1. An ultrafast inflow in the luminous Seyfert PG1211+143
- Author
-
Andrew J. King, Andrew Lobban, Chris Nixon, Ken Pounds, and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Supermassive black hole ,Active galactic nucleus ,Accretion (meteorology) ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Velocity dispersion ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Redshift ,Galaxy ,Luminosity ,Space and Planetary Science ,Bulge ,0103 physical sciences ,QB460 ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Blueshifted absorption lines in the X-ray spectra of AGN show that ultra-fast outflows with typical velocities $v \sim 0.1c$ are a common feature of these luminous objects. Such powerful AGN winds offer an explanation of the observed M-$\sigma$ relation linking the mass of the supermassive black hole and the velocity dispersion in the galaxy's stellar bulge. An extended XMM-Newton study of the luminous Seyfert galaxy PG1211+143 recently revealed a variable multi-velocity wind. Here we report the detection of a short-lived, ultra-fast inflow during the same observation. Previous reports of inflows used single absorption lines with uncertain identifications, but this new result identifies an array of resonance absorption lines of highly ionised Fe, Ca, Ar, S and Si, sharing a common redshift when compared with a grid of realistic photoionization spectra. The redshifted absorption arises in a column of highly ionized matter close to the black hole, with a line-of-sight velocity, $v \sim 0.3c$, inconsistent with the standard picture of a plane circular accretion disc. This may represent the first direct evidence for chaotic accretion in AGN, where accretion discs are generally misaligned to the black hole spin. For sufficient inclinations, the Lense-Thirring effect can break the discs into discrete rings, which then precess, collide and shock, causing near free-fall of gas towards the black hole. The observed accretion rate for the reported infall is comparable to the hard X-ray luminosity in PG1211+143, suggesting that direct infall may be a significant contributor to inner disc accretion., Comment: 7 pages, 3 figures, accepted for publication in MNRAS
- Published
- 2018