21 results on '"Kavkova M"'
Search Results
2. Ciliopathy Protein Tmem107 Plays Multiple Roles in Craniofacial Development
- Author
-
Cela, P., primary, Hampl, M., additional, Shylo, N.A., additional, Christopher, K.J., additional, Kavkova, M., additional, Landova, M., additional, Zikmund, T., additional, Weatherbee, S.D., additional, Kaiser, J., additional, and Buchtova, M., additional
- Published
- 2017
- Full Text
- View/download PDF
3. FRI-121 - Double resin casting micro computed tomography (DUCT) of biliary and vascular system
- Author
-
Hankeova, S., Zikmund, T., Kavkova, M., Brinek, A., Lendahl, U., Kaiser, J., Bryja, V., and Andersson, E.
- Published
- 2018
- Full Text
- View/download PDF
4. Ciliopathy Protein Tmem107 Plays Multiple Roles in Craniofacial Development.
- Author
-
Cela, P., Hampl, M., Shylo, N. A., Christopher, K. J., Kavkova, M., Landova, M., Zikmund, T., Weatherbee, S. D., Kaiser, J., and Buchtova, M.
- Subjects
MEMBRANE proteins ,CILIOPATHY ,CLEFT palate ,CLEFT lip ,PROTEIN expression ,DEVELOPMENTAL biology ,CELL communication ,PALATE abnormalities ,PROTEIN metabolism ,FACIAL bone abnormalities ,ANIMALS ,CELLS ,FACIAL bones ,FACIAL bone growth ,MICE ,NEURAL tube defects ,SKULL ,CRANIOFACIAL abnormalities - Abstract
A broad spectrum of human diseases called ciliopathies is caused by defective primary cilia morphology or signal transduction. The primary cilium is a solitary organelle that responds to mechanical and chemical stimuli from extracellular and intracellular environments. Transmembrane protein 107 (TMEM107) is localized in the primary cilium and is enriched at the transition zone where it acts to regulate protein content of the cilium. Mutations in TMEM107 were previously connected with oral-facial-digital syndrome, Meckel-Gruber syndrome, and Joubert syndrome exhibiting a range of ciliopathic defects. Here, we analyze a role of Tmem107 in craniofacial development with special focus on palate formation, using mouse embryos with a complete knockout of Tmem107. Tmem107-/- mice were affected by a broad spectrum of craniofacial defects, including shorter snout, expansion of the facial midline, cleft lip, extensive exencephaly, and microphthalmia or anophthalmia. External abnormalities were accompanied by defects in skeletal structures, including ossification delay in several membranous bones and enlargement of the nasal septum or defects in vomeronasal cartilage. Alteration in palatal shelves growth resulted in clefting of the secondary palate. Palatal defects were caused by increased mesenchymal proliferation leading to early overgrowth of palatal shelves followed by defects in their horizontalization. Moreover, the expression of epithelial stemness marker SOX2 was altered in the palatal shelves of Tmem107-/- animals, and differences in mesenchymal SOX9 expression demonstrated the enhancement of neural crest migration. Detailed analysis of primary cilia revealed region-specific changes in ciliary morphology accompanied by alteration of acetylated tubulin and IFT88 expression. Moreover, Shh and Gli1 expression was increased in Tmem107-/- animals as shown by in situ hybridization. Thus, TMEM107 is essential for proper head development, and defective TMEM107 function leads to ciliary morphology disruptions in a region-specific manner, which may explain the complex mutant phenotype. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
5. Unveiling vertebrate development dynamics in frog Xenopus laevis using micro-CT imaging.
- Author
-
Laznovsky J, Kavkova M, Helena Reis A, Robovska-Havelkova P, Maia LA, Krivanek J, Zikmund T, Kaiser J, Buchtova M, and Harnos J
- Subjects
- Animals, Metamorphosis, Biological, Larva growth & development, Xenopus laevis growth & development, X-Ray Microtomography methods, Imaging, Three-Dimensional methods
- Abstract
Background: Xenopus laevis, the African clawed frog, is a versatile vertebrate model organism in various biological disciplines, prominently in developmental biology to study body plan reorganization during metamorphosis. However, a notable gap exists in the availability of comprehensive datasets encompassing Xenopus' late developmental stages., Findings: This study utilized micro-computed tomography (micro-CT), a noninvasive 3-dimensional (3D) imaging technique with micrometer-scale resolution, to explore the developmental dynamics and morphological changes in Xenopus laevis. Our approach involved generating high-resolution images and computed 3D models of developing Xenopus specimens, spanning from premetamorphosis tadpoles to fully mature adults. This dataset enhances our understanding of vertebrate development and supports various analyses. We conducted a careful examination, analyzing body size, shape, and morphological features, focusing on skeletogenesis, teeth, and organs like the brain and gut at different stages. Our analysis yielded valuable insights into 3D morphological changes during Xenopus' development, documenting details previously unrecorded. These datasets hold the solid potential for further morphological and morphometric analyses, including segmentation of hard and soft tissues., Conclusions: Our repository of micro-CT scans represents a significant resource that can enhance our understanding of Xenopus' development and the associated morphological changes in the future. The widespread utility of this amphibian species, coupled with the exceptional quality of our scans, which encompass a comprehensive series of developmental stages, opens up extensive opportunities for their broader research application. Moreover, these scans can be used in virtual reality, 3D printing, and educational contexts, further expanding their value and impact., (© The Author(s) 2024. Published by Oxford University Press on behalf of GigaScience.)
- Published
- 2024
- Full Text
- View/download PDF
6. Role of ciliopathy protein TMEM107 in eye development: insights from a mouse model and retinal organoid.
- Author
-
Dubaic M, Peskova L, Hampl M, Weissova K, Celiker C, Shylo NA, Hruba E, Kavkova M, Zikmund T, Weatherbee SD, Kaiser J, Barta T, and Buchtova M
- Subjects
- Female, Pregnancy, Humans, Mice, Animals, Membrane Proteins genetics, Membrane Proteins metabolism, Retina metabolism, Polycystic Kidney Diseases genetics, Retinitis Pigmentosa metabolism, Ciliary Motility Disorders genetics, Ciliary Motility Disorders metabolism
- Abstract
Primary cilia are cellular surface projections enriched in receptors and signaling molecules, acting as signaling hubs that respond to stimuli. Malfunctions in primary cilia have been linked to human diseases, including retinopathies and ocular defects. Here, we focus on TMEM107, a protein localized to the transition zone of primary cilia. TMEM107 mutations were found in patients with Joubert and Meckel-Gruber syndromes. A mouse model lacking Tmem107 exhibited eye defects such as anophthalmia and microphthalmia, affecting retina differentiation. Tmem107 expression during prenatal mouse development correlated with phenotype occurrence, with enhanced expression in differentiating retina and optic stalk. TMEM107 deficiency in retinal organoids resulted in the loss of primary cilia, down-regulation of retina-specific genes, and cyst formation. Knocking out TMEM107 in human ARPE-19 cells prevented primary cilia formation and impaired response to Smoothened agonist treatment because of ectopic activation of the SHH pathway. Our data suggest TMEM107 plays a crucial role in early vertebrate eye development and ciliogenesis in the differentiating retina., (© 2023 Dubaic et al.)
- Published
- 2023
- Full Text
- View/download PDF
7. Spatiotemporal monitoring of hard tissue development reveals unknown features of tooth and bone development.
- Author
-
Gonzalez Lopez M, Huteckova B, Lavicky J, Zezula N, Rakultsev V, Fridrichova V, Tuaima H, Nottmeier C, Petersen J, Kavkova M, Zikmund T, Kaiser J, Lav R, Star H, Bryja V, Henyš P, Vořechovský M, Tucker AS, Harnos J, Buchtova M, and Krivanek J
- Subjects
- Mice, Animals, Tooth Root, Bone and Bones, Bone Development, Zebrafish, Tooth physiology
- Abstract
Mineralized tissues, such as bones or teeth, are essential structures of all vertebrates. They enable rapid movement, protection, and food processing, in addition to providing physiological functions. Although the development, regeneration, and pathogenesis of teeth and bones have been intensely studied, there is currently no tool to accurately follow the dynamics of growth and healing of these vital tissues in space and time. Here, we present the BEE-ST (Bones and tEEth Spatio-Temporal growth monitoring) approach, which allows precise quantification of development, regeneration, remodeling, and healing in any type of calcified tissue across different species. Using mouse teeth as model the turnover rate of continuously growing incisors was quantified, and role of hard/soft diet on molar root growth was shown. Furthermore, the dynamics of bones and teeth growth in lizards, frogs, birds, and zebrafish was uncovered. This approach represents an effective, highly reproducible, and versatile tool that opens up diverse possibilities in developmental biology, bone and tooth healing, tissue engineering, and disease modeling.
- Published
- 2023
- Full Text
- View/download PDF
8. Author Correction: A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology.
- Author
-
Petersen J, Englmaier L, Artemov AV, Poverennaya I, Mahmoud R, Bouderlique T, Tesarova M, Deviatiiarov R, Szilvásy-Szabó A, Akkuratov EE, Pajuelo Reguera D, Zeberg H, Kaucka M, Kastriti ME, Krivanek J, Radaszkiewicz T, Gömöryová K, Knauth S, Potesil D, Zdrahal Z, Ganji RS, Grabowski A, Buhl ME, Zikmund T, Kavkova M, Axelson H, Lindgren D, Kramann R, Kuppe C, Erdélyi F, Máté Z, Szabó G, Koehne T, Harkany T, Fried K, Kaiser J, Boor P, Fekete C, Rozman J, Kasparek P, Prochazka J, Sedlacek R, Bryja V, Gusev O, and Adameyko I
- Published
- 2023
- Full Text
- View/download PDF
9. A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology.
- Author
-
Petersen J, Englmaier L, Artemov AV, Poverennaya I, Mahmoud R, Bouderlique T, Tesarova M, Deviatiiarov R, Szilvásy-Szabó A, Akkuratov EE, Pajuelo Reguera D, Zeberg H, Kaucka M, Kastriti ME, Krivanek J, Radaszkiewicz T, Gömöryová K, Knauth S, Potesil D, Zdrahal Z, Ganji RS, Grabowski A, Buhl ME, Zikmund T, Kavkova M, Axelson H, Lindgren D, Kramann R, Kuppe C, Erdélyi F, Máté Z, Szabó G, Koehne T, Harkany T, Fried K, Kaiser J, Boor P, Fekete C, Rozman J, Kasparek P, Prochazka J, Sedlacek R, Bryja V, Gusev O, and Adameyko I
- Subjects
- Animals, Humans, Body Weight, Ferritins genetics, Kidney, Neanderthals, Energy Metabolism genetics, Genome-Wide Association Study
- Abstract
In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
10. Sex differences and risk factors for bleeding in Alagille syndrome.
- Author
-
Hankeova S, Van Hul N, Laznovsky J, Verboven E, Mangold K, Hensens N, Adori C, Verhoef E, Zikmund T, Dawit F, Kavkova M, Salplachta J, Sjöqvist M, Johansson BR, Hassan MG, Fredriksson L, Baumgärtel K, Bryja V, Lendahl U, Jheon A, Alten F, Fahnehjelm KT, Fischler B, Kaiser J, and Andersson ER
- Subjects
- Female, Male, Animals, Mice, Sex Characteristics, Retina, Risk Factors, Alagille Syndrome complications
- Abstract
Spontaneous bleeds are a leading cause of death in the pediatric JAG1-related liver disease Alagille syndrome (ALGS). We asked whether there are sex differences in bleeding events in patients, whether Jag1
Ndr/Ndr mice display bleeds or vascular defects, and whether discovered vascular pathology can be confirmed in patients non-invasively. We performed a systematic review of patients with ALGS and vascular events following PRISMA guidelines, in the context of patient sex, and found significantly more girls than boys reported with spontaneous intracranial hemorrhage. We investigated vascular development, homeostasis, and bleeding in Jag1Ndr/Ndr mice, using retina as a model. Jag1Ndr/Ndr mice displayed sporadic brain bleeds, a thin skull, tortuous blood vessels, sparse arterial smooth muscle cell coverage in multiple organs, which could be aggravated by hypertension, and sex-specific venous defects. Importantly, we demonstrated that retinographs from patients display similar characteristics with significantly increased vascular tortuosity. In conclusion, there are clinically important sex differences in vascular disease in ALGS, and retinography allows non-invasive vascular analysis in patients. Finally, Jag1Ndr/Ndr mice represent a new model for vascular compromise in ALGS., (© 2022 The Authors. Published under the terms of the CC BY 4.0 license.)- Published
- 2022
- Full Text
- View/download PDF
11. Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration.
- Author
-
Kaucka M, Joven Araus A, Tesarova M, Currie JD, Boström J, Kavkova M, Petersen J, Yao Z, Bouchnita A, Hellander A, Zikmund T, Elewa A, Newton PT, Fei JF, Chagin AS, Fried K, Tanaka EM, Kaiser J, Simon A, and Adameyko I
- Subjects
- Animals, Bone and Bones, Cartilage, Cell Division, Mammals, Caudata, Osteogenesis
- Abstract
There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
12. Loss of Sprouty Produces a Ciliopathic Skeletal Phenotype in Mice Through Upregulation of Hedgehog Signaling.
- Author
-
Hruba E, Kavkova M, Dalecka L, Macholan M, Zikmund T, Varecha M, Bosakova M, Kaiser J, Krejci P, Hovorakova M, and Buchtova M
- Subjects
- Animals, Cilia metabolism, Mice, Mice, Transgenic, Phenotype, Up-Regulation, Ciliopathies genetics, Hedgehog Proteins metabolism, Membrane Proteins genetics, Nerve Tissue Proteins genetics, Protein Serine-Threonine Kinases genetics, Signal Transduction
- Abstract
The Sprouty family is a highly conserved group of intracellular modulators of receptor tyrosine kinase (RTK)-signaling pathways, which have been recently linked to primary cilia. Disruptions in the structure and function of primary cilia cause inherited disorders called ciliopathies. We aimed to evaluate Sprouty2 and Sprouty4 gene-dependent alterations of ciliary structure and to focus on the determination of its association with Hedgehog signaling defects in chondrocytes. Analysis of the transgenic mice phenotype with Sprouty2 and Sprouty4 deficiency revealed several defects, including improper endochondral bone formation and digit patterning, or craniofacial and dental abnormalities. Moreover, reduced bone thickness and trabecular bone mass, skull deformities, or chondroma-like lesions were revealed. All these pathologies might be attributed to ciliopathies. Elongation of the ciliary axonemes in embryonic and postnatal growth plate chondrocytes was observed in Sprouty2
-/- and Sprouty2+/- /Sprouty4-/- mutants compared with corresponding littermate controls. Also, cilia-dependent Hedgehog signaling was upregulated in Sprouty2/4 mutant animals. Ptch1 and Ihh expression were upregulated in the autopodium and the proximal tibia of Sprouty2-/- /Sprouty4-/- mutants. Increased levels of the GLI3 repressor (GLI3R) form were detected in Sprouty2/4 mutant primary fibroblast embryonic cell cultures and tissues. These findings demonstrate that mouse lines deficient in Sprouty proteins manifest phenotypic features resembling ciliopathic phenotypes in multiple aspects and may serve as valuable models to study the association between overactivation of RTK and dysfunction of primary cilia during skeletogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR)., (© 2021 American Society for Bone and Mineral Research (ASBMR).)- Published
- 2021
- Full Text
- View/download PDF
13. DUCT: Double Resin Casting followed by Micro-Computed Tomography for 3D Liver Analysis.
- Author
-
Hankeova S, Salplachta J, Van Hul N, Kavkova M, Iqbal A, Zikmund T, Kaiser J, and Andersson ER
- Subjects
- Animals, Mice, Portal Vein diagnostic imaging, X-Ray Microtomography, Biliary Tract, Liver diagnostic imaging
- Abstract
The liver is the biggest internal organ in humans and mice, and high auto-fluorescence presents a significant challenge for assessing the three-dimensional (3D) architecture of the organ at the whole-organ level. Liver architecture is characterized by multiple branching lumenized structures, which can be filled with resin, including vascular and biliary trees, establishing a highly stereotyped pattern in the otherwise hepatocyte-rich parenchyma. This protocol describes the pipeline for performing double resin casting micro-computed tomography, or "DUCT". DUCT entails injecting the portal vein and common bile duct with two different radiopaque synthetic resins, followed by tissue fixation. Quality control by clearing one lobe, or the entire liver, with an optical clearing agent, allows for pre-screening of suitably injected samples. In the second part of the DUCT pipeline, a lobe or the whole liver can be used for micro-computed tomography (microCT) scanning, (semi-)automated segmentation, and 3D rendering of the portal venous and biliary networks. MicroCT results in 3D coordinate data for the two resins allowing for qualitative as well as quantitative analysis of the two systems and their spatial relationship. DUCT can be applied to postnatal and adult mouse liver and can be further extended to other tubular networks, for example, vascular networks and airways in the lungs.
- Published
- 2021
- Full Text
- View/download PDF
14. Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges.
- Author
-
Kaucka M, Szarowska B, Kavkova M, Kastriti ME, Kameneva P, Schmidt I, Peskova L, Joven Araus A, Simon A, Kaiser J, and Adameyko I
- Subjects
- Amphibians metabolism, Amphibians physiology, Animals, Brain metabolism, Cell Lineage physiology, Ear, Inner metabolism, Embryonic Development physiology, Female, Fishes metabolism, Fishes physiology, Melanocytes metabolism, Melanocytes physiology, Meninges metabolism, Mice, Nervous System metabolism, Pregnancy, Receptor, Endothelin B metabolism, Schwann Cells metabolism, Brain physiology, Ear, Inner physiology, Heart physiology, Meninges physiology, Nervous System physiopathology, Schwann Cells physiology
- Abstract
Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
15. Lumbar Interbody Fusion Conducted on a Porcine Model with a Bioresorbable Ceramic/Biopolymer Hybrid Implant Enriched with Hyperstable Fibroblast Growth Factor 2.
- Author
-
Krticka M, Planka L, Vojtova L, Nekuda V, Stastny P, Sedlacek R, Brinek A, Kavkova M, Gopfert E, Hedvicakova V, Rampichova M, Kren L, Liskova K, Ira D, Dorazilová J, Suchy T, Zikmund T, Kaiser J, Stary D, Faldyna M, and Trunec M
- Abstract
Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing fibroblast growth factor-2 (FGF2-STAB
® ) exhibiting a functional half-life in vitro at 37 °C more than 20 days was applied for lumbar fusion in combination with a bioresorbable scaffold on porcine models. An experimental animal study was designed to investigate the intervertebral fusion efficiency and safety of a bioresorbable ceramic/biopolymer hybrid implant enriched with FGF2-STAB® in comparison with a tricortical bone autograft used as a gold standard. Twenty-four experimental pigs underwent L2/3 discectomy with implantation of either the tricortical iliac crest bone autograft or the bioresorbable hybrid implant (BHI) followed by lateral intervertebral fixation. The quality of spinal fusion was assessed by micro-computed tomography (micro-CT), biomechanical testing, and histological examination at both 8 and 16 weeks after the surgery. While 8 weeks after implantation, micro-CT analysis demonstrated similar fusion quality in both groups, in contrast, spines with BHI involving inorganic hydroxyapatite and tricalcium phosphate along with organic collagen, oxidized cellulose, and FGF2- STAB® showed a significant increase in a fusion quality in comparison to the autograft group 16 weeks post-surgery ( p = 0.023). Biomechanical testing revealed significantly higher stiffness of spines treated with the bioresorbable hybrid implant group compared to the autograft group ( p < 0.05). Whilst histomorphological evaluation showed significant progression of new bone formation in the BHI group besides non-union and fibrocartilage tissue formed in the autograft group. Significant osteoinductive effects of BHI based on bioceramics, collagen, oxidized cellulose, and FGF2-STAB® could improve outcomes in spinal fusion surgery and bone tissue regeneration.- Published
- 2021
- Full Text
- View/download PDF
16. An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice.
- Author
-
Kimura T, Bosakova M, Nonaka Y, Hruba E, Yasuda K, Futakawa S, Kubota T, Fafilek B, Gregor T, Abraham SP, Gomolkova R, Belaskova S, Pesl M, Csukasi F, Duran I, Fujiwara M, Kavkova M, Zikmund T, Kaiser J, Buchtova M, Krakow D, Nakamura Y, Ozono K, and Krejci P
- Subjects
- Animals, Bone Development, Cell Differentiation, Chondrocytes, Mice, Rats, Receptor, Fibroblast Growth Factor, Type 3 genetics, Achondroplasia drug therapy, Achondroplasia genetics, Aptamers, Nucleotide
- Abstract
Achondroplasia is the most prevalent genetic form of dwarfism in humans and is caused by activating mutations in FGFR3 tyrosine kinase. The clinical need for a safe and effective inhibitor of FGFR3 is unmet, leaving achondroplasia currently incurable. Here, we evaluated RBM-007, an RNA aptamer previously developed to neutralize the FGFR3 ligand FGF2, for its activity against FGFR3. In cultured rat chondrocytes or mouse embryonal tibia organ culture, RBM-007 rescued the proliferation arrest, degradation of cartilaginous extracellular matrix, premature senescence, and impaired hypertrophic differentiation induced by FGFR3 signaling. In cartilage xenografts derived from induced pluripotent stem cells from individuals with achondroplasia, RBM-007 rescued impaired chondrocyte differentiation and maturation. When delivered by subcutaneous injection, RBM-007 restored defective skeletal growth in a mouse model of achondroplasia. We thus demonstrate a ligand-trap concept of targeting the cartilage FGFR3 and delineate a potential therapeutic approach for achondroplasia and other FGFR3-related skeletal dysplasias., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2021
- Full Text
- View/download PDF
17. Contrast enhanced X-ray computed tomography imaging of amyloid plaques in Alzheimer disease rat model on lab based micro CT system.
- Author
-
Kavkova M, Zikmund T, Kala A, Salplachta J, Proskauer Pena SL, Kaiser J, and Jezek K
- Subjects
- Alzheimer Disease metabolism, Amyloid beta-Peptides metabolism, Animals, Biomarkers, Brain diagnostic imaging, Brain metabolism, Brain pathology, Disease Models, Animal, Female, Image Processing, Computer-Assisted, Imaging, Three-Dimensional, Plaque, Amyloid metabolism, Rats, Alzheimer Disease diagnostic imaging, Alzheimer Disease pathology, Contrast Media, Plaque, Amyloid diagnostic imaging, Plaque, Amyloid pathology, Radiographic Image Enhancement, X-Ray Microtomography
- Abstract
Amyloid plaques are small (~ 50 μm), highly-dense aggregates of amyloid beta (Aβ) protein in brain tissue, supposed to play a key role in pathogenesis of Alzheimer's disease (AD). Plaques´ in vivo detection, spatial distribution and quantitative characterization could be an essential marker in diagnostics and evaluation of AD progress. However, current imaging methods in clinics possess substantial limits in sensitivity towards Aβ plaques to play a considerable role in AD screening. Contrast enhanced X-ray micro computed tomography (micro CT) is an emerging highly sensitive imaging technique capable of high resolution visualization of rodent brain. In this study we show the absorption based contrast enhanced X-ray micro CT imaging is viable method for detection and 3D analysis of Aβ plaques in transgenic rodent models of Alzheimer's disease. Using iodine contrasted brain tissue isolated from the Tg-F344-AD rat model we show the micro CT imaging is capable of precise imaging of Aβ plaques, making possible to further analyze various aspects of their 3D spatial distribution and other properties.
- Published
- 2021
- Full Text
- View/download PDF
18. DUCT reveals architectural mechanisms contributing to bile duct recovery in a mouse model for Alagille syndrome.
- Author
-
Hankeova S, Salplachta J, Zikmund T, Kavkova M, Van Hul N, Brinek A, Smekalova V, Laznovsky J, Dawit F, Jaros J, Bryja V, Lendahl U, Ellis E, Nemeth A, Fischler B, Hannezo E, Kaiser J, and Andersson ER
- Subjects
- Animals, Bile Ducts growth & development, Disease Models, Animal, Mice, Mice, Transgenic, X-Ray Microtomography classification, Alagille Syndrome physiopathology, Bile Ducts physiopathology, X-Ray Microtomography methods
- Abstract
Organ function depends on tissues adopting the correct architecture. However, insights into organ architecture are currently hampered by an absence of standardized quantitative 3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the architecture of two tubular systems in 3D: d o u ble resin c asting micro computed t omography (DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome ( Jag1
Ndr/Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized method of defining liver architecture in mouse models., Competing Interests: SH, JS, TZ, MK, NV, AB, VS, JL, FD, JJ, VB, UL, EE, AN, BF, EH, JK, EA No competing interests declared, (© 2021, Hankeova et al.)- Published
- 2021
- Full Text
- View/download PDF
19. Polarized Sonic Hedgehog Protein Localization and a Shift in the Expression of Region-Specific Molecules Is Associated With the Secondary Palate Development in the Veiled Chameleon.
- Author
-
Hampl M, Dumkova J, Kavkova M, Dosedelova H, Bryjova A, Zahradnicek O, Pyszko M, Macholan M, Zikmund T, Kaiser J, and Buchtova M
- Abstract
Secondary palate development is characterized by the formation of two palatal shelves on the maxillary prominences, which fuse in the midline in mammalian embryos. However, in reptilian species, such as turtles, crocodilians, and lizards, the palatal shelves of the secondary palate develop to a variable extent and morphology. While in most Squamates, the palate is widely open, crocodilians develop a fully closed secondary palate. Here, we analyzed developmental processes that underlie secondary palate formation in chameleons, where large palatal shelves extend horizontally toward the midline. The growth of the palatal shelves continued during post-hatching stages and closure of the secondary palate can be observed in several adult animals. The massive proliferation of a multilayered oral epithelium and mesenchymal cells in the dorsal part of the palatal shelves underlined the initiation of their horizontal outgrowth, and was decreased later in development. The polarized cellular localization of primary cilia and Sonic hedgehog protein was associated with horizontal growth of the palatal shelves. Moreover, the development of large palatal shelves, supported by the pterygoid and palatine bones, was coupled with the shift in Meox2 , Msx1 , and Pax9 gene expression along the rostro-caudal axis. In conclusion, our results revealed distinctive developmental processes that contribute to the expansion and closure of the secondary palate in chameleons and highlighted divergences in palate formation across amniote species., (Copyright © 2020 Hampl, Dumkova, Kavkova, Dosedelova, Bryjova, Zahradnicek, Pyszko, Macholan, Zikmund, Kaiser and Buchtova.)
- Published
- 2020
- Full Text
- View/download PDF
20. Developmental mechanisms driving complex tooth shape in reptiles.
- Author
-
Landova Sulcova M, Zahradnicek O, Dumkova J, Dosedelova H, Krivanek J, Hampl M, Kavkova M, Zikmund T, Gregorovicova M, Sedmera D, Kaiser J, Tucker AS, and Buchtova M
- Subjects
- Actins metabolism, Animals, Dental Enamel cytology, Dental Enamel metabolism, Dental Enamel ultrastructure, Gene Expression Regulation, Developmental physiology, Lipid Droplets metabolism, Microscopy, Electron, Transmission, Odontogenesis physiology, Tooth, Reptiles anatomy & histology, Reptiles growth & development, Reptiles metabolism
- Abstract
Background: In mammals, odontogenesis is regulated by transient signaling centers known as enamel knots (EKs), which drive the dental epithelium shaping. However, the developmental mechanisms contributing to formation of complex tooth shape in reptiles are not fully understood. Here, we aim to elucidate whether signaling organizers similar to EKs appear during reptilian odontogenesis and how enamel ridges are formed., Results: Morphological structures resembling the mammalian EK were found during reptile odontogenesis. Similar to mammalian primary EKs, they exhibit the presence of apoptotic cells and no proliferating cells. Moreover, expression of mammalian EK-specific molecules (SHH, FGF4, and ST14) and GLI2-negative cells were found in reptilian EK-like areas. 3D analysis of the nucleus shape revealed distinct rearrangement of the cells associated with enamel groove formation. This process was associated with ultrastructural changes and lipid droplet accumulation in the cells directly above the forming ridge, accompanied by alteration of membranous molecule expression (Na/K-ATPase) and cytoskeletal rearrangement (F-actin)., Conclusions: The final complex shape of reptilian teeth is orchestrated by a combination of changes in cell signaling, cell shape, and cell rearrangement. All these factors contribute to asymmetry in the inner enamel epithelium development, enamel deposition, ultimately leading to the formation of characteristic enamel ridges., (© 2019 Wiley Periodicals, Inc.)
- Published
- 2020
- Full Text
- View/download PDF
21. Ablation of CNTN2+ Pyramidal Neurons During Development Results in Defects in Neocortical Size and Axonal Tract Formation.
- Author
-
Kastriti ME, Stratigi A, Mariatos D, Theodosiou M, Savvaki M, Kavkova M, Theodorakis K, Vidaki M, Zikmund T, Kaiser J, Adameyko I, and Karagogeos D
- Abstract
Corticothalamic axons express Contactin-2 (CNTN2/TAG-1), a neuronal recognition molecule of the immunoglobulin superfamily involved in neurogenesis, neurite outgrowth, and fasciculation. TAG-1, which is expressed transiently by cortical pyramidal neurons during embryonic development, has been shown to be fundamental for axonal recognition, cellular migration, and neuronal proliferation in the developing cortex. Although Tag-1
-/- mice do not exhibit any obvious defects in the corticofugal system, the role of TAG-1+ neurons during the development of the cortex remains elusive. We have generated a mouse model expressing EGFP under the Tag-1 promoter and encompassing the coding sequence of Diptheria Toxin subunit A (DTA) under quiescence with no effect on the expression of endogenous Tag-1 . We show that while the line recapitulates the expression pattern of the molecule, it highlights an extended expression in the forebrain, including multiple axonal tracts and neuronal populations, both spatially and temporally. Crossing these mice to the Emx1-Cre strain, we ablated the vast majority of TAG-1+ cortical neurons. Among the observed defects were a significantly smaller cortex, a reduction of corticothalamic axons as well as callosal and commissural defects. Such defects are common in neurodevelopmental disorders, thus this mouse could serve as a useful model to study physiological and pathophysiological cortical development., (Copyright © 2019 Kastriti, Stratigi, Mariatos, Theodosiou, Savvaki, Kavkova, Theodorakis, Vidaki, Zikmund, Kaiser, Adameyko and Karagogeos.)- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.