1. Stripping away ion hydration shells in electrical double-layer formation: Water networks matter
- Author
-
Sarah Funke, Marie-Pierre Gaigeot, Li Fu, Kristina Tschulik, Claudius Hoberg, Gerhard Schwaab, Serena R. Alfarano, Inga Kolling, Thorsten Ockelmann, Zhou Lin, Pascale Roy, Simone Pezzotti, Katja Mauelshagen, Chun Yu Ma, Jean-Blaise Brubach, Christopher J. Stein, Federico Sebastiani, Martina Havenith, Martin Head-Gordon, Ruhr-Universität Bochum [Bochum], Laboratoire Analyse, Modélisation et Matériaux pour la Biologie et l'Environnement (LAMBE - UMR 8587), Université d'Évry-Val-d'Essonne (UEVE)-Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), University of California [Berkeley], University of California, Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen [Essen], Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley] (UC Berkeley), University of California (UC), and Universität Duisburg-Essen = University of Duisburg-Essen [Essen]
- Subjects
Materials science ,Stripping (chemistry) ,02 engineering and technology ,Electrolyte ,electrolyte ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,7. Clean energy ,law.invention ,Ion ,Molecular dynamics ,law ,operando ,Multidisciplinary ,Physik (inkl. Astronomie) ,021001 nanoscience & nanotechnology ,hydrogen bonding ,Synchrotron ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Chemistry ,Solvation shell ,electrochemistry ,13. Climate action ,Chemical physics ,Electrode ,Physical Sciences ,double layer ,0210 nano-technology ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
Significance For centuries the double layer at the solid/electrolyte interface has been a central concept in electrochemistry. Today, it is still crucial for virtually all renewable energy storage and conversion technologies. Here, the double-layer formation is probed by THz spectroscopy with ultrabright synchrotron light as a source. Our results capture the molecular details of double-layer formation at positively/negatively charged Au electrodes for an NaCl electrolyte. We reveal a contrasting response applying positive versus negative bias, which is dictated by the interfacial water network and rationalized by accompanying molecular dynamics simulations and electronic-structure calculations. While Na+ is directly attracted toward the negatively charged electrode, stripping of the Cl− hydration shell is observed only at larger potential values., The double layer at the solid/electrolyte interface is a key concept in electrochemistry. Here, we present an experimental study combined with simulations, which provides a molecular picture of the double-layer formation under applied voltage. By THz spectroscopy we are able to follow the stripping away of the cation/anion hydration shells for an NaCl electrolyte at the Au surface when decreasing/increasing the bias potential. While Na+ is attracted toward the electrode at the smallest applied negative potentials, stripping of the Cl− hydration shell is observed only at higher potential values. These phenomena are directly measured by THz spectroscopy with ultrabright synchrotron light as a source and rationalized by accompanying molecular dynamics simulations and electronic-structure calculations.
- Published
- 2021
- Full Text
- View/download PDF