1. Further host-genomic characterization of total antibody response to PRRSV vaccination and its relationship with reproductive performance in commercial sows: genome-wide haplotype and zygosity analyses
- Author
-
Leticia P. Sanglard, Yijian Huang, Kent A. Gray, Daniel C. L. Linhares, Jack C. M. Dekkers, Megan C. Niederwerder, Rohan L. Fernando, and Nick V. L. Serão
- Subjects
Animal culture ,SF1-1100 ,Genetics ,QH426-470 - Abstract
Abstract Background The possibility of using antibody response (S/P ratio) to PRRSV vaccination measured in crossbred commercial gilts as a genetic indicator for reproductive performance in vaccinated crossbred sows has motivated further studies of the genomic basis of this trait. In this study, we investigated the association of haplotypes and runs of homozygosity (ROH) and heterozygosity (ROHet) with S/P ratio and their impact on reproductive performance. Results There was no association (P-value ≥ 0.18) of S/P ratio with the percentage of ROH or ROHet, or with the percentage of heterozygosity across the whole genome or in the major histocompatibility complex (MHC) region. However, specific ROH and ROHet regions were significantly associated (P-value ≤ 0.01) with S/P ratio on chromosomes 1, 4, 5, 7, 10, 11, 13, and 17 but not (P-value ≥ 0.10) with reproductive performance. With the haplotype-based genome-wide association study (GWAS), additional genomic regions associated with S/P ratio were identified on chromosomes 4, 7, and 9. These regions harbor immune-related genes, such as SLA-DOB, TAP2, TAPBP, TMIGD3, and ADORA. Four haplotypes at the identified region on chromosome 7 were also associated with multiple reproductive traits. A haplotype significantly associated with S/P ratio that is located in the MHC region may be in stronger linkage disequilibrium (LD) with the quantitative trait loci (QTL) than the previously identified single nucleotide polymorphism (SNP) (H3GA0020505) given the larger estimate of genetic variance explained by the haplotype than by the SNP. Conclusions Specific ROH and ROHet regions were significantly associated with S/P ratio. The haplotype-based GWAS identified novel QTL for S/P ratio on chromosomes 4, 7, and 9 and confirmed the presence of at least one QTL in the MHC region. The chromosome 7 region was also associated with reproductive performance. These results narrow the search for causal genes in this region and suggest SLA-DOB and TAP2 as potential candidate genes associated with S/P ratio on chromosome 7. These results provide additional opportunities for marker-assisted selection and genomic selection for S/P ratio as genetic indicator for litter size in commercial pig populations.
- Published
- 2021
- Full Text
- View/download PDF