124 results on '"Khalili, F. Ya."'
Search Results
2. A new double-pass type of the optical spring
- Author
-
Khalili, F. Ya.
- Subjects
Quantum Physics - Abstract
In detuned optical cavities, the radiation pressure force acting on the mirrors depends on their displacements. This is equivalent to the rigidity (the optical spring), inserted between the mirrors. This effect can be used for optimization of the mechanical susceptibility of probe mirrors in high-precision force sensors. However, in some cases, the use of detuned cavities or even just any high-finesse cavities could be problematic due to technological constraints. We consider a new type of the optical spring that does not require the cavity (but can use a resonance tuned one to increase the optomechanical coupling). Instead, it uses the double interaction of the probing light with the mechanical object. We propose two possible implementation of this concept, suitable, respectively, for the atomic spin ensembles and for the laser gravitational-wave detectors., Comment: 15 pages, 6 figures
- Published
- 2024
3. Robustness of negativity of the Wigner function to dissipation
- Author
-
Nugmanov, B., Zunikov, N., and Khalili, F. Ya.
- Subjects
Quantum Physics - Abstract
Non-Gaussian quantum states, described by negative valued Wigner functions, are important both for fundamental tests of quantum physics and for emerging quantum information technologies. However, they are vulnerable to dissipation. It is known, that the Wigner functions negativity could exist only if the overall quantum efficiency $\eta$ of the setup is higher than 1/2. Here we prove that this condition is not only necessary but also a sufficient one: the negativity always persists while this condition is fulfilled. At the same time, in the case of bright (multi-photon) non-Gaussian quantum states, the negativity dependence on $\eta$ is highly non-linear. With the loss of several photons, it drops by orders of magnitude, hampering its experimental detection., Comment: 4 pages, 2 figures
- Published
- 2022
4. QND measurements of photon number in monolithic microcavities
- Author
-
Balybin, S. N., Matsko, A. B., Khalili, F. Ya., Strekalov, D. V., Iltchenko, V. S., Savchenkov, A. A., Lebedev, N. M., and Bilenko, I. A.
- Subjects
Quantum Physics - Abstract
We revisit the idea of quantum nondemolition measurement (QND) of optical quanta via a resonantly enhanced Kerr nonlinearity taking into account quantum back action and show that the monolithic microcavities enable QND measurement of number of quanta in a weak signal field using a spatially overlapping classical probe field. Due to the cross-phase modulation effect, the phase of the probe field acquires information about the signal number of quanta without altering it. We find the exact solution to the Heisenberg equations of motion of this system and calculate the measurement error, accounting for the optical losses in the measurement path. We identify a realistic approximation to obtain the explicit form of the final conditional quantum state of the signal field, accounting for the undesirable self-phase modulation effect and designing the optimal homodyne measurement of the probe beam to evade this effect. We show that the best modern monolithic microcavities allow achieving the measurement imprecision several times better than the standard quantum limit., Comment: 9 pages, 2 figures
- Published
- 2021
- Full Text
- View/download PDF
5. High-fidelity detection of a phase shift using non-Gaussian quantum states of light
- Author
-
Khalili, F. Ya.
- Subjects
Quantum Physics - Abstract
We show that by injecting a light pulse prepared in a non-Gaussian quantum state into the dark port of a two-arm interferometer, it is possible to detect a given phase shift with the fidelity which is limited only by the optical losses and the photodetection inefficiency. The value of the phase shift is inversely proportional to the amplitude of the classical carrier light injected into another (bright) port of the interferometer. It can be reduced by using an additional degenerate parametric amplifier (squeezer) in the input dark port and the matching anti-squeezer in the output dark port. We show that using the modern high-efficiency photon number resolving detectors, it is possible to reduce the detection error by almost one order of magnitude in comparison with the ordinary (Gaussian-state) interferometry., Comment: Single column, 8 pages, 3 figures
- Published
- 2018
6. Overcoming inefficient detection in sub-shot-noise absorption measurement and imaging
- Author
-
Knyazev, E., Khalili, F. Ya., and Chekhova, M. V.
- Subjects
Quantum Physics - Abstract
Photon-number squeezing and correlations enable measurement of absorption with an accuracy exceeding that of the shot-noise limit. However, sub-shot noise imaging and sensing based on these methods require high detection efficiency, which can be a serious obstacle if measurements are carried out in "difficult" spectral ranges. We show that this problem can be overcome through the phase-sensitive amplification before detection. Here we propose an experimental scheme of sub-shot-noise imaging with tolerance to detection losses., Comment: 24 pages, 9 figures, single column
- Published
- 2018
- Full Text
- View/download PDF
7. Quantum noise cancellation in asymmetric speed meters with balanced homodyne readout
- Author
-
Zhang, T, Knyazev, E, Steinlechner, S, Khalili, F Ya, Barr, B W, Bell, A S, Dupej, P, Gräf, C, Callaghan, J, Hennig, J S, Houston, E A, Huttner, S H, Leavey, S S, Pascucci, D, Sorazu, B, Spencer, A, Wright, J, Strain, K A, Danilishin, S L, and Hild, S
- Subjects
Quantum Physics ,Astrophysics - Instrumentation and Methods for Astrophysics ,General Relativity and Quantum Cosmology - Abstract
Sagnac speed meter (SSM) topology is known as an alternative technique to reduce quantum back-action in gravitational-wave interferometers. However, any potential imbalance of the main beamsplitter was shown to reduce the quantum noise superiority of speed meter at low frequencies, caused due to increased laser noise coupling to the detection port. In this paper, we show that implementing balanced homodyne readout scheme and for a particular choice of the local oscillator (LO) delivery port, the excess laser noise contribution to quantum noise limited sensitivity (QNLS) is partly compensated and the speed meter sensitivity can outperform state-of-the-art position meters. This can be achieved by picking the local oscillator from interferometer reflection (\textit{co-moving} LO) or the main beamsplitter anti-reflective coating surface (BSAR LO). We also show that this relaxes the relative intensity noise (RIN) requirement of the input laser. For example, for a beam splitter imbalance of $0.1 \%$ in Glasgow speed meter proof of concept experiment, the RIN requirement at frequency of 100Hz decreases from $4\times 10^{-10}/\sqrt{\rm Hz}$ to $4\times 10^{-7}/\sqrt{\rm Hz}$, moving the RIN requirement from a not practical achievable value to one which is routinely achieved with moderate effort.
- Published
- 2018
- Full Text
- View/download PDF
8. Quantum tomography enhanced through parametric amplification
- Author
-
Knyazev, E., Spasibko, K. Yu., Chekhova, M. V., and Khalili, F. Ya.
- Subjects
Quantum Physics - Abstract
Quantum tomography is the standard method of reconstructing the Wigner function of quantum states of light by means of balanced homodyne detection. The reconstruction quality strongly depends on the photodetectors quantum efficiency and other losses in the measurement setup. In this article we analyse in detail a protocol of enhanced quantum tomography, proposed by Leonhardt and Paul in 1994, which allows one to reduce the degrading effect of detection losses. It is based on phase sensitive parametric amplification, with the phase of the amplified quadrature being scanned synchronously with the local oscil- lator phase. Although with sufficiently strong amplification the protocol enables overcoming any detection inefficiency, it was so far not implemented in experiment, probably due to the losses in the amplifier. Here we discuss a possible proof-of-principle experiment with a traveling-wave parametric amplifier. We show that with the state-of-the art optical elements, the protocol enables high-fidelity tomographic reconstruction of bright nonclassical states of light. We consider two examples: bright squeezed vacuum and squeezed single-photon state, with the latter being a non-Gaussian state and both strongly affected by the losses., Comment: 15 pages, 7 figures
- Published
- 2017
- Full Text
- View/download PDF
9. Speedmeter scheme for gravitational-wave detectors based on EPR quantum entanglement
- Author
-
Knyazev, E., Danilishin, S., Hild, S., and Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology ,Quantum Physics - Abstract
We propose a new implementation of a quantum speed meter QND measurement scheme. It employs two independent optical readouts of the interferometer test masses, featuring strongly different values of the bandwidths $\gamma_{1,2}$ and of the optical circulating power $I_{1,2}$, with the special relationship of $I_1/I_2=\gamma_1/\gamma_2$. The outputs of these two position meters have to be combined by an additional beamsplitter. In this scheme, signals at the common and the differential outputs of the interferometer setup are proportional to the position and the velocity of the test masses, respectively. The influence of the position meter-like back action force associated with the position signal can be cancelled using the EPR approach by measuring the amplitude quadrature of the beamsplitter common output correlated with this force. In the standard signal-recycled Michelson interferometer topology of the modern gravitational-wave detectors, two independent optical position meters can be implemented by two orthogonal polarisations of the probe light. Our analysis shows that the EPR speedmeter provides significantly improved sensitivity for all frequencies below $\sim 30\,{\rm Hz}$ compared to an equivalent signal recycled Michelson interferometer. We believe the EPR speedmeter scheme to be very attractive for future upgrades of gravitational wave detectors, because it requires only minor changes to be implemented in the interferometer hardware and allows to switch between the position meter and the speed meter modes within short time-scales and without any changes to the hardware., Comment: 14 pages, 5 figures
- Published
- 2017
- Full Text
- View/download PDF
10. Experimental Demonstration of Negative-Valued Polarization Quasi-Probability Distribution
- Author
-
Spasibko, K. Yu., Chekhova, M. V., and Khalili, F. Ya.
- Subjects
Quantum Physics - Abstract
Polarization quasiprobability distribution defined in the Stokes space shares many important properties with the Wigner function for the position and momentum. Most notably, they both give correct one-dimensional marginal probability distributions and therefore represent the natural choice for the probability distributions in classical hidden-variable models. In this context, negativity of the Wigner function is considered as a proof of non-classicality for a quantum state. On the contrary, the polarization quasiprobability distribution demonstrates negativity for all quantum states. This feature comes from the discrete nature of the Stokes variables; however, it was not observed in previous experiments, because they were performed with photon-number averaging detectors. Here we reconstruct the polarization quasiprobability distribution of a coherent state with photon-number resolving detectors, which allows us to directly observe for the first time its negativity.
- Published
- 2015
- Full Text
- View/download PDF
11. Non-classical features of Polarization Quasi-Probability Distribution
- Author
-
Chekhova, M. V. and Khalili, F. Ya.
- Subjects
Quantum Physics - Abstract
Polarization quasi-probability distribution (PQPD) is defined in the Stokes space, and it enables the calculation of mean values and higher-order moments for polarization observables using simple algebraic averaging. It can be reconstructed with the help of polarization quantum tomography and provides a full description of the polarization properties of quantum states of light. We show here that, due to its definition in terms of the discrete-valued Stokes operators, polarization quasi-probability distribution has singularities and takes negative values at integer values of the Stokes observables. However, in experiments with `bright' many-photon states, the photon-number resolution is typically smeared due to the technical limitations of contemporary photodetectors. This results in a PQPD that is positive and regular even for such strongly nonclassical states as single-photon seeded squeezed vacuum. This problem can be solved by `highlighting' the quantum state, that is, by adding a strong coherent beam into the orthogonal polarization mode. This procedure bridges polarization quantum tomography with the Wigner-function tomography, while preserving the main advantage of the first one, namely, immunity to the common phase fluctuations in the light path. Thus, it provides a convenient method for the verification of bright nonclassical states of light, such as squeezed Fock states., Comment: 18 pages, 5 figures
- Published
- 2013
- Full Text
- View/download PDF
12. Trade-off between quantum and thermal fluctuations in mirror coatings yields improved sensitivity of gravitational-wave interferometers
- Author
-
Voronchev, N. V., Danilishin, S. L., and Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology - Abstract
We propose a simple way to improve the laser gravitational-wave detectors sensitivity by means of reduction of the number of reflective coating layers of the core optics mirrors. This effects in the proportional decrease of the coating thermal noise, the most notorious among the interferometers technical noise sources. The price for this is the increased quantum noise, as well as high requirements for the pump laser power and power at the beamsplitter. However, as far as these processes depend differently on the coating thickness, we demonstrate that a certain trade-off is possible, yielding a 20-30% gain (for diverse gravitational wave signal types and interferometer configurations), providing that feasible values of laser power and power on the beamsplitter are assumed., Comment: 11 pages, 4 figures, 4 tables
- Published
- 2012
- Full Text
- View/download PDF
13. Laser interferometry with translucent and absorbing mechanical oscillators
- Author
-
Friedrich, D., Kaufer, H., Westphal, T., Yamamoto, K., Sawadsky, A., Khalili, F. Ya., Danilishin, S., Goßler, S., Danzmann, K., and Schnabel, R.
- Subjects
Physics - Optics - Abstract
The sensitivity of laser interferometers can be pushed into regimes that enable the direct observation of quantum behaviour of mechanical oscillators. In the past, membranes with subwavelength thickness (thin films) have been proposed as high-mechanical-quality, low-thermal-noise oscillators. Thin films from a homogenous material, however, generally show considerable light transmission accompanied by heating due to light absorption, which typically reduces the mechanical quality and limits quantum opto-mechanical experiments in particular at low temperatures. In this work, we experimentally analyze a Michelson-Sagnac interferometer including a translucent silicon nitride (SiN) membrane with subwavelength thickness. We find that such an interferometer provides an operational point being optimally suited for quantum opto-mechanical experiments with translucent oscillators. In case of a balanced beam splitter of the interferometer, the membrane can be placed at a node of the electro-magnetic field, which simultaneously provides lowest absorption and optimum laser noise rejection at the signal port. We compare the optical and mechanical model of our interferometer with experimental data and confirm that the SiN membrane can be coupled to a laser power of the order of one Watt at 1064 nm without significantly degrading the membrane's quality factor of the order 10^6, at room temperature.
- Published
- 2011
- Full Text
- View/download PDF
14. Pass-through Mach-Zehnder topologies for macroscopic quantum measurements
- Author
-
Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology ,Quantum Physics - Abstract
Several relatively small-scale experimental setups aimed on prototyping of future laser gravitational-wave detectors and testing of new methods of quantum measurements with macroscopic mechanical objects, are under development now. In these devices, not devoted directly to the gravitational-wave detection, Mach-Zehnder interferometer with pass-through Fabry-Perot cavities in the arms can be used instead of the standard Michelson/Fabry-Perot one. The advantage of this topology is that it does not contain high-reflectivity end mirrors with multilayer coatings, which Brownian noise could constitute the major part of the noise budget of the Michelson/Fabry-Perot interferometers. We consider here two variants of this topology: the "ordinary" position meter scheme, and a new variant of the quantum speed meter., Comment: 11 pages, 9 figures
- Published
- 2011
- Full Text
- View/download PDF
15. Optimizing the regimes of Advanced LIGO gravitational wave detector for multiple source types
- Author
-
Kondrashov, I. S., Simakov, D. A., Khalili, F. Ya., and Danilishin, S. L.
- Subjects
General Relativity and Quantum Cosmology - Abstract
We develop here algorithms which allow to find regimes of signal-recycled Fabry-Perot--Michelson interferometer (for example, Advanced LIGO), optimized concurrently for two (binary inspirals + bursts) and three (binary inspirals + bursts + millisecond pulsars) types of gravitational waves sources. We show that there exists a relatevely large area in the interferometer parameters space where the detector sensitivity to the first two kinds of sources differs only by a few percent from the maximal ones for each kind of source. In particular, there exists a specific regime where this difference is ~0.5 for both of them. Furthermore we show that even more multipurpose regimes are also possible, that provide significant sensitivity gain for millisecond pulsars with only minor sensitivity degradation for binary inspirals and bursts., Comment: 10 pages, 14 figures, 3 tables. Minor corrections in main text are done in version 2 and two plots and one table are added for the sake of clarity of the obtained results
- Published
- 2008
- Full Text
- View/download PDF
16. Beating the spin-down limit on gravitational wave emission from the Crab pulsar
- Author
-
The LIGO Scientific Collaboration, Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., Amin, R., Anderson, S. B., Anderson, W. G., Arain, M. A., Araya, M., Armandula, H., Armor, P., Aso, Y., Aston, S., Aufmuth, P., Aulbert, C., Babak, S., Ballmer, S., Bantilan, H., Barish, B. C., Barker, C., Barker, D., Barr, B., Barriga, P., Barton, M. A., Bastarrika, M., Bayer, K., Betzwieser, J., Beyersdorf, P. T., Bilenko, I. A., Billingsley, G., Biswas, R., Black, E., Blackburn, K., Blackburn, L., Blair, D., Bland, B., Bodiya, T. P., Bogue, L., Bork, R., Boschi, V., Bose, S., Brady, P. R., Braginsky, V. B., Brau, J. E., Brinkmann, M., Brooks, A., Brown, D. A., Brunet, G., Bullington, A., Buonanno, A., Burmeister, O., Byer, R. L., Cadonati, L., Cagnoli, G., Camp, J. B., Cannizzo, J., Cannon, K., Cao, J., Cardenas, L., Casebolt, T., Castaldi, G., Cepeda, C., Chalkley, E., Charlton, P., Chatterji, S., Chelkowski, S., Chen, Y., Christensen, N., Clark, D., Clark, J., Cokelaer, T., Conte, R., Cook, D., Corbitt, T., Coyne, D., Creighton, J. D. E., Cumming, A., Cunningham, L., Cutler, R. M., Dalrymple, J., Danzmann, K., Davies, G., DeBra, D., Degallaix, J., Degree, M., Dergachev, V., Desai, S., DeSalvo, R., Dhurandhar, S., Díaz, M., Dickson, J., Dietz, A., Donovan, F., Dooley, K. L., Doomes, E. E., Drever, R. W. P., Duke, I., Dumas, J. -C., Dupuis, R. J., Dwyer, J. G., Echols, C., Effler, A., Ehrens, P., Espinoza, E., Etzel, T., Evans, T., Fairhurst, S., Fan, Y., Fazi, D., Fehrmann, H., Fejer, M. M., Finn, L. S., Flasch, K., Fotopoulos, N., Freise, A., Frey, R., Fricke, T., Fritschel, P., Frolov, V. V., Fyffe, M., Garofoli, J., Gholami, I., Giaime, J. A., Giampanis, S., Giardina, K. D., Goda, K., Goetz, E., Goggin, L., González, G., Gossler, S., Gouaty, R., Grant, A., Gras, S., Gray, C., Gray, M., Greenhalgh, R. J. S., Gretarsson, A. M., Grimaldi, F., Grosso, R., Grote, H., Grunewald, S., Guenther, M., Gustafson, E. K., Gustafson, R., Hage, B., Hallam, J. M., Hammer, D., Hanna, C., Hanson, J., Harms, J., Harry, G., Harstad, E., Hayama, K., Hayler, T., Heefner, J., Heng, I. S., Hennessy, M., Heptonstall, A., Hewitson, M., Hild, S., Hirose, E., Hoak, D., Hosken, D., Hough, J., Huttner, S. H., Ingram, D., Ito, M., Ivanov, A., Johnson, B., Johnson, W. W., Jones, D. I., Jones, ÂG., Jones, R., Ju, L., Kalmus, P., Kalogera, V., Kamat, S., Kanner, J., Kasprzyk, D., Katsavounidis, E., Kawabe, K., Kawamura, S., Kawazoe, F., Kells, W., Keppel, D. G., Khalili, F. Ya., Khan, R., Khazanov, E., Kim, C., King, P., Kissel, J. S., Klimenko, S., Kokeyama, K., Kondrashov, V., Kopparapu, R. K., Kozak, D., Kozhevatov, I., Krishnan, B., Kwee, P., Lam, P. K., Landry, M., Lang, M. M., Lantz, B., Lazzarini, A., Lei, M., Leindecker, N., Leonhardt, V., Leonor, I., Libbrecht, K., Lin, H., Lindquist, P., Lockerbie, N. A., Lodhia, D., Lormand, M., Lu, P., Lubinski, M., Lucianetti, A., Lück, H., Machenschalk, B., MacInnis, M., Mageswaran, M., Mailand, K., Mandic, V., Márka, S., Márka, Z., Markosyan, A., Markowitz, J., Maros, E., Martin, I., Martin, R. M., Marx, J. N., Mason, K., Matichard, F., Matone, L., Matzner, R., Mavalvala, N., McCarthy, R., McClelland, D. E., McGuire, S. C., McHugh, M., McIntyre, G., McIvor, G., McKechan, D., McKenzie, K., Meier, T., Melissinos, A., Mendell, G., Mercer, R. A., Meshkov, S., Messenger, C. J., Meyers, D., Miller, J., Minelli, J., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Miyakawa, O., Moe, B., Mohanty, S., Moreno, G., Mossavi, K., MowLowry, C., Mueller, G., Mukherjee, S., Mukhopadhyay, H., Müller-Ebhardt, H., Munch, J., Murray, P., Myers, E., Myers, J., Nash, T., Nelson, J., Newton, G., Nishizawa, A., Numata, K., O'Dell, J., Ogin, G., O'Reilly, B., O'Shaughnessy, R., Ottaway, D. J., Ottens, R. S., Overmier, H., Owen, B. J., Pan, Y., Pankow, C., Papa, M. A., Parameshwaraiah, V., Patel, P., Pedraza, M., Penn, S., Perreca, A., Petrie, T., Pinto, I. M., Pitkin, M., Pletsch, H. J., Plissi, M. V., Postiglione, F., Principe, M., Prix, R., Quetschke, V., Raab, F., Rabeling, D. S., Radkins, H., Rainer, N., Rakhmanov, M., Ramsunder, M., Rehbein, H., Reid, S., Reitze, D. H., Riesen, R., Riles, K., Rivera, B., Robertson, N. A., Robinson, C., Robinson, E. L., Roddy, S., Rodriguez, A., Rogan, A. M., Rollins, J., Romano, J. D., Romie, J., Route, R., Rowan, S., Rüdiger, A., Ruet, L., Russell, P., Ryan, K., Sakata, S., Samidi, M., de la Jordana, L. Sancho, Sandberg, V., Sannibale, V., Saraf, S., Sarin, P., Sathyaprakash, B. S., Sato, S., Saulson, P. R., Savage, R., Savov, P., Schediwy, S. W., Schilling, R., Schnabel, R., Schofield, R., Schutz, B. F., Schwinberg, P., Scott, S. M., Searle, A. C., Sears, B., Seifert, F., Sellers, D., Sengupta, A. S., Shawhan, P., Shoemaker, D. H., Sibley, A., Siemens, X., Sigg, D., Sinha, S., Sintes, A. M., Slagmolen, B. J. J., Slutsky, J., Smith, J. R., Smith, M. R., Smith, N. D., Somiya, K., Sorazu, B., Stein, L. C., Stochino, A., Stone, R., Strain, K. A., Strom, D. M., Stuver, A., Summerscales, T. Z., Sun, K. -X., Sung, M., Sutton, P. J., Takahashi, H., Tanner, D. B., Taylor, R., Thacker, J., Thorne, K. A., Thorne, K. S., Thüring, A., Tokmakov, K. V., Torres, C., Torrie, C., Traylor, G., Trias, M., Tyler, W., Ugolini, D., Ulmen, J., Urbanek, K., Vahlbruch, H., Broeck, C. Van Den, van der Sluys, M., Vass, S., Vaulin, R., Vecchio, A., Veitch, J., Veitch, P., Villar, A., Vorvick, C., Vyachanin, S. P., Waldman, S. J., Wallace, L., Ward, H., Ward, R., Weinert, M., Weinstein, A., Weiss, R., Wen, S., Wette, K., Whelan, J. T., Whitcomb, S. E., Whiting, B. F., Wilkinson, C., Willems, P. A., Williams, H. R., Williams, L., Willke, B., Wilmut, I., Winkler, W., Wipf, C. C., Wiseman, A. G., Woan, G., Wooley, R., Worden, J., Wu, W., Yakushin, I., Yamamoto, H., Yan, Z., Yoshida, S., Zanolin, M., Zhang, J., Zhang, L., Zhao, C., Zotov, N., Zucker, M., Zweizig, J., and Santostasi, G.
- Subjects
Astrophysics ,General Relativity and Quantum Cosmology - Abstract
We present direct upper limits on gravitational wave emission from the Crab pulsar using data from the first nine months of the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). These limits are based on two searches. In the first we assume that the gravitational wave emission follows the observed radio timing, giving an upper limit on gravitational wave emission that beats indirect limits inferred from the spin-down and braking index of the pulsar and the energetics of the nebula. In the second we allow for a small mismatch between the gravitational and radio signal frequencies and interpret our results in the context of two possible gravitational wave emission mechanisms., Comment: Accepted for Ap. J. Lett. Minor changes in results due to calibration correction
- Published
- 2008
- Full Text
- View/download PDF
17. Quantum variational measurement in the next generation gravitational-wave detectors
- Author
-
Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology - Abstract
A relatively simple method of overcoming the Standard Quantum Limit in the next-generation Advanced LIGO gravitational wave detector is considered. It is based on the quantum variational measurement with a single short (a few tens of meters) filter cavity. Estimates show that this method allows to reduce the radiation pressure noise at low frequencies ($<100 \mathrm{Hz}$) to the level comparable with or smaller than the low-frequency noises of non-quantum origin (mirrors suspension noise, mirrors internal thermal noise, and gravity gradients fluctuations)., Comment: 12 pages, 4 figures; NSNS SNR estimates added; misprints corrected
- Published
- 2006
- Full Text
- View/download PDF
18. Quantum variational measurement and the 'optical lever' intracavity topology of gravitational-wave detectors
- Author
-
Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology - Abstract
The intracavity topologies of laser gravitational-wave detectors are the promising way to obtain sensitivity of these devices significantly better than the Standard Quantum Limit (SQL). The most challenging element of the intracavity topologies is the \emph{local meter} which has to monitor position of a small ($1\div10$ gram) local mirror and which precision defines the sensitivity of the detector. To overcome the SQL, the quantum variational measurement can be used in the local meter. In this method a frequency-dependent correlation between the meter back-action noise and measurement noise is introduced, which allows to eliminate the back-action noise component from the meter output signal. This correlation is created by means of an additional filter cavity. In this article the sensitivity limitations of this scheme imposed by the optical losses both in the local meter itself and in the filter cavity are estimated. It is shown that the main sensitivity limitation stems from the filter cavity losses. In order to overcome it, it is necessary to increase the filter cavity length. In a preliminary prototype experiment about 10 meter long filter cavity can be used to obtain sensitivity approximately $2\div3$ times better than the SQL. For future QND gravitational-wave detectors with sensitivity about ten times better than the SQL, the filter cavity length should be within kilometer range., Comment: 24 pages, 10 figures, 3 tables
- Published
- 2006
- Full Text
- View/download PDF
19. Sub-SQL Sensitivity via Optical Rigidity in Advanced LIGO Interferometer with Optical Losses
- Author
-
Khalili, F. Ya., Lazebny, V. I., and Vyatchanin, S. P.
- Subjects
General Relativity and Quantum Cosmology - Abstract
The ``optical springs'' regime of the signal-recycled configuration of laser interferometric gravitational-wave detectors is analyzed taking in account optical losses in the interferometer arm cavities. This regime allows to obtain sensitivity better than the Standard Quantum Limits both for a free test mass and for a conventional harmonic oscillator. The optical losses restrict the gain in sensitivity and achievable signal-to-noise ratio. Nevertheless, for parameters values planned for the Advanced LIGO gravitational-wave detector, this restriction is insignificant., Comment: 15 pages, 9 figures
- Published
- 2005
- Full Text
- View/download PDF
20. To the practical design of the optical lever intracavity topology of gravitational-wave detectors
- Author
-
Danilishin, S. L. and Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology - Abstract
The QND intracavity topologies of gravitational-wave detectors proposed several years ago allow, in principle, to obtain sensitivity significantly better than the Standard Quantum Limit using relatively small anount of optical pumping power. In this article we consider an improved more ``practical'' version of the optical lever intracavity scheme. It differs from the original version by the symmetry which allows to suppress influence of the input light amplitude fluctuation. In addition, it provides the means to inject optical pumping inside the scheme without increase of optical losses. We consider also sensitivity limitations imposed by the local meter which is the key element of the intracavity topologies. Two variants of the local meter are analyzed, which are based on the spectral variation measurement and on the Discrete Sampling Variation Measurement, correspondingly. The former one, while can not be considered as a candidate for a practical implementation, allows, in principle, to obtain the best sensitivity and thus can be considered as an ideal ``asymptotic case'' for all other schemes. The DSVM-based local meter can be considered as a realistic scheme but its sensitivity, unfortunately, is by far not so good just due to a couple of peculiar numeric factors specific for this scheme. From our point of view search of new methods of mechanical QND measurements probably based on improved DSVM scheme or which combine the local meter with the pondermotive squeezing technique, is necessary., Comment: 27 pages, 6 figures
- Published
- 2005
- Full Text
- View/download PDF
21. Reducing the mirrors coating noise in laser gravitational-wave antennae by means of double mirrors
- Author
-
Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology - Abstract
Recent researches show that the fluctuations of the dielectric mirrors coating thickness can introduce a substantial part of the future laser gravitational-wave antennae total noise budget. These fluctuations are especially large in the high-reflectivity end mirrors of the Fabry-Perot cavities which are being used in the laser gravitational-wave antennae. We show here that the influence of these fluctuations can be substantially decreased by using additional short Fabry-Perot cavities, tuned in anti-resonance instead of the end mirrors., Comment: 7 pages, 3 eps figures
- Published
- 2004
- Full Text
- View/download PDF
22. Low pumping energy mode of the 'optical bars'/'optical lever' topologies of gravitational-wave antennae
- Author
-
Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology - Abstract
The ``optical bars''/``optical lever'' topologies of gravitational-wave antennae allow to obtain sensitivity better that the Standard Quantum Limit while keeping the optical pumping energy in the antenna relatively low. Element of the crucial importance in these schemes is the local meter which monitors the local test mirror position. Using cross-correlation of this meter back-action noise and its measurement noise it is possible to further decrease the optical pumping energy. In this case the pumping energy minimal value will be limited by the internal losses in the antenna only. Estimates show that for values of parameters available for contemporary and planned gravitational-wave antennae, sensitivity about one order of magnitude better than the Standard Quantum Limit can be obtained using the pumping energy about one order of magnitude smaller energy than is required in the traditional topology in order to obtain the the Standard Quantum Limit level of sensitivity., Comment: 18 pages, 5 figures
- Published
- 2003
- Full Text
- View/download PDF
23. Quantum speedmeter and laser interferometric gravitational-wave antennae
- Author
-
Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology - Abstract
A new topology of laser interferometric gravitational-wave antenna is considered. It is based on two schemes: {\em quantum speedmeter} and {\em zero-area Sagnac interferometer} and allows to obtain sensitivity better than the Standard Quantum Limit in wide band without any large-scale modifications of the standard topology of the laser interferometric antennae., Comment: 20 pages, 6 figures drawn in TeX
- Published
- 2002
24. The 'optical lever' intracavity readout scheme for gravitational-wave antennae
- Author
-
Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology - Abstract
An improved version of the ``optical bar'' intracavity readout scheme for gravitational-wave antennae is considered. We propose to call this scheme ``optical lever'' because it can provide significant gain in the signal displacement of the local mirror similar to the gain which can be obtained using ordinary mechanical lever with unequal arms. In this scheme displacement of the local mirror can be close to the signal displacement of the end mirrors of hypothetical gravitational-wave antenna with arm lengths equal to the half-wavelength of the gravitational wave., Comment: 10 pages, 3 figures
- Published
- 2002
- Full Text
- View/download PDF
25. Stroboscopic Variation Measurement
- Author
-
Danilishin, S. L. and Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology - Abstract
A new procedure of the linear position measurement which allows to obtain sensitivity better than the Standard Quantum Limit and close to the Energetic Quantum Limit is proposed and analyzed in details. Proposed method is based on the principles of stroboscopic quantum measurement and variation quantum measurement and allows to avoid main disadvantages of both these procedures. This method can be considered as a good candidate for use as a local position meter in the ``intracavity'' topologies of the laser gravitational-wave antennae., Comment: 13 pages, 2 figures drawn in TeX and 2 figures in postscript, misprint corrected
- Published
- 2002
- Full Text
- View/download PDF
26. Frequency-dependent rigidity in large-scale interferometric gravitational-wave detectors
- Author
-
Khalili, F. Ya.
- Subjects
General Relativity and Quantum Cosmology - Abstract
Electromagnetic rigidity which exists in large-scale optical resonators if pumping frequency is detuned from the eigenfrequency of resonator have sophisticated spectral dependence which allows to obtain sensitivity better than the Standard Quantum Limits both for the free test mass and the harmonic oscillator., Comment: 11 pages, 6 figures, corrected typos
- Published
- 2001
- Full Text
- View/download PDF
27. Speed Meter As a Quantum Nondemolition Measuring Device for Force
- Author
-
Khalili, F. Ya. and Levin, Yu.
- Subjects
General Relativity and Quantum Cosmology ,Quantum Physics - Abstract
Quantum noise is an important issue for advanced LIGO. Although it is in principle possible to beat the Standard Quantum Limit (SQL), no practical recipe has been found yet. This paper dicusses quantum noise in the context of speedmeter-a devise monitoring the speed of the testmass. The scheme proposed to overcome SQL in this case might be more practical than the methods based on monitoring position of the testmass., Comment: 7 pages of RevTex, 1 postscript figure
- Published
- 1996
- Full Text
- View/download PDF
28. On Perspectives of Generating Quasi-Fock State via Resonant Self-Phase-Modulation
- Author
-
Bilenko, I. A, Matsko, Andrey, Strekalov, D. V, Khalili, F. Ya, and Balybin, S. N
- Abstract
Optical resonators with cubic nonlinearity were among the ?rst simplest physical systems proposed for generation of squeezed states of light as well as for veri?cation of quantum nondemolition measurement concept. These conventional squeezed states are characterized with Gaussian statistics and positive Wigner function and are frequently treated as semiclassical. In contrast, it is known that the quantum states resulting from the higher order self-phase modulation are characterized with negative Wigner function. Such states can be transformed to an imperfect Fock state via classical biasing. Using these known features, we have developed an experiment strategy for observation and characterization of the nonclassical state in a system based on a high-Q nonlinear optical microcavity. We discuss technical limitations for the state observation associated with the losses in the system and technical noise of the classical optical sources involved in the measurement.
- Published
- 2020
29. On Perspectives of Generating Quasi-Fock State via Resonant Self-Phase-Modulation
- Author
-
Balybin, S. N, Khalili, F. Ya, Strekalov, D. V, Matsko, Andrey, and Bilenko, I. A
- Published
- 2020
30. How to Evade the Confrontation with the Uncertainty Relations
- Author
-
Braginsky, V. B., primary and Khalili, F. Ya., additional
- Published
- 2017
- Full Text
- View/download PDF
31. Quantum nondemolition measurements of photon number in monolithic microcavities
- Author
-
Balybin, S. N., primary, Matsko, A. B., additional, Khalili, F. Ya., additional, Strekalov, D. V., additional, Ilchenko, V. S., additional, Savchenkov, A. A., additional, Lebedev, N. M., additional, and Bilenko, I. A., additional
- Published
- 2022
- Full Text
- View/download PDF
32. A Sagnac interferometer as a gravitational-wave third-generation detector
- Author
-
Voronchev, N. V., Danilishin, Sh. L., and Khalili, F. Ya.
- Published
- 2014
- Full Text
- View/download PDF
33. Concepts and research for future detectors
- Author
-
Acernese, F., Barone, F., Bell, A. S., Bergmann, G., Blair, D., Born, M., Brown, D., Chen, X., Danilishin, S. L., Degallaix, J., Denker, T., Di Virgilio, A., Frajuca, C., Friedrich, D., Fulda, P., Grote, H., Huttner, S. H., Kato, J., Köhlenbeck, S., Leavey, S., Lück, H., Nakano, M., Palmer, R. N., Punturo, M., Raffai, P., Schütte, D., Simakov, D., Slagmolen, B. J. J., Somiya, K., Steinlechner, J., Steinlechner, S., Tarabrin, S., Wade, A. R., Wang, M., Westphal, T., Zhao, C., Adhikari, R. X., Adier, M., Agatsuma, K., Barr, B. W., Bassiri, R., Bauchrowitz, J., Blair, C., Bond, C., Bongs, K., Bortoli, F. S., Cagnoli, G., Calia, P., Canonico, R., Carbone, L., Chua, S. S. Y., Coccia, E., Cripe, J., Cunningham, L., Danzmann, K., De Rosa, R., Fafone, V., Fejer, M. M., Flaminio, R., Fontaine, J. P., Forest, D., Freise, A., Furusawa, A., Garufi, F. S., Giordano, G., Gondán, L., Gordon, N., Goßler, S., Gräf, C., Granata, M., Hammerer, K., Heng, I. S., Heurs, M., Hild, S., Hirobayashi, S., Hough, J., Ju, L., Kaufer, H., Kawamura, H., Kawamura, S., Kelecsényi, N., Khalaidovski, A., Khalili, F. Ya., Kuroda, K., Loddo, G., Logue, J., Ma, Y., Macarthur, J., Magalhaes, N. S., Majorana, E., Malvezzi, V., Márka, S., Márka, Z., Martin, I., McClelland, D. E., Meinders, M., Michel, C., Miller, J., Morgado, N., Müller-Ebhardt, H., Naticchioni, L., Nguyen, T. T.-H., Perciballi, M., Pinard, L., Puppo, P., Rapagnani, P., Ricci, F., Risson, P., Rocchi, A., Rocco, E., Romano, R., Route, R. K., Rowan, S., Sakata, S., Schnabel, R., Shaddock, D. A., Sorazu, B., Stefszky, M. S., Steinmeyer, D., Strain, K. A., Voronchev, N. V., Ward, R. L., and Wimmer, M. H.
- Published
- 2014
- Full Text
- View/download PDF
34. Negative optical inertia in optomechanical systems
- Author
-
Voronchev, N. V., Danilishin, S. L., and Khalili, F. Ya.
- Published
- 2012
- Full Text
- View/download PDF
35. Quantum experiments with macroscopic mechanical objects
- Author
-
Khalili, F. Ya.
- Published
- 2001
- Full Text
- View/download PDF
36. Quantum noise cancellation in asymmetric speed meters with balanced homodyne readout
- Author
-
Zhang, T., Knyazev, E., Steinlechner, S., Khalili, F. Ya, Barr, B.W., Bell, A.S., Dupej, P., Briggs, J., Graef, C., Callaghan, J., Hennig, J.S., Houston, E.A., Huttner, S.H., Leavey, S.S., Pascucci, D., Sorazu, B., Spencer, A., Wright, J., Strain, K.A., Hild, S., and Danilishin, S.L.
- Abstract
The Sagnac speed metre topology has been identified as a promising technique to reduce quantum back-action in gravitational-wave interferometers. However, imbalance of the main beamsplitter has been shown to increase the coupling of laser noise to the detection port, thus reducing the quantum noise superiority of the speed metre, compared to conventional approaches, in particular at low frequencies. In this paper, we show that by implementing a balanced homodyne readout scheme with a suitable choice of the point from which the local oscillator (LO) is derived, the excess laser noise contribution is partly compensated, and the resulting speed metre can be more sensitive than state-of-the-art position metres. This is achieved by picking-off the LO from either the reflection port of the interferometer or the anti-reflective coating surface of the main beamsplitter. We show that either approach relaxes the relative intensity noise (RIN) requirement of the input laser. For example, for a beam splitter imbalance of 0.1% in the Glasgow speed metre proof of concept experiment, the RIN requirement at frequency of 100 Hz decreases from 4× 10^(-10)/√Hz to 4× 10^(-7)/√Hz, moving the RIN requirement from a value that is hard to achieve in practice, to one which is routinely obtained.
- Published
- 2018
37. Quantum technologies in Russia
- Author
-
Fedorov, A K, primary, Akimov, A V, additional, Biamonte, J D, additional, Kavokin, A V, additional, Khalili, F Ya, additional, Kiktenko, E O, additional, Kolachevsky, N N, additional, Kurochkin, Y V, additional, Lvovsky, A I, additional, Rubtsov, A N, additional, Shlyapnikov, G V, additional, Straupe, S S, additional, Ustinov, A V, additional, and Zheltikov, A M, additional
- Published
- 2019
- Full Text
- View/download PDF
38. Overcoming the Standard Quantum Limit in Gravitational Wave Detectors Using Spin Systems with a Negative Effective Mass
- Author
-
Khalili, F. Ya., primary and Polzik, E. S., additional
- Published
- 2018
- Full Text
- View/download PDF
39. Overcoming the Standard Quantum Limit in Gravitational Wave Detectors Using Spin Systems with a Negative Effective Mass
- Author
-
Khalili, F. Ya., Polzik, E. S., Khalili, F. Ya., and Polzik, E. S.
- Published
- 2018
40. Quantum tomography enhanced through parametric amplification
- Author
-
Knyazev, E, primary, Spasibko, K Yu, additional, Chekhova, M V, additional, and Khalili, F Ya, additional
- Published
- 2018
- Full Text
- View/download PDF
41. Experimental demonstration of negative-valued polarization quasiprobability distribution
- Author
-
Spasibko, K. Yu., primary, Chekhova, M. V., additional, and Khalili, F. Ya., additional
- Published
- 2017
- Full Text
- View/download PDF
42. On perspectives of generating quasi-Fock state via resonant self-phase-modulation
- Author
-
Shi, Kebin, Kim, Dai-Sik, Li, Chuan-Feng, Balybin, S. N., Khalili, F. Ya., Strekalov, D. V., Matsko, A. B., and Bilenko, I. A.
- Published
- 2020
- Full Text
- View/download PDF
43. Detection of External Force on an Oscillator by Measurement of its Coordinate Integral
- Author
-
Vorontsov, Yu. I., Khalili, F. Ya., Meystre, Pierre, editor, and Scully, Marlan O., editor
- Published
- 1983
- Full Text
- View/download PDF
44. Quantum measurements in gravitational-wave detectors
- Author
-
Khalili, F Ya, primary
- Published
- 2016
- Full Text
- View/download PDF
45. The road to the discovery of gravitational waves
- Author
-
Braginsky, V B, primary, Bilenko, I A, additional, Vyatchanin, S P, additional, Gorodetskii, M L, additional, Mitrofanov, V P, additional, Prokhorov, L G, additional, Strigin, S E, additional, and Khalili, F Ya, additional
- Published
- 2016
- Full Text
- View/download PDF
46. How to evade the confrontation with the uncertainty relations
- Author
-
Braginsky, V. B. and Khalili, F. Ya.
- Published
- 1986
- Full Text
- View/download PDF
47. All-sky search for periodic gravitational waves in LIGO S4 data - Physical Review D (2008) 77 (022001)
- Author
-
Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., Amin, R., Anderson, S. B., Anderson, W. G., Arain, M., Araya, M., Armandula, H., Ashley, M., Aston, S., Aufmuth, P., Aulbert, C., Babak, S., Ballmer, S., Bantilan, H., Barish, B. C., Barker, C., Barker, D., Barr, B., Barriga, P., Barton, M. A., Bayer, K., Belczynski, K., Betzwieser, J., Beyersdorf, P. T., Bhawal, B., Bilenko, I. A., Billingsley, G., Biswas, R., Black, E., Blackburn, K., Blackburn, L., Blair, D., Bland, B., Bogenstahl, J., Bogue, L., Bork, R., Boschi, V., Bose, S., Brady, P. R., Braginsky, V. B., Brau, J. E., Brinkmann, M., Brooks, A., Brown, D. A., Bullington, A., Bunkowski, A., Buonanno, A., Burmeister, O., Busby, D., Byer, R. L., Cadonati, L., Cagnoli, G., Camp, J. B., Cannizzo, J., Cannon, K., Cantley, C. A., Cao, J., Cardenas, L., Casey, M. M., Castaldi, G., Cepeda, C., Chalkey, E., Charlton, P., Chatterji, S., Chelkowski, S., Chen, Y., Chiadini, F., Chin, D., Chin, E., Chow, J., Christensen, N., Clark, J., Cochrane, P., Cokelaer, T., Colacino, C. N., Coldwell, R., Conte, R., Cook, D., Corbitt, T., Coward, D., Coyne, D., Creighton, J. D. E., Creighton, T. D., Croce, R. P., Crooks, D. R. M., Cruise, A. M., Cumming, A., Dalrymple, J., D'Ambrosio, E., Danzmann, K., Davies, G., Debra, D., Degallaix, J., Degree, M., Demma, T., Dergachev, V., Desai, S., Desalvo, R., Dhurandhar, S., Diaz, M., Dickson, J., Di Credico, A., Diederichs, G., Dietz, A., Doomes, E. E., Drever, R. W. P., Dumas, J. -C., Dupuis, R. J., Dwyer, J. G., Ehrens, P., Espinoza, E., Etzel, T., Evans, M., Evans, T., Fairhurst, S., Fan, Y., Fazi, D., Fejer, M. M., Finn, L. S., Fiumara, V., Fotopoulos, N., Franzen, A., Franzen, K. Y., Freise, A., Frey, R., Fricke, T., Fritschel, P., Frolov, V. V., Fyffe, M., Galdi, V., Garofoli, J., Gholami, I., Giaime, J. A., Giampanis, S., Giardina, K. D., Goda, K., Goetz, E., Goggin, L. M., Gonzalez, G., Gossler, S., Grant, A., Gras, S., Gray, C., Gray, M., Greenhalgh, J., Gretarsson, A. M., Grosso, R., Grote, H., Grunewald, S., Guenther, M., Gustafson, R., Hage, B., Hammer, D., Hanna, C., Hanson, J., Harms, J., Harry, G., Harstad, E., Hayler, T., Heefner, J., Heng, I. S., Heptonstall, A., Heurs, M., Hewitson, M., Hild, S., Hirose, E., Hoak, D., Hosken, D., Hough, J., Howell, E., Hoyland, D., Huttner, S. H., Ingram, D., Innerhofer, E., Ito, M., Itoh, Y., Ivanov, A., Jackrel, D., Johnson, B., Johnson, W. W., Jones, D. I., Jones, G., Jones, R., Ju, L., Kalmus, P., Kalogera, V., Kasprzyk, D., Katsavounidis, E., Kawabe, K., Kawamura, S., Kawazoe, F., Kells, W., Keppel, D. G., Khalili, F. Ya., Kim, C., King, P., Kissel, J. S., Klimenko, S., Kokeyama, K., Kondrashov, V., Kopparapu, R. K., Kozak, D., Krishnan, B., Kwee, P., Lam, P. K., Landry, M., Lantz, B., Lazzarini, A., Lee, B., Lei, M., Leiner, J., Leonhardt, V., Leonor, I., Libbrecht, K., Lindquist, P., Lockerbie, N. A., Longo, M., Lormand, M., Lubinski, M., Luck, H., Machenschalk, B., Macinnis, M., Mageswaran, M., Mailand, K., Malec, M., Mandic, V., Marano, S., Marka, S., Markowitz, J., Maros, E., Martin, I., Marx, J. N., Mason, K., Matone, L., Matta, V., Mavalvala, N., Mccarthy, R., Mcclelland, D. E., Mcguire, S. C., Mchugh, M., Mckenzie, K., Mcnabb, J. W. C., Mcwilliams, S., Meier, T., Melissinos, A., Mendell, G., Mercer, R. A., Meshkov, S., Messaritaki, E., Messenger, C. J., Meyers, D., Mikhailov, E., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Miyakawa, O., Mohanty, S., Moreno, G., Mossavi, K., Mowlowry, C., Moylan, A., Mudge, D., Mueller, G., Mukherjee, S., Muller-Ebhardt, H., Munch, J., Murray, P., Myers, E., Myers, J., Nash, T., Newton, G., Nishizawa, A., Numata, K., O'Reilly, B., O'Shaughnessy, R., Ottaway, D. J., Overmier, H., Owen, B. J., Pan, Y., Papa, M. A., Parameshwaraiah, V., Patel, P., Pedraza, M., Penn, S., Pierro, V., Pinto, I. M., Pitkin, M., Pletsch, H., Plissi, M. V., Postiglione, F., Prix, R., Quetschke, V., Raab, F., Rabeling, D., Radkins, H., Rahkola, R., Rainer, N., Rakhmanov, M., Ramsunder, M., Rawlins, K., Ray-Majumder, S., Re, V., Rehbein, H., Reid, S., Reitze, D. H., Ribichini, L., Riesen, R., Riles, K., Rivera, B., Robertson, N. A., Robinson, C., Robinson, E. L., Roddy, S., Rodriguez, A., Rogan, A. M., Rollins, J., Romano, J. D., Romie, J., Route, R., Rowan, S., Rudiger, A., Ruet, L., Russell, P., Ryan, K., Sakata, S., Samidi, M., Sancho De La Jordana, L., Sandberg, V., Sannibale, V., Saraf, S., Sarin, P., Sathyaprakash, B. S., Sato, S., Saulson, P. R., Savage, R., Savov, P., Schediwy, S., Schilling, R., Schnabel, R., Schofield, R., Schutz, B. F., Schwinberg, P., Scott, S. M., Searle, A. C., Sears, B., Seifert, F., Sellers, D., Sengupta, A. S., Shawhan, P., Shoemaker, D. H., Sibley, A., Sidles, J. A., Siemens, X., Sigg, D., Sinha, S., Sintes, A. M., Slagmolen, B. J. J., Slutsky, J., Smith, J. R., Smith, M. R., Somiya, K., Strain, K. A., Strom, D. M., Stuver, A., Summerscales, T. Z., Sun, K. -X., Sung, M., Sutton, P. J., Takahashi, H., Tanner, D. B., Tarallo, M., Taylor, R., Thacker, J., Thorne, K. A., Thorne, K. S., Thuring, A., Tokmakov, K. V., Torres, C., Torrie, C., Traylor, G., Trias, M., Tyler, W., Ugolini, D., Ungarelli, C., Urbanek, K., Vahlbruch, H., Vallisneri, M., Van Den Broeck, C., Varvella, M., Vass, S., Vecchio, A., Veitch, J., Veitch, P., Villar, A., Vorvick, C., Vyachanin, S. P., Waldman, S. J., Wallace, L., Ward, H., Ward, R., Watts, K., Webber, D., Weidner, A., Weinert, M., Weinstein, A., Weiss, R., Wen, S., Wette, K., Whelan, J. T., Whitbeck, D. M., Whitcomb, S. E., Whiting, B. F., Wilkinson, C., Willems, P. A., Williams, L., Willke, B., Wilmut, I., Winkler, W., Wipf, C. C., Wise, S., Wiseman, A. G., Woan, G., Woods, D., Wooley, R., Worden, J., Wu, W., Yakushin, I., Yamamoto, H., Yan, Z., Yoshida, S., Yunes, N., Zanolin, M., Zhang, J., Zhang, L., Zhao, C., Zotov, N., Zucker, M., Zur Muhlen, H., and Zweizig, J.
- Published
- 2009
48. Upper limits on gravitational wave emission from 78 radio pulsars - Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (042001)
- Author
-
Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., Amin, R., Anderson, S. B., Anderson, W. G., Arain, M., Araya, M., Armandula, H., Ashley, M., Aston, S., Aufmuth, P., Aulbert, C., Babak, S., Ballmer, S., Bantilan, H., Barish, B. C., Barker, C., Barker, D., Barr, B., Barriga, P., Barton, M. A., Bayer, K., Belczynski, K., Betzwieser, J., Beyersdorf, P. T., Bhawal, B., Bilenko, I. A., Billingsley, G., Biswas, R., Black, E., Blackburn, K., Blackburn, L., Blair, D., Bland, B., Bogenstahl, J., Bogue, L., Bork, R., Boschi, V., Bose, S., Brady, P. R., Braginsky, V. B., Brau, J. E., Brinkmann, M., Brooks, A., Brown, D. A., Bullington, A., Bunkowski, A., Buonanno, A., Burmeister, O., Busby, D., Butler, W. E., Byer, R. L., Cadonati, L., Cagnoli, G., Camp, J. B., Cannizzo, J., Cannon, K., Cantley, C. A., Cao, J., Cardenas, L., Carter, K., Casey, M. M., Castaldi, G., Cepeda, C., Chalkey, E., Charlton, P., Chatterji, S., Chelkowski, S., Chen, Y., Chiadini, F., Chin, D., Chin, E., Chow, J., Christensen, N., Clark, J., Cochrane, P., Cokelaer, T., Colacino, C. N., Coldwell, R., Conte, R., Cook, D., Corbitt, T., Coward, D., Coyne, D., Creighton, J. D. E., Creighton, T. D., Croce, R. P., Crooks, D. R. M., Cruise, A. M., Cumming, A., Dalrymple, J., D'Ambrosio, E., Danzmann, K., Davies, G., Debra, D., Degallaix, J., Degree, M., Demma, T., Dergachev, V., Desai, S., Desalvo, R., Dhurandhar, S., Diaz, M., Dickson, J., Credico, Di, Diederichs, G., Dietz, A., Doomes, E. E., Drever, R. W. P., Dumas, J. -C., Dupuis, R. J., Dwyer, J. G., Ehrens, P., Espinoza, E., Etzel, T., Evans, M., Evans, T., Fairhurst, S., Fan, Y., Fazi, D., Fejer, M. M., Finn, L. S., Fiumara, V., Fotopoulos, N., Franzen, A., Franzen, K. Y., Freise, A., Frey, R., Fricke, T., Fritschel, P., Frolov, V. V., Fyffe, M., Galdi, V., Ganezer, K. S., Garofoli, J., Gholami, I., Giaime, J. A., Giampanis, S., Giardina, K. D., Goda, K., Goetz, E., Goggin, L., Gonzalez, G., Gossler, S., Grant, A., Gras, S., Gray, C., Gray, M., Greenhalgh, J., Gretarsson, A. M., Grosso, R., Grote, H., Grunewald, S., Guenther, M., Gustafson, R., Hage, B., Hammer, D., Hanna, C., Hanson, J., Harms, J., Harry, G., Harstad, E., Hayler, T., Heefner, J., Heng, I. S., Heptonstall, A., Heurs, M., Hewitson, M., Hild, S., Hirose, E., Hoak, D., Hosken, D., Hough, J., Howell, E., Hoyland, D., Huttner, S. H., Ingram, D., Innerhofer, E., Ito, M., Itoh, Y., Ivanov, A., Jackrel, D., Johnson, B., Johnson, W. W., Jones, D. I., Jones, G., Jones, R., Ju, L., Kalmus, P., Kalogera, V., Kasprzyk, D., Katsavounidis, E., Kawabe, K., Kawamura, S., Kawazoe, F., Kells, W., Keppel, D. G., Khalili, F. Ya., Kim, C., King, P., Kissel, J. S., Klimenko, S., Kokeyama, K., Kondrashov, V., Kopparapu, R. K., Kozak, D., Krishnan, B., Kwee, P., Lam, P. K., Landry, M., Lantz, B., Lazzarini, A., Lee, B., Lei, M., Leiner, J., Leonhardt, V., Leonor, I., Libbrecht, K., Lindquist, P., Lockerbie, N. A., Longo, M., Lormand, M., Lubinski, M., Luck, H., Machenschalk, B., Macinnis, M., Mageswaran, M., Mailand, K., Malec, M., Mandic, V., Marano, S., Marka, S., Markowitz, J., Maros, E., Martin, I., Marx, J. N., Mason, K., and Matone, L.
- Published
- 2008
49. First joint search for gravitational-wave bursts in LIGO and GEO600 data
- Author
-
Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., Amin, R., Anderson, S. B., Anderson, W. G., Arain, M. A., Araya, M., Armandula, H., Armor, P., Aso, Y., Aston, S., Aufmuth, P., Aulbert, C., Babak, S., Ballmer, S., Bantilan, H., Barish, B. C., Barker, C., Barker, D., Barr, B., Barriga, P., Barton, M. A., Bartos, I., Bastarrika, M., Bayer, K., Betzwieser, J., Beyersdorf, P. T., Bilenko, I. A., Billingsley, G., Biswas, R., Black, E., Blackburn, K., Blackburn, L., Blair, D., Bland, B., Bodiya, T. P., Bogue, L., Bork, R., Boschi, V., Bose, S., Brady, P. R., Braginsky, V. B., Brau, J. E., Brinkmann, M., Brooks, A., Brown, D. A., Brunet, G., Bullington, A., Buonanno, A., Burmeister, O., Byer, R. L., Cadonati, L., Cagnoli, G., Camp, J. B., Cannizzo, J., Cannon, K., Cao, J., Cardenas, L., Casebolt, T., Castaldi, G., Cepeda, C., Chalkley, E., Charlton, P., Chatterji, S., Chelkowski, S., Chen, Y., Christensen, N., Clark, D., Clark, J., Cokelaer, T., Conte, Roberto, Cook, D., Corbitt, T., Coyne, D., Creighton, J. D. E., Cumming, A., Cunningham, L., Cutler, R. M., Dalrymple, J., Danzmann, K., Davies, G., Debra, D., Degallaix, J., Degree, M., Dergachev, V., Desai, S., Desalvo, R., Dhurandhar, S., Díaz, M., Dickson, J., Di Credico, A., Dietz, A., Donovan, F., Dooley, K. L., Doomes, E. E., Drever, R. W. P., Duke, I., Dumas, J. C., Dupuis, R. J., Dwyer, J. G., Echols, C., Effler, A., Ehrens, P., Espinoza, E., Etzel, T., Evans, T., Fairhurst, S., Fan, Y., Fazi, D., Fehrmann, H., Fejer, M. M., Finn, L. S., Flasch, K., Fotopoulos, N., Freise, A., Frey, R., Fricke, T., Fritschel, P., Frolov, V. V., Fyffe, M., Garofoli, J., Gholami, I., Giaime, J. A., Giampanis, S., Giardina, K. D., Goda, K., Goetz, E., Goggin, L., González, G., Gossler, S., Gouaty, R., Grant, A., Gras, S., Gray, C., Gray, M., Greenhalgh, R. J. S., Gretarsson, A. M., Grimaldi, F., Grosso, R., Grote, H., Grunewald, S., Guenther, M., Gustafson, E. K., Gustafson, R., Hage, B., Hallam, J. M., Hammer, D., Hanna, C., Hanson, J., Harms, J., Harry, G., Harstad, E., Hayama, K., Hayler, T., Heefner, J., Heng, I. S., Hennessy, M., Heptonstall, A., Hewitson, M., Hild, S., Hirose, E., Hoak, D., Hosken, D., Hough, J., Hughey, B., Huttner, S. H., Ingram, D., Ito, M., Ivanov, A., Johnson, B., Johnson, W. W., Jones, D. I., Jones, G., Jones, R., Ju, L., Kalmus, P., Kalogera, V., Kamat, S., Kanner, J., Kasprzyk, D., Katsavounidis, E., Kawabe, K., Kawamura, S., Kawazoe, F., Kells, W., Keppel, D. G., Khalili F., Ya, Khan, R., Khazanov, E., Kim, C., King, P., Kissel, J. S., Klimenko, S., Kokeyama, K., Kondrashov, V., Kopparapu, R. K., Kozak, D., Kozhevatov, I., Krishnan, B., Kwee, P., Lam, P. K., Landry, M., Lang, M. M., Lantz, B., Lazzarini, A., Lei, M., Leindecker, N., Leonhardt, V., Leonor, I., Libbrecht, K., Lin, H., Lindquist, P., Lockerbie, N. A., Lodhia, D., Lormand, M., Lu, P., Lubinski, M., Lucianetti, A., Lück, H., Machenschalk, B., Macinnis, M., Mageswaran, M., Mailand, K., Mandic, V., Márka, S., Márka, Z., Markosyan, A., Markowitz, J., Maros, E., Martin, I., Martin, R. M., Marx, J. N., Mason, K., Matichard, F., Matone, L., Matzner, R., Mavalvala, N., Mccarthy, R., Mcclelland, D. E., Mcguire, S. C., Mchugh, M., Mcintyre, G., Mcivor, G., Mckechan, D., Mckenzie, K., Meier, T., Melissinos, A., Mendell, G., Mercer, R. A., Meshkov, S., Messenger, C. J., Meyers, D., Miller, J., Minelli, J., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Miyakawa, O., Moe, B., Mohanty, S., Moreno, G., Mossavi, K., Mow, Lowry C., Mueller, G., Mukherjee, S., Mukhopadhyay, H., Müller Ebhardt, H., Munch, J., Murray, P., Myers, E., Myers, J., Nash, T., Nelson, J., Newton, G., Nishizawa, A., Numata, K., O'Dell, J., Ogin, G., O'Reilly, B., O'Shaughnessy, R., Ottaway, D. J., Ottens, R. S., Overmier, H., Owen, B. J., Pan, Y., Pankow, C., Papa, M. A., Parameshwaraiah, V., Patel, P., Pedraza, M., Penn, S., Perreca, A., Petrie, T., Pinto, I. M., Pitkin, M., Pletsch, H. J., Plissi, M. V., Postiglione, Fabio, Principe, M., Prix, R., Quetschke, V., Raab, F., Rabeling, D. S., Radkins, H., Rainer, N., Rakhmanov, M., Ramsunder, M., Rehbein, H., Reid, S., Reitze, D. H., Riesen, R., Riles, K., Rivera, B., Robertson, N. A., Robinson, C., Robinson, E. L., Roddy, S., Rodriguez, A., Rogan, A. M., Rollins, J., Romano, J. D., Romie, J., Route, R., Rowan, S., Rüdiger, A., Ruet, L., Russell, P., Ryan, K., Sakata, S., Samidi, M., Sancho de la Jordana, L., Sandberg, V., Sannibale, V., Saraf, S., Sarin, P., Sathyaprakash, B. S., Sato, S., Saulson, P. R., Savage, R., Savov, P., Schediwy, S. W., Schilling, R., Schnabel, R., Schofield, R., Schutz, B. F., Schwinberg, P., Scott, S. M., Searle, A. C., Sears, B., Seifert, F., Sellers, D., Sengupta, A. S., Shawhan, P., Shoemaker, D. H., Sibley, A., Siemens, X., Sigg, D., Sinha, S., Sintes, A. M., Slagmolen, B. J. J., Slutsky, J., Smith, J. R., Smith, M. R., Smith, N. D., Somiya, K., Sorazu, B., Stein, L. C., Stochino, A., Stone, R., Strain, K. A., Strom, D. M., Stuver, A., Summerscales, T. Z., Sun, K. X., Sung, M., Sutton, P. J., Takahashi, H., Tanner, D. B., Taylor, R., Thacker, J., Thorne, K. A., Thorne, K. S., Thüring, A., Tinto, M., Tokmakov, K. V., Torres, C., Torrie, C., Traylor, G., Trias, M., Tyler, W., Ugolini, D., Ulmen, J., Urbanek, K., Vahlbruch, H., Van Den Broeck, C., van der Sluys, M., Vass, S., Vaulin, R., Vecchio, A., Veitch, J., Veitch, P., Villar, A., Vorvick, C., Vyachanin, S. P., Waldman, S. J., Wallace, L., Ward, H., Ward, R., Weinert, M., Weinstein, A., Weiss, R., Wen, S., Wette, K., Whelan, J. T., Whitcomb, S. E., Whiting, B. F., Wilkinson, C., Willems, P. A., Williams, H. R., Williams, L., Willke, B., Wilmut, I., Winkler, W., Wipf, C. C., Wiseman, A. G., Woan, G., Wooley, R., Worden, J., Wu, W., Yakushin, I., Yamamoto, H., Yan, Z., Yoshida, S., Zanolin, M., Zhang, J., Zhang, L., Zhao, C., Zotov, N., Zucker, M., Zweizig, J., LSC Collaboration, The, Castaldi, G., Pinto, I. M., and Principe, M.
- Subjects
Physics ,Physics and Astronomy (miscellaneous) ,Data stream mining ,Gravitational wave ,Pipeline (computing) ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,GEO600 ,LIGO ,General Relativity and Quantum Cosmology ,Pipeline transport ,Antenna (radio) ,Algorithm ,QC ,QB - Abstract
We present the results of the first joint search for gravitational-wave bursts by the LIGO and GEO600 detectors. We search for bursts with characteristic central frequencies in the band 768 to 2048 Hz in the data acquired between the 22nd of February and the 23rd of March, 2005 (fourth LSC Science Run - S4). We discuss the inclusion of the GEO600 data in the Waveburst-CorrPower pipeline that first searches for coincident excess power events without taking into account differences in the antenna responses or strain sensitivities of the various detectors. We compare the performance of this pipeline to that of the coherent Waveburst pipeline based on the maximum likelihood statistic. This likelihood statistic is derived from a coherent sum of the detector data streams that takes into account the antenna patterns and sensitivities of the different detectors in the network. We find that the coherentWaveburst pipeline is sensitive to signals of amplitude 30 - 50% smaller than the Waveburst-CorrPower pipeline. We perform a search for gravitational-wave bursts using both pipelines and find no detection candidates in the S4 data set when all four instruments were operating stably., Comment: 30 pages, 8 figures
- Published
- 2008
- Full Text
- View/download PDF
50. All-sky search for periodic gravitational waves in LIGO S4 data - Physical Review D - Particles, Fields, Gravitation and Cosmology (2008) 77, (022001)
- Author
-
Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., Amin, R., Anderson, S. B., Anderson, W. G., Arain, M., Araya, M., Armandula, H., Ashley, M., Aston, S., Aufmuth, P., Aulbert, C., Babak, S., Ballmer, S., Bantilan, H., Barish, B. C., Barker, C., Barker, D., Barr, B., Barriga, P., Barton, M. A., Bayer, K., Belczynski, K., Betzwieser, J., Beyersdorf, P. T., Bhawal, B., Bilenko, I. A., Billingsley, G., Biswas, R., Black, E., Blackburn, K., Blackburn, L., Blair, D., Bland, B., Bogenstahl, J., Bogue, L., Bork, R., Boschi, V., Bose, S., Brady, P. R., Braginsky, V. B., Brau, J. E., Brinkmann, M., Brooks, A., Brown, D. A., Bullington, A., Bunkowski, A., Buonanno, A., Burmeister, O., Busby, D., Byer, R. L., Cadonati, L., Cagnoli, G., Camp, J. B., Cannizzo, J., Cannon, K., Cantley, C. A., Cao, J., Cardenas, L., Casey, M. M., Castaldi, G., Cepeda, C., Chalkey, E., Charlton, P., Chatterji, S., Chelkowski, S., Chen, Y., Chiadini, F., Chin, D., Chin, E., Chow, J., Christensen, N., Clark, J., Cochrane, P., Cokelaer, T., Colacino, C. N., Coldwell, R., Conte, R., Cook, D., Corbitt, T., Coward, D., Coyne, D., Creighton, J. D. E., Creighton, T. D., Croce, R. P., Crooks, D. R. M., Cruise, A. M., Cumming, A., Dalrymple, J., D'Ambrosio, E., Danzmann, K., Davies, G., Debra, D., Degallaix, J., Degree, M., Demma, T., Dergachev, V., Desai, S., Desalvo, R., Dhurandhar, S., Diaz, M., Dickson, J., Credico, A. D., Diederichs, G., Dietz, A., Doomes, E. E., Drever, R. W. P., Dumas, J. -C., Dupuis, R. J., Dwyer, J. G., Ehrens, P., Espinoza, E., Etzel, T., Evans, M., Evans, T., Fairhurst, S., Fan, Y., Fazi, D., Fejer, M. M., Finn, L. S., Fiumara, V., Fotopoulos, N., Franzen, A., Franzen, K. Y., Freise, A., Frey, R., Fricke, T., Fritschel, P., Frolov, V. V., Fyffe, M., Galdi, V., Garofoli, J., Gholami, I., Giaime, J. A., Giampanis, S., Giardina, K. D., Goda, K., Goetz, E., Goggin, L. M., Gonzalez, G., Gossler, S., Grant, A., Gras, S., Gray, C., Gray, M., Greenhalgh, J., Gretarsson, A. M., Grosso, R., Grote, H., Grunewald, S., Guenther, M., Gustafson, R., Hage, B., Hammer, D., Hanna, C., Hanson, J., Harms, J., Harry, G., Harstad, E., Hayler, T., Heefner, J., Heng, I. S., Heptonstall, A., Heurs, M., Hewitson, M., Hild, S., Hirose, E., Hoak, D., Hosken, D., Hough, J., Howell, E., Hoyland, D., Huttner, S. H., Ingram, D., Innerhofer, E., Ito, M., Itoh, Y., Ivanov, A., Jackrel, D., Johnson, B., Johnson, W. W., Jones, D. I., Jones, G., Jones, R., Ju, L., Kalmus, P., Kalogera, V., Kasprzyk, D., Katsavounidis, E., Kawabe, K., Kawamura, S., Kawazoe, F., Kells, W., Keppel, D. G., Khalili, F. Ya., Kim, C., King, P., Kissel, J. S., Klimenko, S., Kokeyama, K., Kondrashov, V., Kopparapu, R. K., Kozak, D., Krishnan, B., Kwee, P., Lam, P. K., Landry, M., Lantz, B., Lazzarini, A., Lee, B., Lei, M., Leiner, J., Leonhardt, V., Leonor, I., Libbrecht, K., Lindquist, P., Lockerbie, N. A., Longo, M., Lormand, M., Lubinski, M., Luck, H., Machenschalk, B., Macinnis, M., Mageswaran, M., Mailand, K., Malec, M., Mandic, V., Marano, S., Marka, S., Markowitz, J., Maros, E., Martin, I., Marx, J. N., Mason, K., Matone, L., Matta, V., Mavalvala, N., Mccarthy, R., Mcclelland, D. E., Mcguire, S. C., Mchugh, M., Mckenzie, K., Mcnabb, J. W. C., Mcwilliams, S., Meier, T., Melissinos, A., Mendell, G., Mercer, R. A., Meshkov, S., Messaritaki, E., Messenger, C. J., Meyers, D., Mikhailov, E., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Miyakawa, O., Mohanty, S., Moreno, G., Mossavi, K., Mowlowry, C., Moylan, A., Mudge, D., Mueller, G., Mukherjee, S., Muller-Ebhardt, H., Munch, J., Murray, P., Myers, E., Myers, J., Nash, T., Newton, G., Nishizawa, A., Numata, K., O'Reilly, B., O'Shaughnessy, R., Ottaway, D. J., Overmier, H., Owen, B. J., Pan, Y., Papa, M. A., Parameshwaraiah, V., Patel, P., Pedraza, M., Penn, S., Pierro, V., Pinto, I. M., Pitkin, M., Pletsch, H., Plissi, M. V., Postiglione, F., Prix, R., Quetschke, V., Raab, F., Rabeling, D., Radkins, H., Rahkola, R., Rainer, N., Rakhmanov, M., Ramsunder, M., Rawlins, K., Ray-Majumder, S., Re, V., Rehbein, H., Reid, S., Reitze, D. H., Ribichini, L., Riesen, R., Riles, K., Rivera, B., Robertson, N. A., Robinson, C., Robinson, E. L., Roddy, S., Rodriguez, A., Rogan, A. M., Rollins, J., Romano, J. D., Romie, J., Route, R., Rowan, S., Rudiger, A., Ruet, L., Russell, P., Ryan, K., Sakata, S., Samidi, M., Sancho, De, Jordana, La, Sandberg, V., Sannibale, V., Saraf, S., Sarin, P., Sathyaprakash, B. S., Sato, S., Saulson, P. R., Savage, R., Savov, P., Schediwy, S., Schilling, R., Schnabel, R., Schofield, R., Schutz, B. F., Schwinberg, P., Scott, S. M., Searle, A. C., Sears, B., Seifert, F., Sellers, D., Sengupta, A. S., Shawhan, P., Shoemaker, D. H., Sibley, A., Sidles, J. A., Siemens, X., Sigg, D., Sinha, S., Sintes, A. M., Slagmolen, B. J. J., Slutsky, J., Smith, J. R., Smith, M. R., Somiya, K., Strain, K. A., Strom, D. M., Stuver, A., Summerscales, T. Z., Sun, K. -X., Sung, M., Sutton, P. J., Takahashi, H., Tanner, D. B., Tarallo, M., Taylor, R., Thacker, J., Thorne, K. A., Thorne, K. S., Thuring, A., Tokmakov, K. V., Torres, C., Torrie, C., Traylor, G., Trias, M., Tyler, W., Ugolini, D., Ungarelli, C., Urbanek, K., Vahlbruch, H., Vallisneri, M., Van, Den, Broeck, C., Varvella, M., Vass, S., Vecchio, A., Veitch, J., Veitch, P., Villar, A., Vorvick, C., Vyachanin, S. P., Waldman, S. J., Wallace, L., Ward, H., Ward, R., Watts, K., Webber, D., Weidner, A., Weinert, M., Weinstein, A., Weiss, R., Wen, S., Wette, K., Whelan, J. T., Whitbeck, D. M., Whitcomb, S. E., Whiting, B. F., Wilkinson, C., Willems, P. A., Williams, L., Willke, B., Wilmut, I., Winkler, W., Wipf, C. C., Wise, S., Wiseman, A. G., Woan, G., Woods, D., Wooley, R., Worden, J., Wu, W., Yakushin, I., Yamamoto, H., Yan, Z., Yoshida, S., Yunes, N., Zanolin, M., Zhang, J., Zhang, L., Zhao, C., Zotov, N., Zucker, M., Zur, Muhlen, and Zweizig, J.
- Published
- 2008
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.