1. Biometry challenges in the longest eyes we have encountered to date
- Author
-
Raul Plasencia-Salini, Amanda P. Havens, and Kevin M. Miller
- Subjects
Intraocular lens power calculation ,Cataract surgery ,Ocular biometry ,Axial length ,High myopia ,Ophthalmology ,RE1-994 - Abstract
Purpose: This report aims to present biometry challenges and solutions for a patient with the longest eyes we have encountered to date. Observations: A 41-year-old woman with a history of Crouzon syndrome, extreme axial myopia, and posterior segment staphylomas was referred for cataract evaluation. Optical biometry was attempted using two partial coherence interferometry and optical low-coherence reflectometry devices that were available in 2011. Neither device could measure the axial length (AL) of either eye, unfortunately. We were able to measure them by A scan ultrasound, however, with results of 40.59 mm for the right eye and 38.29 mm for the left eye. Shortly thereafter, she underwent uncomplicated phacoemulsification with posterior chamber intraocular lens implantation under topical anesthesia. Twelve years later, she returned for repeat optical biometry with 3 newer generation devices, 2 of which utilized swept-source optical coherence tomography (SS-OCT). Only 1 SS-OCT device, the Argos biometer, was able to obtain AL measurements, and they were 40.54 mm and 40.84 mm for the right and left eyes, respectively. Conclusions and importance: Biometry measurement using optical biometers on a patient with ALs greater than 40 mm was impossible in 2011 because of the relatively short gate for acceptable readings. Ultrasound biometry can also be challenging due to the presence of posterior staphylomas. However, a newer SS-OCT with a longer AL measurement capability enabled readings to be obtained more recently.
- Published
- 2024
- Full Text
- View/download PDF