study the response of these forests to environmental conditions, reflective of future climates. Here we determined the impact of seasonal and annual climate variations and extreme weather events on the carbon (C) uptake capacity of an oak-dominated forest in southern Ontario, Canada, from 2012 to 2016. We found that changes in meteorology during late May to mid-July were key in determining the C sink strength of the forest, impacting the seasonal and annual variability of net ecosystem productivity (NEP). Overall, higher temperatures and dry conditions reduced ecosystem respiration (RE) much more than gross ecosystem productivity (GEP), leading to higher NEP. Variability in NEP was primarily driven by changes in RE, rather than GEP. The mean annual GEP, RE, and NEP values at our site during the study were 1,343 ± 85, 1,171 ± 139, and 206 ± 92 g C m
-2 yr-1 , respectively. The forest was a C sink even in years that experienced heat and water stresses. Mean annual NEP at our site was within the range of NEP (69-459 g C m-2 yr-1 ) observed in similar North American forests from 2012 to 2016. The growth and C sequestration capabilities of our oak-dominated forest were not adversely impacted by changes in environmental conditions and extreme weather events experienced over the study period., Competing Interests: The authors declare no competing interests., (©2020. The Authors.)- Published
- 2020
- Full Text
- View/download PDF
25. Potential for using remote sensing to estimate carbon fluxes across northern peatlands - A review.
- Author
-
Lees KJ, Quaife T, Artz RRE, Khomik M, and Clark JM
- Abstract
Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration., (Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
26. Global covariation of carbon turnover times with climate in terrestrial ecosystems.
- Author
-
Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Mu M, Saatchi S, Santoro M, Thurner M, Weber U, Ahrens B, Beer C, Cescatti A, Randerson JT, and Reichstein M
- Subjects
- Biomass, Feedback, Hydrology, Models, Theoretical, Plants metabolism, Rain, Soil chemistry, Temperature, Time Factors, Water Cycle, Carbon metabolism, Carbon Cycle, Climate, Ecosystem
- Abstract
The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.
- Published
- 2014
- Full Text
- View/download PDF
27. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment.
- Author
-
Williams CA, Vanderhoof MK, Khomik M, and Ghimire B
- Subjects
- Biodiversity, Carbon metabolism, Carbon Dioxide analysis, Climate, Massachusetts, Photosynthesis, Sunlight, Water metabolism, Forestry, Plants classification, Plants metabolism
- Abstract
Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corresponding influences on Earth's climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeorological measurements of surface-atmosphere exchanges with vegetation inventories and chamber-based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post-clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expansion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensible heat flux. Gross short-wave and long-wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous broadleaf forest., (© 2013 John Wiley & Sons Ltd.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.