Richard A. Andersen, Laurent Maron, Christophe Copéret, Anne Lesage, Wayne W. Lukens, Kevin J. Sanders, David Gajan, Iker del Rosal, Matthew P. Conley, Giuseppe Lapadula, Department of Chemistry and Applied Biosciences [ETH Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Biological Solid-State NMR Methods - Méthodes de RMN à l'état solide en biologie, Institut des Sciences Analytiques (ISA), Institut de Chimie du CNRS (INC)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Solid-State NMR Methods for Materials - Méthodes de RMN à l'état solide pour les matériaux, Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Department of Chemistry [Berkeley], University of California [Berkeley], University of California-University of California, C.C. thanks the Miller Institute for a Visiting Professor position at UC Berkeley, during which this manuscript was finalized. Portions of this work were performed at Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231 and at the Stanford Synchrotron Radiation Lightsource (SSRL). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. Portions of this work were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division (CSGB), Heavy Element Chemistry Program and were performed at Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231. We also thank the HPCs CALcul en Midi-Pyrennes (CALIMP-EOS, grant P0833) for the generous allocation of computer time. Financial support from the TGIR-RMN-THC Fr3050 CNRS for conducting the research is gratefully acknowledged., Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley] (UC Berkeley), and University of California (UC)-University of California (UC)
International audience; Lu[CH(SiMe3)2]3 reacts with [SiO2-700] to give [(≡SiO)Lu[CH(SiMe3)2]2] and CH2(SiMe3)2. [(≡SiO)Lu[CH(SiMe3)2]2] is characterized by solid-state NMR and EXAFS spectroscopy, which show that secondary Lu···C and Lu···O interactions, involving a γ-CH3 and a siloxane bridge, are present. From X-ray crystallographic analysis, the molecular analogues Lu[CH(SiMe3)2]3-x[O-2,6-tBu-C6H3]x (x = 0-2) also have secondary Lu···C interactions. The (1)H NMR spectrum of Lu[CH(SiMe3)2]3 shows that the -SiMe3 groups are equivalent to -125 °C and inequivalent below that temperature, ΔG(⧧)(Tc = 148 K) = 7.1 kcal mol(-1). Both -SiMe3 groups in Lu[CH(SiMe3)2]3 have (1)JCH = 117 ± 1 Hz at -140 °C. The solid-state (13)C CPMAS NMR spectrum at 20 °C shows three chemically inequivalent resonances in the area ratio of 4:1:1 (12:3:3); the J-resolved spectra for each resonance give (1)JCH = 117 ± 2 Hz. The (29)Si CPMAS NMR spectrum shows two chemically inequivalent resonances with different values of chemical shift anisotropy. Similar observations are obtained for Lu[CH(SiMe3)2]3-x[O-2,6-tBu-C6H3]x (x = 1 and 2). The spectroscopic data point to short Lu···Cγ contacts corresponding to 3c-2e Lu···Cγ-Siβ interactions, which are supported by DFT calculations. Calculated natural bond orbital (NBO) charges show that Cγ carries a negative charge, while Lu, Hγ, and Siβ carry positive charges; as the number of O-based ligands increases so does the positive charge at Lu, which in turns shortens the Lu···Cγ distance. The change in NBO charges and the resulting changes in the spectroscopic and crystallographic properties show how ligands and surface-support sites rearrange to accommodate these changes, consistent with Pauling's electroneutrality concept.