The dynamics of local climates make development of agricultural strategies challenging. Yield improvement has progressed slowly, especially in drought-prone regions where annual crop production suffers from episodic aridity. Underlying drought responses are circadian and diel control of gene expression that regulate daily variations in metabolic and physiological pathways. To identify transcriptomic changes that occur in the crop Brassica rapa during initial perception of drought, we applied a co-expression network approach to associate rhythmic gene expression changes with physiological responses. Coupled analysis of transcriptome and physiological parameters over a two-day time course in control and drought-stressed plants provided temporal resolution necessary for correlation of network modules with dynamic changes in stomatal conductance, photosynthetic rate, and photosystem II efficiency. This approach enabled the identification of drought-responsive genes based on their differential rhythmic expression profiles in well-watered versus droughted networks and provided new insights into the dynamic physiological changes that occur during drought., eLife digest Around 60% of the food produced worldwide relies entirely on rain for its water supply. However, in the decades ahead global climate change is predicted to cause droughts to happen more often and become more severe in many regions. Therefore, in order to sustain our food supply we need to better understand how plants respond to drought and then use that knowledge to improve the ability of crops to cope with it. Unlike animals, plants cannot move away from drought or other stressful situations so they must face these difficulties ‘head on’. For example, when water is in short supply, plants close pores known as stomata on the surface of their leaves to reduce water loss. However, these pores need to be open to allow carbon dioxide gas, which plants use to make sugars in a process called photosynthesis, to enter the plant. Their response to drought must therefore be carefully controlled to make sure that the plant is still capable of performing photosynthesis. Turnip, napa cabbage, bok choy and field mustard are all varieties of a crop species known as Brassica rapa. These crops are grown in relatively dry regions such as the Canadian prairies and northern China, making drought stress a major threat to production. Previous studies had shown that drought stress causes changes in the activities of genes at certain times of day. To investigate this further, Greenham, Guadagno et al. studied how young B. rapa plants grown in a controlled environment with a steady supply of water responded when watering stopped. The experiments show that, even before the plants show obvious signs of drought stress such as wilting, there are extensive changes in the activity of many genes and processes inside plant cells that vary according to the time of day. Greenham, Guadagno et al. used an analysis technique to bring together all of the data into a network based on similar patterns of changes over time. This identified groups of genes whose changes in activity match the timing of the observed changes in the opening and closing of stomata, photosynthesis and other processes. These represent very early responses to drought stress in the plant. This work emphasizes the importance of time of day on plant stress responses. Changes that occurred only in the morning could not have been detected by measurements taken in the afternoon, and vice versa. The next step is to find out which of the changes observed in this work are most important in making plants resistant to drought. In the future, these findings may help researchers to develop strategies that would improve drought resistance in crop plants.