1. First Measurement of Missing Energy Due to Nuclear Effects in Monoenergetic Neutrino Charged Current Interactions
- Author
-
Marzec, E., Ajimura, S., Antonakis, A., Botran, M., Cheoun, M. K., Choi, J. H., Choi, J. W., Choi, J. Y., Dodo, T., Furuta, H., Goh, J. H., Haga, K., Harada, M., Hasegawa, S., Hino, Y., Hiraiwa, T., Hwang, W., Iida, T., Iwai, E., Iwata, S., Jang, H. I., Jang, J. S., Jang, M. C., Jeon, H. K., Jeon, S. H., Joo, K. K., Jung, D. E., Kang, S. K., Kasugai, Y., Kawasaki, T., Kim, E. J., Kim, J. Y., Kim, E. M., Kim, S. Y., Kim, W., Kim, S. B., Kinoshita, H., Konno, T., Kuwata, K., Lee, D. H., Lee, S., Lim, I. T., Little, C., Maruyama, T., Masuda, S., Meigo, S., Monjushiro, S., Moon, D. H., Nakano, T., Niiyama, M., Nishikawa, K., Noumachi, M., Pac, M. Y., Park, B. J., Park, H. W., Park, J. B., Park, J. S., Park, R. G., Peeters, S. J. M., Roellinghoff, G., Rott, C., Ryu, J. W., Sakai, K., Sakamoto, S., Shima, T., Shin, C. D., Spitz, J., Stancu, I., Suekane, F., Sugaya, Y., Suzuya, K., Taira, M., Takeuchi, Y., Wang, W., Waterfield, J., Wei, W., White, R., Yamaguchi, Y., Yeh, M., Yeo, I. S., Yoo, C., Yu, I., and Zohaib, A.
- Subjects
High Energy Physics - Experiment - Abstract
We present the first measurement of the missing energy due to nuclear effects in monoenergetic, muon neutrino charged-current interactions on carbon, originating from $K^+ \rightarrow \mu^+ \nu_\mu$ decay-at-rest ($E_{\nu_\mu}=235.5$ MeV), performed with the JSNS$^2$ liquid scintillator based experiment. Towards characterizing the neutrino interaction, ostensibly $\nu_\mu n \rightarrow \mu^- p$ or $\nu_\mu$$^{12}\mathrm{C}$ $\rightarrow \mu^-$$^{12}\mathrm{N}$, and in analogy to similar electron scattering based measurements, we define the missing energy as the energy transferred to the nucleus ($\omega$) minus the kinetic energy of the outgoing proton(s), $E_{m} \equiv \omega-\sum T_p$, and relate this to visible energy in the detector, $E_{m}=E_{\nu_\mu}~(235.5~\mathrm{MeV})-m_\mu~(105.7~\mathrm{MeV}) - E_{vis}$. The missing energy, which is naively expected to be zero in the absence of nuclear effects (e.g. nucleon separation energy, Fermi momenta, and final-state interactions), is uniquely sensitive to many aspects of the interaction, and has previously been inaccessible with neutrinos. The shape-only, differential cross section measurement reported, based on a $(77\pm3)$% pure double-coincidence KDAR signal (621 total events), provides an important benchmark for models and event generators at 100s-of-MeV neutrino energies, characterized by the difficult-to-model transition region between neutrino-nucleus and neutrino-nucleon scattering, and relevant for applications in nuclear physics, neutrino oscillation measurements, and Type-II supernova studies.
- Published
- 2024