11 results on '"Keane JJ"'
Search Results
2. Accessible light detection and ranging: Estimating large tree density for habitat identification
- Author
-
Kramer, HA, Collins, BM, Gallagher, CV, Keane, JJ, Stephens, SL, and Kelly, M
- Subjects
California ,canopy height ,habitat ,large tree ,light detection and ranging ,spotted owl ,tree density ,Ecological Applications ,Ecology ,Zoology - Abstract
Large trees are important to a wide variety of wildlife, including many species of conservation concern, such as the California spotted owl (Strix occidentalis occidentalis). Light detection and ranging (LiDAR) has been successfully utilized to identify the density of large-diameter trees, either by segmenting the LiDAR point cloud into individual trees, or by building regression models between variables extracted from the LiDAR point cloud and field data. Neither of these methods is easily accessible for most land managers due to the reliance on specialized software, and much available LiDAR data are being underutilized due to the steep learning curve required for advanced processing using these programs. This study derived a simple, yet effective method for estimating the density of large-stemmed trees from the LiDAR canopy height model, a standard raster product derived from the LiDAR point cloud that is often delivered with the LiDAR and is easy to process by personnel trained in geographic information systems (GIS). Ground plots needed to be large (1 ha) to build a robust model, but the spatial accuracy of plot center was less crucial to model accuracy. We also showed that predicted large tree density is positively linked to California spotted owl nest sites.
- Published
- 2016
3. Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California
- Author
-
Hessburg, PF, Spies, TA, Perry, DA, Skinner, CN, Taylor, AH, Brown, PM, Stephens, SL, Larson, AJ, Churchill, DJ, Povak, NA, Singleton, PH, McComb, B, Zielinski, WJ, Collins, BM, Salter, RB, Keane, JJ, Franklin, JF, and Riegel, G
- Subjects
Forest resilience ,Resistance ,Climate change ,Multi-scale heterogeneity ,Patch size distributions ,Topographic controls ,Early successional habitats ,Forestry ,Agricultural and Veterinary Sciences ,Environmental Sciences ,Biological Sciences - Abstract
Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland Pacific US, large, old, early seral trees were a key historical feature of many young and old forest successional patches, especially where fires frequently occurred. Large, old trees are naturally fire-tolerant, but today are often threatened by dense understory cohorts that create fuel ladders that alter likely post-fire successional pathways. Reducing these understories can contribute to resistance by creating conditions where canopy trees will survive disturbances and climatic stressors; these survivors are important seed sources, soil protectors, and critical habitat elements. Historical timber harvesting has skewed tree size and age class distributions, created hard edges, and altered native patch sizes. Manipulating these altered forests to promote development of larger patches of older, larger, and more widely-spaced trees with diverse understories will increase landscape resistance to severe fires, and enhance wildlife habitat for underrepresented conditions.Closed-canopy, multi-layered patches that develop in hot, dry summer environments are vulnerable to droughts, and they increase landscape vulnerability to insect outbreaks and severe wildfires. These same patches provide habitat for species such as the northern spotted owl, which has benefited from increased habitat area. Regional and local planning will be critical for gauging risks, evaluating trade-offs, and restoring dynamics that can support these and other species. The goal will be to manage for heterogeneous landscapes that include variably-sized patches of (1) young, middle-aged, and old, closed-canopy forests growing in upper montane, northerly aspect, and valley bottom settings, (2) a similar diversity of open-canopy, fire-tolerant patches growing on ridgetops, southerly aspects, and lower montane settings, and (3) significant montane chaparral and grassland areas. Tools to achieve this goal include managed wildfire, prescribed burning, and variable density thinning at small to large scales. Specifics on "how much and where?" will vary according to physiographic, topographic and historical templates, and regulatory requirements, and be determined by means of a socio-ecological process.
- Published
- 2016
4. Minister for Immigration and Border Protection v SZSCA [2014] HCA 45
- Author
-
French, CJ and Keane, JJ
- Published
- 2015
5. Plaintiff S156-2013 v Minister for Immigration and Border Protection [2014] HCA 22
- Author
-
French, CJ and Keane, JJ
- Published
- 2015
6. Tajjour v New South Wales; Hawthorne v New South Wales; Forster v New South Wales [2014] HCA 35
- Author
-
French, CJ and Keane, JJ
- Published
- 2015
7. Landscape heterogeneity provides co-benefits to predator and prey.
- Author
-
Kuntze CC, Pauli JN, Zulla CJ, Keane JJ, Roberts KN, Dotters BP, Sawyer SC, and Peery MZ
- Subjects
- Animals, Ecosystem, Predatory Behavior, Biomass, Forests, Strigiformes physiology
- Abstract
Predator populations are imperiled globally, due in part to changing habitat and trophic interactions. Theoretical and laboratory studies suggest that heterogeneous landscapes containing prey refuges acting as source habitats can benefit both predator and prey populations, although the importance of heterogeneity in natural systems is uncertain. Here, we tested the hypothesis that landscape heterogeneity mediates predator-prey interactions between the California spotted owl (Strix occidentalis occidentalis)-a mature forest species-and one of its principal prey, the dusky-footed woodrat (Neotoma fuscipes)-a younger forest species-to the benefit of both. We did so by combining estimates of woodrat density and survival from live trapping and very high frequency tracking with direct observations of prey deliveries to dependent young by owls in both heterogeneous and homogeneous home ranges. Woodrat abundance was ~2.5 times higher in owl home ranges (14.12 km
2 ) featuring greater heterogeneity in vegetation types (1805.0 ± 50.2 SE) compared to those dominated by mature forest (727.3 ± 51.9 SE), in large part because of high densities in young forests appearing to act as sources promoting woodrat densities in nearby mature forests. Woodrat mortality rates were low across vegetation types and did not differ between heterogeneous and homogeneous home ranges, yet all observed predation by owls occurred within mature forests, suggesting young forests may act as woodrat refuges. Owls exhibited a type 1 functional response, consuming ~2.5 times more woodrats in heterogeneous (31.1/month ± 5.2 SE) versus homogeneous (12.7/month ± 3.7 SE) home ranges. While consumption of smaller-bodied alternative prey partially compensated for lower woodrat consumption in homogeneous home ranges, owls nevertheless consumed 30% more biomass in heterogeneous home ranges-approximately equivalent to the energetic needs of producing one additional offspring. Thus, a mosaic of vegetation types including young forest patches increased woodrat abundance and availability that, in turn, provided energetic and potentially reproductive benefits to mature forest-associated spotted owls. More broadly, our findings provide strong empirical evidence that heterogeneous landscapes containing prey refuges can benefit both predator and prey populations. As anthropogenic activities continue to homogenize landscapes globally, promoting heterogeneous systems with prey refuges may benefit imperiled predators., (© 2023 The Ecological Society of America.)- Published
- 2023
- Full Text
- View/download PDF
8. Older forests function as energetic and demographic refugia for a climate-sensitive species.
- Author
-
McGinn KA, Zuckerberg B, Pauli JN, Zulla CJ, Berigan WJ, Wilkinson ZA, Barry JM, Keane JJ, Gutiérrez RJ, and Peery MZ
- Subjects
- Temperature, Forests, Demography, Refugium, Climate
- Abstract
More frequent and extreme heat waves threaten climate-sensitive species. Structurally complex, older forests can buffer these effects by creating cool microclimates, although the mechanisms by which forest refugia mitigate physiological responses to heat exposure and subsequent population-level consequences remain relatively unexplored. We leveraged fine-scale movement data, doubly labeled water, and two decades of demographic data for the California spotted owl (Strix occidentalis occidentalis) to (1) assess the role of older forest characteristics as potential energetic buffers for individuals and (2) examine the subsequent value of older forests as refugia for a core population in the Sierra Nevada and a periphery population in the San Bernardino Mountains. Individuals spent less energy moving during warmer sampling periods and the presence of tall canopies facilitated energetic conservation during daytime roosting activities. In the core population, where tall-canopied forest was prevalent, temperature anomalies did not affect territory occupancy dynamics as warmer sites were both less likely to go extinct and less likely to become colonized, suggesting a trade-off between foraging opportunities and temperature exposure. In the peripheral population, sites were more likely to become unoccupied following warm summers, presumably because of less prevalent older forest conditions. While individuals avoided elevated energetic expenditure associated with temperature exposure, behavioral strategies to conserve energy may have diverted time and energy from reproduction or territory defense. Conserving older forests, which are threatened due to fire and drought, may benefit individuals from energetic consequences of exposure to stressful thermal conditions., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
9. Using the ecological significance of animal vocalizations to improve inference in acoustic monitoring programs.
- Author
-
Wood CM, Klinck H, Gustafson M, Keane JJ, Sawyer SC, Gutiérrez RJ, and Peery MZ
- Subjects
- Acoustics, Animals, Ecosystem, Conservation of Natural Resources, Vocalization, Animal
- Abstract
Recent bioacoustic advances have facilitated large-scale population monitoring for acoustically active species. Animal sounds, however, can of information that is underutilized in typical approaches to passive acoustic monitoring (PAM) that treat sounds simply as detections. We developed 3 methods of extracting additional ecological detail from acoustic data that are applicable to a broad range of acoustically active species. We conducted landscape-scale passive acoustic surveys of a declining owl species and an invasive congeneric competitor in California. We then used sex-specific vocalization frequency to inform multistate occupancy models; call rates at occupied sites to characterize interactions with interspecific competitors and assess habitat quality; and a flexible multivariate approach to differentiate individuals based on vocal characteristics. The multistate occupancy models yielded novel estimates of breeding status occupancy rates that were more robust to false detections and captured known habitat associations more consistently than single-state occupancy models agnostic to sex. Call rate was related to the presence of a competitor but not habitat quality and thus could constitute a useful behavioral metric for interactions that are challenging to detect in an occupancy framework. Quantifying multivariate distance between groups of vocalizations provided a novel quantitative means of discriminating individuals with ≥20 vocalizations and a flexible tool for balancing type I and II errors. Therefore, it appears possible to estimate site turnover and demographic rates, rather than just occupancy metrics, in PAM programs. Our methods can be applied individually or in concert and are likely generalizable to many acoustically active species. As such, they are opportunities to improve inferences from PAM data and thus benefit conservation., (© 2020 Society for Conservation Biology.)
- Published
- 2021
- Full Text
- View/download PDF
10. Range-wide genetic differentiation among North American great gray owls (Strix nebulosa) reveals a distinct lineage restricted to the Sierra Nevada, California.
- Author
-
Hull JM, Keane JJ, Savage WK, Godwin SA, Shafer JA, Jepsen EP, Gerhardt R, Stermer C, and Ernest HB
- Subjects
- Animals, Bayes Theorem, California, Canada, Cluster Analysis, Conservation of Natural Resources, DNA, Mitochondrial genetics, Geography, Haplotypes, Microsatellite Repeats, Models, Genetic, Northwestern United States, Sequence Analysis, DNA, Strigiformes classification, Evolution, Molecular, Genetic Variation, Genetics, Population, Phylogeny, Strigiformes genetics
- Abstract
Investigations of regional genetic differentiation are essential for describing phylogeographic patterns and informing management efforts for species of conservation concern. In this context, we investigated genetic diversity and evolutionary relationships among great gray owl (Strix nebulosa) populations in western North America, which includes an allopatric range in the southern Sierra Nevada in California. Based on a total dataset consisting of 30 nuclear microsatellite DNA loci and 1938-base pairs of mitochondrial DNA, we found that Pacific Northwest sampling groups were recovered by frequency and Bayesian analyses of microsatellite data and each population sampled, except for western Canada, showed evidence of recent population bottlenecks and low effective sizes. Bayesian and maximum likelihood phylogenetic analyses of sequence data indicated that the allopatric Sierra Nevada population is also a distinct lineage with respect to the larger species range in North America; we suggest a subspecies designation for this lineage should be considered (Strix nebulosa yosemitensis). Our study underscores the importance of phylogeographic studies for identifying lineages of conservation concern, as well as the important role of Pleistocene glaciation events in driving genetic differentiation of avian fauna., (Published by Elsevier Inc.)
- Published
- 2010
- Full Text
- View/download PDF
11. Blood parasites in owls with conservation implications for the Spotted Owl (Strix occidentalis).
- Author
-
Ishak HD, Dumbacher JP, Anderson NL, Keane JJ, Valkiūnas G, Haig SM, Tell LA, and Sehgal RN
- Subjects
- Animals, Conservation of Natural Resources, Parasitemia, Strigiformes parasitology
- Abstract
The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.