Antoine Grall, Phuc Do, Khanh T. P. Nguyen, Christophe Bérenguer, Khac Tuan Huynh, Laboratoire Génie de Production (LGP), Ecole Nationale d'Ingénieurs de Tarbes (ENIT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT), Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Modélisation et Sûreté des Systèmes (LM2S), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), GIPSA - Signal et Automatique pour la surveillance, le diagnostic et la biomécanique (GIPSA-SAIGA), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Département Images et Signal (GIPSA-DIS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011), Ecole Nationale d'Ingénieurs de Tarbes, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut polytechnique de Grenoble (FRANCE), Université Grenoble Alpes - UGA (FRANCE), Université de Technologie de Troyes - UTT (FRANCE), Université de Lorraine (FRANCE), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
International audience; The quality of condition monitoring is an important factor affecting the effectiveness of a condition-based maintenance program. It depends closely on implemented inspection and instrument technologies, and eventually on investment costs, i.e., a more accurate condition monitoring information requires a more sophisticated inspection, hence a higher cost. While numerous works in the literature have considered problems related to condition monitoring quality, (e.g., imperfect inspection models, detection and localization techniques, etc.) few of them focus on adjusting condition monitoring quality for condition-based maintenance optimization. In this paper, we investigate how such an adjustment can help to reduce the total cost of a condition-based maintenance program. The condition monitoring quality is characterized by the observation noises on the system degradation level returned by an inspection. A dynamic condition-based maintenance and inspection policy adapted to such a observation information is proposed and formulated based on Partially Observable Markov Decision Processes. The use and advantages of the proposed joint inspection and maintenance model are numerically discussed and compared to several inspection-maintenance policies through numerical examples.