28 results on '"Kevin Zhou S"'
Search Results
2. Artificial Intelligence Algorithm Advances in Medical Imaging and Image Analysis
- Author
-
Kevin Zhou, S., Dou, Qi, Gao, Yue, Han, Hu, Ma, Jianhua, Sun, Jian, Zhang, Daoqiang, Zhao, Shang, Zheng, Yefeng, and Liu, Shiyuan, editor
- Published
- 2024
- Full Text
- View/download PDF
3. Medical image reconstruction with multi-level deep learning denoiser and tight frame regularization
- Author
-
Wu, Tingting, Huang, Chaoyan, Jia, Shilong, Li, Wei, Chan, Raymond, Zeng, Tieyong, and Kevin Zhou, S.
- Published
- 2024
- Full Text
- View/download PDF
4. Stabilize, Decompose, and Denoise: Self-supervised Fluoroscopy Denoising
- Author
-
Liu, Ruizhou, Ma, Qiang, Cheng, Zhiwei, Lyu, Yuanyuan, Wang, Jianji, Kevin Zhou, S., Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Wang, Linwei, editor, Dou, Qi, editor, Fletcher, P. Thomas, editor, Speidel, Stefanie, editor, and Li, Shuo, editor
- Published
- 2022
- Full Text
- View/download PDF
5. SATr: Slice Attention with Transformer for Universal Lesion Detection
- Author
-
Li, Han, Chen, Long, Han, Hu, Kevin Zhou, S., Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Wang, Linwei, editor, Dou, Qi, editor, Fletcher, P. Thomas, editor, Speidel, Stefanie, editor, and Li, Shuo, editor
- Published
- 2022
- Full Text
- View/download PDF
6. BoxPolyp: Boost Generalized Polyp Segmentation Using Extra Coarse Bounding Box Annotations
- Author
-
Wei, Jun, Hu, Yiwen, Li, Guanbin, Cui, Shuguang, Kevin Zhou, S., Li, Zhen, Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Wang, Linwei, editor, Dou, Qi, editor, Fletcher, P. Thomas, editor, Speidel, Stefanie, editor, and Li, Shuo, editor
- Published
- 2022
- Full Text
- View/download PDF
7. One-Shot Medical Landmark Detection
- Author
-
Yao, Qingsong, Quan, Quan, Xiao, Li, Kevin Zhou, S., Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Woeginger, Gerhard, Editorial Board Member, Yung, Moti, Editorial Board Member, de Bruijne, Marleen, editor, Cattin, Philippe C., editor, Cotin, Stéphane, editor, Padoy, Nicolas, editor, Speidel, Stefanie, editor, Zheng, Yefeng, editor, and Essert, Caroline, editor
- Published
- 2021
- Full Text
- View/download PDF
8. Face Completion with Semantic Knowledge and Collaborative Adversarial Learning
- Author
-
Liao, Haofu, Funka-Lea, Gareth, Zheng, Yefeng, Luo, Jiebo, Kevin Zhou, S., Hutchison, David, Editorial Board Member, Kanade, Takeo, Editorial Board Member, Kittler, Josef, Editorial Board Member, Kleinberg, Jon M., Editorial Board Member, Mattern, Friedemann, Editorial Board Member, Mitchell, John C., Editorial Board Member, Naor, Moni, Editorial Board Member, Pandu Rangan, C., Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Terzopoulos, Demetri, Editorial Board Member, Tygar, Doug, Editorial Board Member, Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Jawahar, C. V., editor, Li, Hongdong, editor, Mori, Greg, editor, and Schindler, Konrad, editor
- Published
- 2019
- Full Text
- View/download PDF
9. One-Shot Medical Landmark Detection
- Author
-
Yao, Qingsong, primary, Quan, Quan, additional, Xiao, Li, additional, and Kevin Zhou, S., additional
- Published
- 2021
- Full Text
- View/download PDF
10. Combo loss: Handling input and output imbalance in multi-organ segmentation
- Author
-
Taghanaki, Saeid Asgari, Zheng, Yefeng, Kevin Zhou, S., Georgescu, Bogdan, Sharma, Puneet, Xu, Daguang, Comaniciu, Dorin, and Hamarneh, Ghassan
- Published
- 2019
- Full Text
- View/download PDF
11. Face Completion with Semantic Knowledge and Collaborative Adversarial Learning
- Author
-
Liao, Haofu, primary, Funka-Lea, Gareth, additional, Zheng, Yefeng, additional, Luo, Jiebo, additional, and Kevin Zhou, S., additional
- Published
- 2019
- Full Text
- View/download PDF
12. Adversarial Medical Image with Hierarchical Feature Hiding
- Author
-
Yao, Qingsong, He, Zecheng, Li, Yuexiang, Lin, Yi, Ma, Kai, Zheng, Yefeng, Kevin zhou, S., Yao, Qingsong, He, Zecheng, Li, Yuexiang, Lin, Yi, Ma, Kai, Zheng, Yefeng, and Kevin zhou, S.
- Abstract
Deep learning based methods for medical images can be easily compromised by adversarial examples (AEs), posing a great security flaw in clinical decision-making. It has been discovered that conventional adversarial attacks like PGD which optimize the classification logits, are easy to distinguish in the feature space, resulting in accurate reactive defenses. To better understand this phenomenon and reassess the reliability of the reactive defenses for medical AEs, we thoroughly investigate the characteristic of conventional medical AEs. Specifically, we first theoretically prove that conventional adversarial attacks change the outputs by continuously optimizing vulnerable features in a fixed direction, thereby leading to outlier representations in the feature space. Then, a stress test is conducted to reveal the vulnerability of medical images, by comparing with natural images. Interestingly, this vulnerability is a double-edged sword, which can be exploited to hide AEs. We then propose a simple-yet-effective hierarchical feature constraint (HFC), a novel add-on to conventional white-box attacks, which assists to hide the adversarial feature in the target feature distribution. The proposed method is evaluated on three medical datasets, both 2D and 3D, with different modalities. The experimental results demonstrate the superiority of HFC, i.e., it bypasses an array of state-of-the-art adversarial medical AE detectors more efficiently than competing adaptive attacks1, which reveals the deficiencies of medical reactive defense and allows to develop more robust defenses in future. IEEE
- Published
- 2023
13. Adversarial Medical Image with Hierarchical Feature Hiding
- Author
-
Yao, Qingsong, primary, He, Zecheng, additional, Li, Yuexiang, additional, Lin, Yi, additional, Ma, Kai, additional, Zheng, Yefeng, additional, and Kevin Zhou, S., additional
- Published
- 2023
- Full Text
- View/download PDF
14. Model-Based Esophagus Segmentation from CT Scans Using a Spatial Probability Map
- Author
-
Feulner, Johannes, Kevin Zhou, S., Huber, Martin, Cavallaro, Alexander, Hornegger, Joachim, Comaniciu, Dorin, Hutchison, David, Kanade, Takeo, Kittler, Josef, Kleinberg, Jon M., Mattern, Friedemann, Mitchell, John C., Naor, Moni, Nierstrasz, Oscar, Pandu Rangan, C., Steffen, Bernhard, Sudan, Madhu, Terzopoulos, Demetri, Tygar, Doug, Vardi, Moshe Y., Weikum, Gerhard, Jiang, Tianzi, editor, Navab, Nassir, editor, Pluim, Josien P. W., editor, and Viergever, Max A., editor
- Published
- 2010
- Full Text
- View/download PDF
15. Material damage diagnosis and characterization for turbine rotors using three-dimensional adaptive ultrasonic NDE data reconstruction techniques
- Author
-
Guan, Xuefei, Zhang, Jingdan, Rasselkorde, El Mahjoub, Abbasi, Waheed A., and Kevin Zhou, S.
- Published
- 2014
- Full Text
- View/download PDF
16. Spine detection in CT and MR using iterated marginal space learning
- Author
-
Michael Kelm, B., Wels, Michael, Kevin Zhou, S., Seifert, Sascha, Suehling, Michael, Zheng, Yefeng, and Comaniciu, Dorin
- Published
- 2013
- Full Text
- View/download PDF
17. Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior
- Author
-
Feulner, Johannes, Kevin Zhou, S., Hammon, Matthias, Hornegger, Joachim, and Comaniciu, Dorin
- Published
- 2013
- Full Text
- View/download PDF
18. Deep Non-Linear Embedding Deformation Network for Cross-Modal Brain MRI Synthesis
- Author
-
Lin, Yang, primary, Han, Hu, additional, and Kevin Zhou, S., additional
- Published
- 2022
- Full Text
- View/download PDF
19. Semi-supervised CT Lesion Segmentation Using Uncertainty-based Data Pairing and SwapMix
- Author
-
Qiao, Pengchong, primary, Li, Han, additional, Song, Guoli, additional, Han, Hu, additional, Gao, Zhiqiang, additional, Tian, Yonghong, additional, Liang, Yongsheng, additional, Li, Xi, additional, Kevin Zhou, S., additional, and Chen, Jie, additional
- Published
- 2022
- Full Text
- View/download PDF
20. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I (machine learning methodologies)
- Author
-
Martel, Anne L., Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria Zuluaga, Kevin Zhou, S., Leo Joskowicz, Daniel RACOCEANU, University of Toronto, University of British Columbia (UBC), University College of London [London] (UCL), Nantes Université - École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ), Eurecom [Sophia Antipolis], Chinese Academy of Sciences [Beijing] (CAS), The Hebrew University of Jerusalem (HUJ), Sorbonne Université (SU), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Algorithms, models and methods for images and signals of the human brain (ARAMIS), Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Daniel Racoceanu, Leo Joskowicz, Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic.The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections:Part I: machine learning methodologiesPart II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networksPart III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysisPart IV: segmentation; shape models and landmark detectionPart V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmologyPart VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imagingPart VII: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography
- Published
- 2020
21. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV (segmentation; shape models and landmark detection)
- Author
-
Martel, Anne L., Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria Zuluaga, Kevin Zhou, S., Leo Joskowicz, Daniel RACOCEANU, University of Toronto, University of British Columbia (UBC), University College of London [London] (UCL), Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Eurecom [Sophia Antipolis], Chinese Academy of Sciences [Beijing] (CAS), The Hebrew University of Jerusalem (HUJ), Sorbonne Université (SU), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Algorithms, models and methods for images and signals of the human brain (ARAMIS), Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nantes Université - École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Daniel Racoceanu, Leo Joskowicz, Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE ,ACM: I.: Computing Methodologies/I.5: PATTERN RECOGNITION ,ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,ACM: I.: Computing Methodologies/I.4: IMAGE PROCESSING AND COMPUTER VISION ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic.The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections:Part I: machine learning methodologiesPart II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networksPart III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysisPart IV: segmentation; shape models and landmark detectionPart V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmologyPart VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imagingPart VII: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography
- Published
- 2020
22. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part II (image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networks)
- Author
-
Martel, Anne L., Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria Zuluaga, Kevin Zhou, S., Leo Joskowicz, Daniel RACOCEANU, University of Toronto, University of British Columbia (UBC), University College of London [London] (UCL), Nantes Université - École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ), Eurecom [Sophia Antipolis], Chinese Academy of Sciences [Beijing] (CAS), The Hebrew University of Jerusalem (HUJ), Sorbonne Université (SU), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Algorithms, models and methods for images and signals of the human brain (ARAMIS), Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Daniel Racoceaanu, Leo Joskowicz, Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic.The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections:Part I: machine learning methodologiesPart II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networksPart III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysisPart IV: segmentation; shape models and landmark detectionPart V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmologyPart VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imagingPart VII: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography
- Published
- 2020
23. Model-Based Esophagus Segmentation from CT Scans Using a Spatial Probability Map
- Author
-
Feulner, Johannes, primary, Kevin Zhou, S., additional, Huber, Martin, additional, Cavallaro, Alexander, additional, Hornegger, Joachim, additional, and Comaniciu, Dorin, additional
- Published
- 2010
- Full Text
- View/download PDF
24. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V (biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmology)
- Author
-
Martel, Anne L., Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria Zuluaga, Kevin Zhou, S., Leo Joskowicz, Daniel RACOCEANU, University of Toronto, University of British Columbia (UBC), University College of London [London] (UCL), Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Eurecom [Sophia Antipolis], Chinese Academy of Sciences [Beijing] (CAS), The Hebrew University of Jerusalem (HUJ), Sorbonne Université (SU), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Algorithms, models and methods for images and signals of the human brain (ARAMIS), Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Nantes Université - École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Daniel Racoceanu, Leo Joskowicz, Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, and S. Kevin Zhou
- Subjects
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic.The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections:Part I: machine learning methodologiesPart II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networksPart III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysisPart IV: segmentation; shape models and landmark detectionPart V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmologyPart VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imagingPart VII: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography
25. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII (brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography)
- Author
-
Martel, Anne L., Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria Zuluaga, Kevin Zhou, S., Leo Joskowicz, Daniel RACOCEANU, University of Toronto, University of British Columbia (UBC), University College of London [London] (UCL), Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Eurecom [Sophia Antipolis], Chinese Academy of Sciences [Beijing] (CAS), The Hebrew University of Jerusalem (HUJ), Sorbonne Université (SU), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Algorithms, models and methods for images and signals of the human brain (ARAMIS), Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nantes Université - École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Daniel Racoceanu, Leo Joskowicz, Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic.The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections:Part I: machine learning methodologiesPart II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networksPart III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysisPart IV: segmentation; shape models and landmark detectionPart V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmologyPart VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imagingPart VII: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography
26. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III (CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysis)
- Author
-
Martel, Anne L., Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria Zuluaga, Kevin Zhou, S., Leo Joskowicz, Daniel RACOCEANU, University of Toronto, University of British Columbia (UBC), University College of London [London] (UCL), Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Eurecom [Sophia Antipolis], Chinese Academy of Sciences [Beijing] (CAS), The Hebrew University of Jerusalem (HUJ), Sorbonne Université (SU), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Algorithms, models and methods for images and signals of the human brain (ARAMIS), Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Nantes Université - École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Daniel Racoceanu, Leo Joskowicz, Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, and S. Kevin Zhou
- Subjects
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic.The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections:Part I: machine learning methodologiesPart II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networksPart III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysisPart IV: segmentation; shape models and landmark detectionPart V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmologyPart VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imagingPart VII: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography
27. IGU-Aug: Information-guided unsupervised augmentation and pixel-wise contrastive learning for medical image analysis.
- Author
-
Quan Q, Yao Q, Zhu H, and Kevin Zhou S
- Abstract
Contrastive learning (CL) is a form of self-supervised learning and has been widely used for various tasks. Different from widely studied instance-level contrastive learning, pixel-wise contrastive learning mainly helps with pixel-wise dense prediction tasks. The counter-part to an instance in instance-level CL is a pixel, along with its neighboring context, in pixel-wise CL. Aiming to build better feature representation, there is a vast literature about designing instance augmentation strategies for instance-level CL; but there is little similar work on pixel augmentation for pixel-wise CL with a pixel granularity. In this paper, we attempt to bridge this gap. We first classify a pixel into three categories, namely low-, medium-, and high-informative, based on the information quantity the pixel contains. We then adaptively design separate augmentation strategies for each category in terms of augmentation intensity and sampling ratio. Extensive experiments validate that our information-guided pixel augmentation strategy succeeds in encoding more discriminative representations and surpassing other competitive approaches in unsupervised local feature matching. Furthermore, our pretrained model improves the performance of both one-shot and fully supervised models. To the best of our knowledge, we are the first to propose a pixel augmentation method with a pixel granularity for enhancing unsupervised pixel-wise contrastive learning. Code is available at https: //github.com/Curli-quan/IGU-Aug.
- Published
- 2024
- Full Text
- View/download PDF
28. Unified Multi-Modal Image Synthesis for Missing Modality Imputation.
- Author
-
Zhang Y, Peng C, Wang Q, Song D, Li K, and Kevin Zhou S
- Abstract
Multi-modal medical images provide complementary soft-tissue characteristics that aid in the screening and diagnosis of diseases. However, limited scanning time, image corruption and various imaging protocols often result in incomplete multi-modal images, thus limiting the usage of multi-modal data for clinical purposes. To address this issue, in this paper, we propose a novel unified multi-modal image synthesis method for missing modality imputation. Our method overall takes a generative adversarial architecture, which aims to synthesize missing modalities from any combination of available ones with a single model. To this end, we specifically design a Commonality- and Discrepancy-Sensitive Encoder for the generator to exploit both modality-invariant and specific information contained in input modalities. The incorporation of both types of information facilitates the generation of images with consistent anatomy and realistic details of the desired distribution. Besides, we propose a Dynamic Feature Unification Module to integrate information from a varying number of available modalities, which enables the network to be robust to random missing modalities. The module performs both hard integration and soft integration, ensuring the effectiveness of feature combination while avoiding information loss. Verified on two public multi-modal magnetic resonance datasets, the proposed method is effective in handling various synthesis tasks and shows superior performance compared to previous methods.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.