1. Dynamics of a Tuberculosis Outbreak Model in a Multi-scale Environment
- Author
-
Kasereka, Selain K.
- Subjects
Quantitative Biology - Populations and Evolution ,Mathematics - Dynamical Systems - Abstract
Modeling and simulation approaches for infectious disease dynamics have proven to be essential tools for effective control of the spread of epidemics in the population. Among these approaches, it is obvious that compartmental mathematical models, such as SIS, SIR, SEIR, etc. are the most widely used by researchers. However, they are difficult to apply in a multi-scale environment, especially if we want to take into account the heterogeneous behaviors of individuals. The aim of this paper is to present a hybrid model in which an Equation-Based Model (EBM) of tuberculosis dynamics is coupled to an Agent-Based Model (ABM) in a two-scale environment. In this model, individuals are placed in cities considered as agents in which the dynamics of the disease is modeled by eight compartments and managed by solving a system of differential equations. Individual agents move between these cities using an ABM that controls their mobility. Considering some parametric values and assumptions, the results obtained show that human mobility has a significant impact on the spread of tuberculosis within the population. The management of population and disease dynamics at different levels (microscopic and macroscopic) testifies to the robustness of the proposed approach.
- Published
- 2024