23 results on '"Keiblinger KM"'
Search Results
2. Virome and metagenomic sequencing reveal the impact of microbial inoculants on suppressions of antibiotic resistome and viruses during co-composting.
- Author
-
Zhou Z, Keiblinger KM, Huang Y, Bhople P, Shi X, Yang S, Yu F, and Liu D
- Subjects
- Virome genetics, Bacteria drug effects, Bacteria genetics, Viruses drug effects, Viruses genetics, Soil Microbiology, Anti-Bacterial Agents pharmacology, Metagenome, Manure microbiology, Manure virology, Composting, Streptomyces genetics, Drug Resistance, Microbial genetics, Metagenomics
- Abstract
Co-composting with exogenous microbial inoculant, presents an effective approach for the harmless utilization of livestock manure and agroforestry wastes. However, the impact of inoculant application on the variations of viral and antibiotic resistance genes (ARGs) remains poorly understood, particularly under varying manure quantity (low 10 % vs. high 20 % w/w). Thus, employing virome and metagenomic sequencing, we examined the influence of Streptomyces-Bacillus Inoculants (SBI) on viral communities, phytopathogen, ARGs, mobile genetic elements, and their interrelations. Our results indicate that SBI shifted dominant bacterial species from Phenylobacterium to thermotropic Bordetella, and the quantity of manure mediates the effect of SBI on whole bacterial community. Major ARGs and genetic elements experienced substantial changes with SBI addition. There was a higher ARGs elimination rate in the composts with low (∼76 %) than those with high manure (∼70 %) application. Virus emerged as a critical factor influencing ARG dynamics. We observed a significant variation in virus community, transitioning from Gemycircularvirus- (∼95 %) to Chlamydiamicrovirus-dominance. RDA analysis revealed that Gemycircularvirus was the most influential taxon in shaping ARGs, with its abundance decreased approximately 80 % after composting. Collectively, these findings underscore the role of microbial inoculants in modulating virus communities and ARGs during biowaste co-composting., Competing Interests: Declaration of Competing Interest The authors declare that they have no competing financial interests or personal relationships that could influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Learning vs. understanding: When does artificial intelligence outperform process-based modeling in soil organic carbon prediction?
- Author
-
Bernardini LG, Rosinger C, Bodner G, Keiblinger KM, Izquierdo-Verdiguier E, Spiegel H, Retzlaff CO, and Holzinger A
- Subjects
- Carbon, Algorithms, Agriculture, Soil, Artificial Intelligence
- Abstract
In recent years, machine learning (ML) algorithms have gained substantial recognition for ecological modeling across various temporal and spatial scales. However, little evaluation has been conducted for the prediction of soil organic carbon (SOC) on small data sets commonly inherent to long-term soil ecological research. In this context, the performance of ML algorithms for SOC prediction has never been tested against traditional process-based modeling approaches. Here, we compare ML algorithms, calibrated and uncalibrated process-based models as well as multiple ensembles on their performance in predicting SOC using data from five long-term experimental sites (comprising 256 independent data points) in Austria. Using all available data, the ML-based approaches using Random forest and Support vector machines with a polynomial kernel were superior to all process-based models. However, the ML algorithms performed similar or worse when the number of training samples was reduced or when a leave-one-site-out cross validation was applied. This emphasizes that the performance of ML algorithms is strongly dependent on the data-size related quality of learning information following the well-known curse of dimensionality phenomenon, while the accuracy of process-based models significantly relies on proper calibration and combination of different modeling approaches. Our study thus suggests a superiority of ML-based SOC prediction at scales where larger datasets are available, while process-based models are superior tools when targeting the exploration of underlying biophysical and biochemical mechanisms of SOC dynamics in soils. Therefore, we recommend applying ensembles of ML algorithms with process-based models to combine advantages inherent to both approaches., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Soil quality increases with long-term chabazite-zeolite tuff amendments in arable and perennial cropping systems.
- Author
-
Ferretti G, Rosinger C, Diaz-Pines E, Faccini B, Coltorti M, and Keiblinger KM
- Subjects
- Agriculture methods, Edible Grain, Soil, Zeolites
- Abstract
The application of natural zeolites to improve soil quality and functioning has become highly popular, but we still miss information about the long-term effects on the soil due to its application. This study assesses the soil quality index (SQI) of three distinct agricultural soil systems 6-10 years after a single application of natural chabazite zeolite as a soil amendment. These soils exhibit different management practices: intensive arable (cereals), intensive perennial (pear) and organic perennial (olive). In the arable system, a zeolite application dosage of 5, 10 and 15 kg m
-2 was tested and compared to unamended soil. In the two perennial systems, an application of 5 kg m-2 was tested against untreated reference sols. A set of 25 soil physical, chemical and biological parameters linked to soil health and quality were analysed at each experimental site. The dataset was investigated through Principal Component Analysis (PCA) to calculate the soil quality index (SQI) using linear scoring. In the arable-cereal field, the SQI doubled (0.3 to ca. 0.6 for all amendments) in chabazite-amended plots; a dose effect was not recognizable. In both perennial fields, the SQI was significantly higher in the chabazite-amended plots (5 kg m-2 ) with similar increases as compared to the arable-cereal field. At each site, the indicators selected by the PCA were different, indicating that chabazite addition impacted soil quality differently in each cropping system. Overall, the results highlighted a significant increase in soil quality with chabazite amendment, which confirms its potential for increasing soil health in the long-term., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
5. Recycling nitrogen from liquid digestate via novel reactive struvite and zeolite minerals to mitigate agricultural pollution.
- Author
-
Galamini G, Ferretti G, Rosinger C, Huber S, Medoro V, Mentler A, Díaz-Pinés E, Gorfer M, Faccini B, and Keiblinger KM
- Subjects
- Nitrogen chemistry, Struvite, Agriculture, Soil chemistry, Fertilizers, Nitrous Oxide analysis, Zeolites chemistry
- Abstract
Recycling nutrients is of paramount importance. For this reason, struvite and nitrogen enriched zeolite fertilizers produced from wastewater treatments are receiving growing attention in European markets. However, their effects on agricultural soils are far from certain, especially struvite, which only recently was implemented in EU Fertilizing Product Regulations. In this paper, we investigate the effects of these materials in acid sandy arable soil, particularly focusing on N dynamics, evaluating potential losses, transformation pathways, and the effects of struvite and zeolitic tuffs on main soil biogeochemical parameters, in comparison to traditional fertilization with digestate. Liming effect (pH alkalinization) was observed in all treatments with varying intensities, affecting most of the soil processes. The struvite was quickly solubilized due to soil acidity, and the release of nutrients stimulated nitrifying and denitrifying microorganisms. Zeolitic tuff amendments decreased the NO
x gas emissions, which are precursors to the powerful climate altering N2 O gas, and the N enriched chabazite tuff also recorded smaller NH3 emissions compared to the digestate. However, a high dosage of zeolites in soil increased NH3 emissions after fertilization, due to pronounced pH shifts. Contrasting effects were observed between the two zeolitic tuffs when applied as soil amendments; while the chabazite tuff had a strong positive effect - increasing up to ∼90% the soil microbial N immobilization - the employed clinoptilolite tuff had immediate negative effects on the microbial biomass, likely due to the large quantities of sulphur released. However, when applied at lower dosages, the N enriched clinoptilolite also contributed to the increase of microbial N. From these outcomes, we confirm the potential of struvite and zeolites to mitigate the outfluxes of nutrients from agricultural systems. To gain the best results and significantly lower environmental impacts, extension practitioners could give recommendations based on the soils that are planned for zeolite application., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
6. Soil Rehabilitation Promotes Resilient Microbiome with Enriched Keystone Taxa than Agricultural Infestation in Barren Soils on the Loess Plateau.
- Author
-
Liu D, Bhople P, Keiblinger KM, Wang B, An S, Yang N, Chater CCC, and Yu F
- Abstract
Drylands provide crucial ecosystem and economic services across the globe. In barren drylands, keystone taxa drive microbial structure and functioning in soil environments. In the current study, the Chinese Loess plateau's agricultural (AL) and twenty-year-old rehabilitated lands (RL) provided a unique opportunity to investigate land-use-mediated effects on barren soil keystone bacterial and fungal taxa. Therefore, soils from eighteen sites were collected for metagenomic sequencing of bacteria specific 16S rRNA and fungi specific ITS2 regions, respectively, and to conduct molecular ecological networks and construct microbial OTU-based correlation matrices. In RL soils we found a more complex bacterial network represented by a higher number of nodes and links, with a link percentage of 77%, and a lower number of nodes and links for OTU-based fungal networks compared to the AL soils. A higher number of keystone taxa was observed in the RL (66) than in the AL (49) soils, and microbial network connectivity was positively influenced by soil total nitrogen and microbial biomass carbon contents. Our results indicate that plant restoration and the reduced human interventions in RL soils could guide the development of a better-connected microbial network and ensure sufficient nutrient circulation in barren soils on the Loess plateau.
- Published
- 2021
- Full Text
- View/download PDF
7. Cadmium retention and microbial response in volcanic soils along gradients of soil age and climate on the Galápagos Islands.
- Author
-
Rechberger MV, Roberti D, Phillips A, Zehetner F, Keiblinger KM, Kandeler E, and Gerzabek MH
- Subjects
- Cadmium analysis, Climate, Ecuador, Soil, Soil Pollutants analysis
- Abstract
The behavior of trace metals may vary strongly in the course of volcanic soil development. Cadmium retention in soils is specifically important for some Galápagos islands where agriculture is leading to anthropogenic Cd contamination. To assess the influence of soil development factors on soil Cd retention and toxicity, we performed Cd sorption-desorption experiments with volcanic topsoils from the Galápagos Islands sampled along gradients of (a) substrate age (chronosequence, 1.5-1,070 ka) and (b) climate (elevation sequence, 47-866 m asl) ranging from arid lowland areas to humid highland areas. Additionally, the effects of Cd toxicity on the soil microbial community composition were evaluated for two soils of the chronosequence. In young volcanic soils, the sorption capacity was very high but decreased rapidly with soil age and increasing elevation. These trends were coupled with decreases in soil weathering indicators (e.g., electrical conductivity, pH, and effective cation exchange capacity) as well as changes in soil mineralogy. Cadmium addition did not influence total phospholipid fatty acids and basal respiration in most soils. However, with increasing Cd concentration, a pronounced reduction in the Gram-negative/Gram-positive bacteria ratio (from 0.32 to 0.12) occurred in an old, highly weathered soil with low Cd retention capacity. Our results show that up to 60% of added Cd was only weakly sorbed in old volcanic soils. As a consequence, the old volcanic soils of Galápagos bear the potential risk that the mobile Cd fraction is taken up by soil microorganisms, transferring this element into the food chain., (© 2021 The Authors. Journal of Environmental Quality published by Wiley Periodicals LLC on behalf of American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.)
- Published
- 2021
- Full Text
- View/download PDF
8. Effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N-turnover, the N 2 O reductase-gene nosZ and N 2 O:N 2 partitioning from agricultural soils.
- Author
-
Friedl J, Scheer C, Rowlings DW, Deltedesco E, Gorfer M, De Rosa D, Grace PR, Müller C, and Keiblinger KM
- Abstract
Nitrification inhibitors (NIs) have been shown to reduce emissions of the greenhouse gas nitrous oxide (N
2 O) from agricultural soils. However, their N2 O reduction efficacy varies widely across different agro-ecosystems, and underlying mechanisms remain poorly understood. To investigate effects of the NI 3,4-dimethylpyrazole-phosphate (DMPP) on N-turnover from a pasture and a horticultural soil, we combined the quantification of N2 and N2 O emissions with15 N tracing analysis and the quantification of the N2 O-reductase gene (nosZ) in a soil microcosm study. Nitrogen fertilization suppressed nosZ abundance in both soils, showing that high nitrate availability and the preferential reduction of nitrate over N2 O is responsible for large pulses of N2 O after the fertilization of agricultural soils. DMPP attenuated this effect only in the horticultural soil, reducing nitrification while increasing nosZ abundance. DMPP reduced N2 O emissions from the horticultural soil by >50% but did not affect overall N2 + N2 O losses, demonstrating the shift in the N2 O:N2 ratio towards N2 as a key mechanism of N2 O mitigation by NIs. Under non-limiting NO3 - availability, the efficacy of NIs to mitigate N2 O emissions therefore depends on their ability to reduce the suppression of the N2 O reductase by high NO3 - concentrations in the soil, enabling complete denitrification to N2 .- Published
- 2020
- Full Text
- View/download PDF
9. Does Soil Contribute to the Human Gut Microbiome?
- Author
-
Blum WEH, Zechmeister-Boltenstern S, and Keiblinger KM
- Abstract
Soil and the human gut contain approximately the same number of active microorganisms, while human gut microbiome diversity is only 10% that of soil biodiversity and has decreased dramatically with the modern lifestyle. We tracked relationships between the soil microbiome and the human intestinal microbiome. We propose a novel environmental microbiome hypothesis, which implies that a close linkage between the soil microbiome and the human intestinal microbiome has evolved during evolution and is still developing. From hunter-gatherers to an urbanized society, the human gut has lost alpha diversity. Interestingly, beta diversity has increased, meaning that people in urban areas have more differentiated individual microbiomes. On top of little contact with soil and feces, hygienic measures, antibiotics and a low fiber diet of processed food have led to a loss of beneficial microbes. At the same time, loss of soil biodiversity is observed in many rural areas. The increasing use of agrochemicals, low plant biodiversity and rigorous soil management practices have a negative effect on the biodiversity of crop epiphytes and endophytes. These developments concur with an increase in lifestyle diseases related to the human intestinal microbiome. We point out the interference with the microbial cycle of urban human environments versus pre-industrial rural environments. In order to correct these interferences, it may be useful to adopt a different perspective and to consider the human intestinal microbiome as well as the soil/root microbiome as 'superorganisms' which, by close contact, replenish each other with inoculants, genes and growth-sustaining molecules.
- Published
- 2019
- Full Text
- View/download PDF
10. Fungicide application increased copper-bioavailability and impaired nitrogen fixation through reduced root nodule formation on alfalfa.
- Author
-
Schneider M, Keiblinger KM, Paumann M, Soja G, Mentler A, Golestani-Fard A, Retzmann A, Prohaska T, Zechmeister-Boltenstern S, Wenzel W, and Zehetner F
- Subjects
- Biological Availability, Hydroxides metabolism, Medicago sativa growth & development, Medicago sativa microbiology, Copper metabolism, Fungicides, Industrial adverse effects, Medicago sativa drug effects, Nitrogen Fixation drug effects, Plant Root Nodulation drug effects
- Abstract
Copper-based fungicides have been used for a long time in viticulture and have accumulated in many vineyard soils. In this study, incrementing Cu(OH)
2 -based fungicide application from 0.05 to 5 g Cu kg-1 on two agricultural soils (an acidic sandy loam (L, pH 4.95) and an alkaline silt loam (D, pH 7.45)) resulted in 5 times more mobile Cu in the acidic soil. The most sensitive parameters of alfalfa (Medicago sativa) growing in these soils were the root nodule number, decreasing to 34% and 15% of the control at 0.1 g Cu kg-1 in soil L and at 1.5 g Cu kg-1 in soil D, respectively, as well as the nodule biomass, decreasing to 25% and 27% at 0.5 g Cu kg-1 in soil L and at 1.5 g Cu kg-1 in soil D, respectively. However, the enzymatic N2 -fixation was not directly affected by Cu in spite of the presence of Cu in the meristem and the zone of effective N2 -fixation, as illustrated by chemical imaging. The strongly different responses observed in the two tested soils reflect the higher buffering capacity of the alkaline silt loam and showed that Cu mitigation and remediation strategies should especially target vineyards with acidic, sandy soils.- Published
- 2019
- Full Text
- View/download PDF
11. Response of Microbial Communities and Their Metabolic Functions to Drying⁻Rewetting Stress in a Temperate Forest Soil.
- Author
-
Liu D, Keiblinger KM, Leitner S, Wegner U, Zimmermann M, Fuchs S, Lassek C, Riedel K, and Zechmeister-Boltenstern S
- Abstract
Global climate change is predicted to alter drought-precipitation patterns, which will likely affect soil microbial communities and their functions, ultimately shifting microbially-mediated biogeochemical cycles. The present study aims to investigate the simultaneous variation of microbial community compositions and functions in response to drought and following rewetting events, using a soil metaproteomics approach. For this, an established field experiment located in an Austrian forest with two levels (moderate and severe stress) of precipitation manipulation was evaluated. The results showed that fungi were more strongly influenced by drying and rewetting (DRW) than bacteria, and that there was a drastic shift in the fungal community towards a more Ascomycota-dominated community. In terms of functional responses, a larger number of proteins and a higher functional diversity were observed in both moderate and severe DRW treatments compared to the control. Furthermore, in both DRW treatments a rise in proteins assigned to "translation, ribosomal structure, and biogenesis" and "protein synthesis" suggests a boost in microbial cell growth after rewetting. We also found that the changes within intracellular functions were associated to specific phyla, indicating that responses of microbial communities to DRW primarily shifted microbial functions. Microbial communities seem to respond to different levels of DRW stress by changing their functional potential, which may feed back to biogeochemical cycles.
- Published
- 2019
- Full Text
- View/download PDF
12. Biochar application increases sorption of nitrification inhibitor 3,4-dimethylpyrazole phosphate in soil.
- Author
-
Keiblinger KM, Zehetner F, Mentler A, and Zechmeister-Boltenstern S
- Subjects
- Adsorption, Charcoal analysis, Nitrification, Pyrazoles metabolism, Soil chemistry, Soil Microbiology, Soil Pollutants metabolism
- Abstract
Biochar (BC) application to soils is of growing interest as a strategy to improve soil fertility and mitigate climate change. However, BC-induced alterations in the soil N cycle are currently under debate. BC has recently been shown to accelerate the emissions of N
2 O via the biotic ammonium oxidation pathway, which results in lower nitrogen use efficiency and environmentally harmful losses of NO3 and/ or N2 O. To avoid these potential losses, the use of nitrification inhibitor (NI) could provide a useful mitigation strategy for BC-amended agricultural fields. Here, we tested the sorption behavior of a model NI, the synthetic 3,4-dimethylpyrazole phosphate (DMPP) on 15-month-aged soil-BC mixtures. We saw that BC additions increased DMPP sorption to varying extents depending on BC feedstock type and pyrolysis temperature. The highest sorption was found for BC pyrolyzed at a lower temperature. BC effects on soil physico-chemical characteristics (i.e., hydrophobicity) seem to be important factors.- Published
- 2018
- Full Text
- View/download PDF
13. Assessment of Cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure.
- Author
-
Keiblinger KM, Schneider M, Gorfer M, Paumann M, Deltedesco E, Berger H, Jöchlinger L, Mentler A, Zechmeister-Boltenstern S, Soja G, and Zehetner F
- Subjects
- Agriculture methods, Biomass, Fungicides, Industrial, Soil chemistry, Copper toxicity, Environmental Monitoring, Fungi drug effects, Soil Microbiology, Soil Pollutants toxicity
- Abstract
Copper (Cu)-based fungicides have been used in viticulture to prevent downy mildew since the end of the 19th century, and are still used today to reduce fungal diseases. Consequently, Cu has built up in many vineyard soils, and it is still unclear how this affects soil functioning. The present study aimed to assess the short and medium-term effects of Cu contamination on the soil fungal community. Two contrasting agricultural soils, an acidic sandy loam and an alkaline silt loam, were used for an eco-toxicological greenhouse pot experiment. The soils were spiked with a Cu-based fungicide in seven concentrations (0-5000 mg Cu kg
-1 soil) and alfalfa was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test Cu toxicity effects on total microbial biomass, basal respiration and enzyme activities. Fungal abundance was analysed by ergosterol at both samplings, and for the second sampling, fungal community structure was evaluated via ITS amplicon sequences. Soil microbial biomass C as well as microbial respiration rate decreased with increasing Cu concentrations, with EC50 ranging from 76 to 187 mg EDTA-extractable Cu kg-1 soil. Oxidative enzymes showed a trend of increasing activity at the first sampling, but a decline in peroxidase activity was observed for the second sampling. We found remarkable Cu-induced changes in fungal community abundance (EC50 ranging from 9.2 to 94 mg EDTA-extractable Cu kg-1 soil) and composition, but not in diversity. A large number of diverse fungi were able to thrive under elevated Cu concentrations, though within the order of Hypocreales several species declined. A remarkable Cu-induced change in the community composition was found, which depended on the soil properties and, hence, on Cu availability.- Published
- 2018
- Full Text
- View/download PDF
14. Sample Preparation for Metaproteome Analyses of Soil and Leaf Litter.
- Author
-
Keiblinger KM and Riedel K
- Subjects
- Electrophoresis, Polyacrylamide Gel, Plant Leaves chemistry, Proteome, Proteomics methods, Soil chemistry
- Abstract
Soil and litter metaproteomics, assigning soil and litter proteins to specific phylogenetic and functional groups, has a great potential to shed light on the impact of microbial diversity on soil ecosystem functioning. However, metaproteomic analysis of soil and litter is often hampered by the enormous heterogeneity of the soil matrix and high concentrations of humic acids. To circumvent these challenges, sophisticated protocols for sample preparation have to be applied. This chapter provides the reader with detailed information on well-established protocols for protein extraction from soil and litter samples together with protocols for further sample preparation for subsequent MS analyses.
- Published
- 2018
- Full Text
- View/download PDF
15. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events.
- Author
-
Mooshammer M, Hofhansl F, Frank AH, Wanek W, Hämmerle I, Leitner S, Schnecker J, Wild B, Watzka M, Keiblinger KM, Zechmeister-Boltenstern S, and Richter A
- Abstract
Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research.
- Published
- 2017
- Full Text
- View/download PDF
16. Soil and leaf litter metaproteomics-a brief guideline from sampling to understanding.
- Author
-
Keiblinger KM, Fuchs S, Zechmeister-Boltenstern S, and Riedel K
- Subjects
- Environment, Mass Spectrometry, Plant Leaves chemistry, Soil, Soil Microbiology, Ecosystem, Microbiota, Plant Leaves metabolism, Plant Leaves microbiology, Proteome analysis, Proteomics methods
- Abstract
The increasing application of soil metaproteomics is providing unprecedented, in-depth characterization of the composition and functionality of in situ microbial communities. Despite recent advances in high-resolution mass spectrometry, soil metaproteomics still suffers from a lack of effective and reproducible protein extraction protocols and standardized data analyses. This review discusses the opportunities and limitations of selected techniques in soil-, and leaf litter metaproteomics, and presents a step-by-step guideline on their application, covering sampling, sample preparation, extraction and data evaluation strategies. In addition, we present recent applications of soil metaproteomics and discuss how such approaches, linking phylogenetics and functionality, can help gain deeper insights into terrestrial microbial ecology. Finally, we strongly recommend that to maximize the insights environmental metaproteomics may provide, such methods should be employed within a holistic experimental approach considering relevant aboveground and belowground ecosystem parameters., (© FEMS 2016.)
- Published
- 2016
- Full Text
- View/download PDF
17. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling.
- Author
-
Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, and Richter A
- Subjects
- Ammonium Compounds metabolism, Metabolic Networks and Pathways physiology, Carbon analysis, Microbiota physiology, Nitrogen Cycle physiology, Soil chemistry, Soil Microbiology
- Abstract
Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N taken up between growth and the release of inorganic N to the environment (that is, N mineralization), and is thus central to our understanding of N cycling. Here we report empirical evidence that microbial decomposer communities in soil and plant litter regulate their NUE. We find that microbes retain most immobilized organic N (high NUE), when they are N limited, resulting in low N mineralization. However, when the metabolic control of microbial decomposers switches from N to C limitation, they release an increasing fraction of organic N as ammonium (low NUE). We conclude that the regulation of NUE is an essential strategy of microbial communities to cope with resource imbalances, independent of the regulation of microbial carbon use efficiency, with significant effects on terrestrial N cycling.
- Published
- 2014
- Full Text
- View/download PDF
18. Soil metaproteomics - Comparative evaluation of protein extraction protocols.
- Author
-
Keiblinger KM, Wilhartitz IC, Schneider T, Roschitzki B, Schmid E, Eberl L, Riedel K, and Zechmeister-Boltenstern S
- Abstract
Metaproteomics and its potential applications are very promising to study microbial activity in environmental samples and to obtain a deeper understanding of microbial interactions. However, due to the complexity of soil samples the exhaustive extraction of proteins is a major challenge. We compared soil protein extraction protocols in terms of their protein extraction efficiency for two different soil types. Four different protein extraction procedures were applied based on (a) SDS extraction without phenol, (b) NaOH and subsequent phenol extraction, (c) SDS-phenol extraction and (d) SDS-phenol extraction with prior washing steps. To assess the suitability of these methods for the functional analysis of the soil metaproteome, they were applied to a potting soil high in organic matter and a forest soil. Proteins were analyzed by two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) and the number of unique spectra as well as the number of assigned proteins for each of the respective protocols was compared. In both soil types, extraction with SDS-phenol (c) resulted in "high" numbers of proteins. Moreover, a spiking experiment was conducted to evaluate protein recovery. To this end sterilized forest soil was amended with proteins from pure cultures of Pectobacterium carotovorum and Aspergillus nidulans. The protein recovery in the spiking experiment was almost 50%. Our study demonstrates that a critical evaluation of the extraction protocol is crucial for the quality of the metaproteomics data, especially in highly complex samples like natural soils.
- Published
- 2012
- Full Text
- View/download PDF
19. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions.
- Author
-
Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, and Riedel K
- Subjects
- Austria, Bacteria classification, Bacteria genetics, Chromatography, Liquid, Electrophoresis, Polyacrylamide Gel, Fungi classification, Fungi enzymology, Fungi genetics, Hydrogen-Ion Concentration, Phylogeny, Plant Leaves chemistry, Proteome, Seasons, Tandem Mass Spectrometry, Water analysis, Biodiversity, Plant Leaves microbiology, Proteomics
- Abstract
Leaf-litter decomposition is a central process in carbon cycling; however, our knowledge about the microbial regulation of this process is still scarce. Metaproteomics allows us to link the abundance and activity of enzymes during nutrient cycling to their phylogenetic origin based on proteins, the 'active building blocks' in the system. Moreover, we employed metaproteomics to investigate the influence of environmental factors and nutrients on the decomposer structure and function during beech litter decomposition. Litter was collected at forest sites in Austria with different litter nutrient content. Proteins were analyzed by 1-D-SDS-PAGE followed by liquid-chromatography and tandem mass-spectrometry. Mass spectra were assigned to phylogenetic and functional groups by a newly developed bioinformatics workflow, assignments being validated by complementary approaches. We provide evidence that the litter nutrient content and the stoichiometry of C:N:P affect the decomposer community structure and activity. Fungi were found to be the main producers of extracellular hydrolytic enzymes, with no bacterial hydrolases being detected by our metaproteomics approach. Detailed investigation of microbial succession suggests that it is influenced by litter nutrient content. Microbial activity was stimulated at higher litter nutrient contents via a higher abundance and activity of extracellular enzymes.
- Published
- 2012
- Full Text
- View/download PDF
20. Influence of litter chemistry and stoichiometry on glucan depolymerization during decomposition of beech (Fagus sylvatica L.) litter.
- Author
-
Leitner S, Wanek W, Wild B, Haemmerle I, Kohl L, Keiblinger KM, Zechmeister-Boltenstern S, and Richter A
- Abstract
Glucans like cellulose and starch are a major source of carbon for decomposer food webs, especially during early- and intermediate-stages of decomposition. Litter quality has previously been suggested to notably influence decomposition processes as it determines the decomposability of organic material and the nutrient availability to the decomposer community. To study the impact of chemical and elemental composition of resources on glucan decomposition, a laboratory experiment was carried out using beech (Fagus sylvatica, L.) litter from four different locations in Austria, differing in composition (concentration of starch, cellulose and acid unhydrolyzable residue or AUR fraction) and elemental stoichiometry (C:N:P ratio). Leaf litter was incubated in mesocosms for six months in the laboratory under controlled conditions. To investigate the process of glucan decomposition and its controls, we developed an isotope pool dilution (IPD) assay using (13)C-glucose to label the pool of free glucose in the litter, and subsequently measured the dilution of label over time. This enabled us to calculate gross rates of glucose production through glucan depolymerization, and glucose consumption by the microbial community. In addition, potential activities of extracellular cellulases and ligninases (peroxidases and phenoloxidases) were measured to identify effects of resource chemistry and stoichiometry on microbial enzyme production. Gross rates of glucan depolymerization and glucose consumption were highly correlated, indicating that both processes are co-regulated and intrinsically linked by the microbial demand for C and energy and thereby to resource allocation to enzymes that depolymerize glucans. At early stages of decomposition, glucan depolymerization rates were correlated with starch content, indicating that starch was the primary source for glucose. With progressing litter decomposition, the correlation with starch diminished and glucan depolymerization rates were highly correlated to cellulase activities, suggesting that cellulose was the primary substrate for glucan depolymerization at this stage of decomposition. Litter stoichiometry did not affect glucan depolymerization or glucose consumption rates early in decomposition. At later stages, however, we found significant negative relationships between glucan depolymerization and litter C:N and AUR:N ratio and a positive relationship between glucan depolymerization and litter N concentration. Litter C:N and C:P ratios were negatively related to cellulase, peroxidase and phenoloxidase activities three and six months after incubation, further corroborating the importance of resource stoichiometry for glucan depolymerization after the initial pulse of starch degradation.
- Published
- 2012
- Full Text
- View/download PDF
21. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter.
- Author
-
Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister-Boltenstern S, and Richter A
- Subjects
- Ecosystem, Plant Leaves physiology, Biodegradation, Environmental, Fagus physiology, Nitrogen metabolism, Phosphorus metabolism, Plant Leaves chemistry
- Abstract
Resource stoichiometry (C:N:P) is an important determinant of litter decomposition. However, the effect of elemental stoichiometry on the gross rates of microbial N and P cycling processes during litter decomposition is unknown. In a mesocosm experiment, beech (Fagus sylvatica L.) litter with natural differences in elemental stoichiometry (C:N:P) was incubated under constant environmental conditions. After three and six months, we measured various aspects of nitrogen and phosphorus cycling. We found that gross protein depolymerization, N mineralization (ammonification), and nitrification rates were negatively related to litter C:N. Rates of P mineralization were negatively correlated with litter C:P. The negative correlations with litter C:N were stronger for inorganic N cycling processes than for gross protein depolymerization, indicating that the effect of resource stoichiometry on intracellular processes was stronger than on processes catalyzed by extracellular enzymes. Consistent with this, extracellular protein depolymerization was mainly limited by substrate availability and less so by the amount of protease. Strong positive correlations between the interconnected N and P pools and the respective production and consumption processes pointed to feed-forward control of microbial litter N and P cycling. A negative relationship between litter C:N and phosphatase activity (and between litter C:P and protease activity) demonstrated that microbes tended to allocate carbon and nutrients in ample supply into the production of extracellular enzymes to mine for the nutrient that is more limiting. Overall, the study demonstrated a strong effect of litter stoichiometry (C:N:P) on gross processes of microbial N and P cycling in decomposing litter; mineralization of N and P were tightly coupled to assist in maintaining cellular homeostasis of litter microbial communities.
- Published
- 2012
- Full Text
- View/download PDF
22. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency.
- Author
-
Keiblinger KM, Hall EK, Wanek W, Szukics U, Hämmerle I, Ellersdorfer G, Böck S, Strauss J, Sterflinger K, Richter A, and Zechmeister-Boltenstern S
- Subjects
- Aspergillus nidulans growth & development, Biomass, Ecosystem, Nitrogen metabolism, Pectobacterium carotovorum growth & development, Phosphorus metabolism, Trichoderma growth & development, Aspergillus nidulans metabolism, Carbon metabolism, Pectobacterium carotovorum metabolism, Trichoderma metabolism
- Abstract
The carbon-use-efficiency (CUE) of microorganisms is an important parameter in determining ecosystem-level carbon (C) cycling; however, little is known about how variance in resources affects microbial CUE. To elucidate how resource quantity and resource stoichiometry affect microbial CUE, we cultured four microorganisms - two fungi (Aspergillus nidulans and Trichoderma harzianum) and two bacteria (Pectobacterium carotovorum and Verrucomicrobium spinosum) - under 12 unique C, nitrogen (N) and phosphorus (P) ratios. Whereas the CUE of A. nidulans was strongly affected by C, bacterial CUE was more strongly affected by mineral nutrients (N and P). Specifically, CUE in P. carotovorum was positively correlated with P, while CUE of V. spinosum primarily depended on N. This resulted in a positive relationship between fungal CUE and resource C : nutrient stoichiometry and a negative relationship between bacterial CUE and resource C : nutrient stoichiometry. The difference in the direction of the relationship between CUE and C : nutrient for fungi vs. bacteria was consistent with differences in biomass stoichiometry and suggested that fungi have a higher C demand than bacteria. These results suggest that the links between biomass stoichiometry, resource demand and CUE may provide a mechanism for commonly observed temporal and spatial patterns in microbial community structure and function in natural habitats.
- Published
- 2010
- Full Text
- View/download PDF
23. Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics.
- Author
-
Reischer GH, Haider JM, Sommer R, Stadler H, Keiblinger KM, Hornek R, Zerobin W, Mach RL, and Farnleitner AH
- Subjects
- Animals, Colony Count, Microbial, DNA, Bacterial isolation & purification, Environmental Monitoring, Humans, Polymerase Chain Reaction methods, Ruminants, Bacteroidetes isolation & purification, Feces microbiology, Water Microbiology, Water Pollution
- Abstract
The impairment of water quality by faecal pollution is a global public health concern. Microbial source tracking methods help to identify faecal sources but the few recent quantitative microbial source tracking applications disregarded catchment hydrology and pollution dynamics. This quantitative microbial source tracking study, conducted in a large karstic spring catchment potentially influenced by humans and ruminant animals, was based on a tiered sampling approach: a 31-month water quality monitoring (Monitoring) covering seasonal hydrological dynamics and an investigation of flood events (Events) as periods of the strongest pollution. The detection of a ruminant-specific and a human-specific faecal Bacteroidetes marker by quantitative real-time PCR was complemented by standard microbiological and on-line hydrological parameters. Both quantitative microbial source tracking markers were detected in spring water during Monitoring and Events, with preponderance of the ruminant-specific marker. Applying multiparametric analysis of all data allowed linking the ruminant-specific marker to general faecal pollution indicators, especially during Events. Up to 80% of the variation of faecal indicator levels during Events could be explained by ruminant-specific marker levels proving the dominance of ruminant faecal sources in the catchment. Furthermore, soil was ruled out as a source of quantitative microbial source tracking markers. This study demonstrates the applicability of quantitative microbial source tracking methods and highlights the prerequisite of considering hydrological catchment dynamics in source tracking study design.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.