1. Antimicrobial photodynamic activity and cytocompatibility of Au25(Capt)18 clusters photoexcited by blue LED light irradiation
- Author
-
Miyata S, Miyaji H, Kawasaki H, Yamamoto M, Nishida E, Takita H, Akasaka T, Ushijima N, Iwanaga T, and Sugaya T
- Subjects
Aggregatibacter actinomycetemcomitans ,Antimicrobial photodynamic therapy (aPDT) ,Photosensitizer ,Porphyromonas gingivalis ,Singlet oxygen ,Streptococcus mutans. ,Medicine (General) ,R5-920 - Abstract
Saori Miyata,1 Hirofumi Miyaji,1 Hideya Kawasaki,2 Masaki Yamamoto,2 Erika Nishida,1 Hiroko Takita,3 Tsukasa Akasaka,4 Natsumi Ushijima,3 Toshihiko Iwanaga,5 Tsutomu Sugaya1 1Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Kita-ku, Sapporo, 2Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka, 3Support Section for Education and Research, Hokkaido University Graduate School of Dental Medicine, 4Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, 5Department of Anatomy, Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan Abstract: Antimicrobial photodynamic therapy (aPDT) has beneficial effects in dental treatment. We applied captopril-protected gold (Au25(Capt)18) clusters as a novel photosensitizer for aPDT. Photoexcited Au clusters under light irradiation generated singlet oxygen (1O2). Accordingly, the antimicrobial and cytotoxic effects of Au25(Capt)18 clusters under dental blue light-emitting diode (LED) irradiation were evaluated. 1O2 generation of Au25(Capt)18 clusters under blue LED irradiation (420–460 nm) was detected by a methotrexate (MTX) probe. The antimicrobial effects of photoexcited Au clusters (0, 5, 50, and 500 µg/mL) on oral bacterial cells, such as Streptococcus mutans, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis, were assessed by morphological observations and bacterial growth experiments. Cytotoxicity testing of Au clusters and blue LED irradiation was then performed against NIH3T3 and MC3T3-E1 cells. In addition, the biological performance of Au clusters (500 µg/mL) was compared to an organic dye photosensitizer, methylene blue (MB; 10 and 100 µg/mL). We confirmed the 1O2 generation ability of Au25(Capt)18 clusters through the fluorescence spectra of oxidized MTX. Successful application of photoexcited Au clusters to aPDT was demonstrated by dose-dependent decreases in the turbidity of oral bacterial cells. Morphological observation revealed that application of Au clusters stimulated destruction of bacterial cell walls and inhibited biofilm formation. Aggregation of Au clusters around bacterial cells was fluorescently observed. However, photoexcited Au clusters did not negatively affect the adhesion, spreading, and proliferation of mammalian cells, particularly at lower doses. In addition, application of Au clusters demonstrated significantly better cytocompatibility compared to MB. We found that a combination of Au25(Capt)18 clusters and blue LED irradiation exhibited good antimicrobial effects through 1O2 generation and biosafe characteristics, which is desirable for aPDT in dentistry. Keywords: Aggregatibacter actinomycetemcomitans, antimicrobial photodynamic therapy, photosensitizer, Porphyromonas gingivalis, singlet oxygen, Streptococcus mutans
- Published
- 2017