25 results on '"Karthick Parashar"'
Search Results
2. Doppler Radar with In-Band Full Duplex Radios.
- Author
-
Seyed Ali Hassani, Karthick Parashar, André Bourdoux, Barend van Liempd, and Sofie Pollin
- Published
- 2019
- Full Text
- View/download PDF
3. A Retargetable MATLAB-to-C Compiler Exploiting Custom Instructions and Data Parallelism.
- Author
-
Ioannis Latifis, Karthick Parashar, Grigoris Dimitroulakos, Hans Cappelle, Christakis Lezos, Konstantinos Masselos, and Francky Catthoor
- Published
- 2020
- Full Text
- View/download PDF
4. An In-Band Full-Duplex Transceiver for Simultaneous Communication and Environmental Sensing.
- Author
-
Seyed Ali Hassani, Andrea P. Guevara, Karthick Parashar, André Bourdoux, Barend van Liempd, and Sofie Pollin
- Published
- 2018
- Full Text
- View/download PDF
5. Leveraging power spectral density for scalable system-level accuracy evaluation.
- Author
-
Benjamin Barrois, Karthick Parashar, and Olivier Sentieys
- Published
- 2016
6. Matlab to C compilation targeting Application Specific Instruction Set Processors.
- Author
-
Ioannis Latifis, Karthick Parashar, Grigoris Dimitroulakos, Hans Cappelle, Christakis Lezos, Konstantinos Masselos, and Francky Catthoor
- Published
- 2016
7. A MATLAB Vectorizing Compiler Targeting Application-Specific Instruction Set Processors.
- Author
-
Ioannis Latifis, Karthick Parashar, Grigoris Dimitroulakos, Hans Cappelle, Christakis Lezos, Konstantinos Masselos, and Francky Catthoor
- Published
- 2017
- Full Text
- View/download PDF
8. A polynomial time algorithm for solving the word-length optimization problem.
- Author
-
Karthick Parashar, Daniel Ménard, and Olivier Sentieys
- Published
- 2013
- Full Text
- View/download PDF
9. Analytical approach to evaluate the effect of the spread of quantization noise through the cascade of decision operators for spherical decoding.
- Author
-
Aymen Chakhari, Karthick Parashar, Romuald Rocher, and Pascal Scalart
- Published
- 2012
10. Fast performance evaluation of fixed-point systems with un-smooth operators.
- Author
-
Karthick Parashar, Daniel Ménard, Romuald Rocher, Olivier Sentieys, David Novo, and Francky Catthoor
- Published
- 2010
- Full Text
- View/download PDF
11. Estimating frequency characteristics of quantization noise for performance evaluation of fixed point systems.
- Author
-
Karthick Parashar, Daniel Ménard, Romuald Rocher, and Olivier Sentieys
- Published
- 2010
12. A Hierarchical Methodology for Word-Length Optimization of Signal Processing Systems.
- Author
-
Karthick Parashar, Romuald Rocher, Daniel Ménard, and Olivier Sentieys
- Published
- 2010
- Full Text
- View/download PDF
13. Analytical approach for analyzing quantization noise effects on decision operators.
- Author
-
Karthick Parashar, Romuald Rocher, Daniel Ménard, and Olivier Sentieys
- Published
- 2010
- Full Text
- View/download PDF
14. A Novel Event Based Simulation Algorithm for Sequential Digital Circuit Simulation.
- Author
-
Karthick Parashar and Nitin Chandrachoodan
- Published
- 2007
- Full Text
- View/download PDF
15. Doppler Radar with In-Band Full Duplex Radios
- Author
-
Karthick Parashar, Sofie Pollin, Barend van Liempd, Andre Bourdoux, and Seyed Ali Hassani
- Subjects
020301 aerospace & aeronautics ,Computer science ,business.industry ,Acoustics ,Doppler radar ,Duplex (telecommunications) ,020206 networking & telecommunications ,02 engineering and technology ,Interference (wave propagation) ,Signal ,law.invention ,symbols.namesake ,0203 mechanical engineering ,Duplexer ,law ,0202 electrical engineering, electronic engineering, information engineering ,symbols ,Wireless ,business ,Doppler effect - Abstract
The use of in-band full duplex (IBFD) is a promising improvement over classical TDD or FDD communication schemes. To enable IBFD radios, the electrical balance duplexer (EBD) has been proposed to suppress the direct self-interference (SI) at the RF stage. The remaining SI is typically assumed to be canceled further in the digital domain. In this paper, we show that the non-zero Doppler frequencies can be extracted from the residual SI, giving information about the speed of objects in the environment. As a result, an IBFD radio can be seen as a monostatic Doppler radar which is affected by the communication signal. This paper presents a detailed performance analysis of the different sources of interference affecting the Doppler radar. The performance is also evaluated using a radar-enhanced IBFD prototype consisting of a SDR module and an EBD designed to achieve up to 55 dB Tx-Rx isolation in the 1.74 GHz RF band. A measurable Doppler component is created by moving a 15 dBsm cone at known velocities at 0. 5-1.3 m from the prototype. For an EBD SI rejection of 45 dB, speeds in the range of 200 to 800 mm/s are detected with high accuracy.
- Published
- 2019
16. Phenomenology of mutual interference of FMCW and PMCW automotive radars
- Author
-
Karthick Parashar, Marc Bauduin, and A. Bourdoux
- Subjects
050210 logistics & transportation ,Engineering ,business.industry ,05 social sciences ,Bandwidth (signal processing) ,Automotive industry ,Spectral density ,020206 networking & telecommunications ,02 engineering and technology ,law.invention ,Radar waveforms ,Radar engineering details ,law ,0502 economics and business ,0202 electrical engineering, electronic engineering, information engineering ,Electronic engineering ,Waveform ,Radar ,business ,Radar configurations and types - Abstract
With the increasing use of automotive radars for assisted driving, future cars will typically be fitted with eight to ten radars, covering 360° around the car. LRR radars at 77GHz and MRR/SRR at 79GHz will create a significant amount of mutual interference, reducing the radar sensitivity or creating false alarms, both of these being undesirable. The frequency, bandwidth and power spectral density are subject to regulation but the radar waveforms are not. The question therefore arises as to whether some waveforms are more vulnerable or creating more interference than others. We consider the FMCW and PMCW waveforms in this paper and describe the phenomenology of the mutual interference between the four possible interferer-victim pairs. Simulations are used throughout the paper to assess the behavior of the mutual interference.
- Published
- 2017
- Full Text
- View/download PDF
17. Micro-Doppler feature extraction using convolutional auto-encoders for low latency target classification
- Author
-
Karthick Parashar, Maxim Rykunov, Hichem Sahli, Meshia Cédric Oveneke, Andre Bourdoux, Faculty of Sciences and Bioengineering Sciences, Faculty of Engineering, Electronics and Informatics, and Audio Visual Signal Processing
- Subjects
Computer science ,Doppler radar ,Feature extraction ,0211 other engineering and technologies ,Latency (audio) ,02 engineering and technology ,image motion analysis ,unsupervised learning ,object recognition ,law.invention ,law ,0202 electrical engineering, electronic engineering, information engineering ,convolution ,Computer vision ,Latency (engineering) ,Radar ,video signal processing ,021101 geological & geomatics engineering ,Training set ,frequency estimation ,business.industry ,SIGNAL (programming language) ,020206 networking & telecommunications ,image capture ,Range (mathematics) ,Unsupervised learning ,Artificial intelligence ,business ,image classification - Abstract
The radar is expected to go beyond the traditional functionality of range and speed estimation to target classification. The complementary use of radar and video is becoming increasingly popular for applications such as autonomous cars, smart home automation etc. Target classification based on radar depends on the characteristic motion patterns of target nonrigidities. The Micro-Doppler (MD) signal captures such motions that have been used to extract reliable distinguishing features for various classes of targets. Popular MD analysis techniques such as Cadence frequency estimation require long captures before reliably identifying the target. Such a latency has an impact on the response times especially in time critical systems such as autonomous cars. Although a finite latency is unavoidable, it is in the interest of the community to keep it as small as possible. In this paper, we use unsupervised learning, specifically auto-encoders for learning Micro-Doppler features. We use a particular fast learning algorithm which learns very quickly with little training data and deliver reliable classification.
- Published
- 2017
- Full Text
- View/download PDF
18. Indoor tracking of multiple persons with a 77 GHz MIMO FMCW radar
- Author
-
Karthick Parashar, Tom Dhaene, Andre Bourdoux, Nicolas Knudde, Azarakhsh Jalalvand, Wesley De Neve, Ivo Couckuyt, and Baptist Vandersmissen
- Subjects
0209 industrial biotechnology ,Computer science ,Pipeline (computing) ,Real-time computing ,MIMO ,0211 other engineering and technologies ,Markov chain Monte Carlo ,02 engineering and technology ,Tracking (particle physics) ,law.invention ,Continuous-wave radar ,symbols.namesake ,Noise ,020901 industrial engineering & automation ,law ,symbols ,IBCN ,Sensitivity (control systems) ,Radar ,021101 geological & geomatics engineering - Abstract
In this paper, we tackle the task of multi-target tracking of humans in an indoor setting using a low power 77 GHz MIMO CMOS radar. A drawback of such a highresolution and low-power device is the higher sensitivity to noise, which makes the analysis of signals more challenging. Therefore, a pipeline is proposed to address both pre-processing of the radar signal and multi-target tracking. In the pre-processing phase, we focus on handling the low Signal-to-Noise Ratio (SNR) and eliminating so-called ghost targets. The tracking method we propose is based on Markov Chain Monte Carlo Data Association (MCMCDA), thus taking a combinatorial approach towards the task of tracking. The pipeline is tested on a number of real-world scenarios and shows promising results, overcoming the significant amount of noise associated with embedded radar devices.
- Published
- 2017
19. Leveraging Power Spectral Density for Scalable System-Level Accuracy Evaluation
- Author
-
Olivier Sentieys, Karthick Parashar, Benjamin Barrois, Energy Efficient Computing ArchItectures with Embedded Reconfigurable Resources (CAIRN), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-ARCHITECTURE (IRISA-D3), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), IMEC Interuniversity MicroElectronics Center (IMEC), IMEC, ANR-11-INSE-0008,DEFIS,Conception de systèmes embarqués utilisant l'arithmétique virgule fixe(2011), European Project: 287733,EC:FP7:ICT,FP7-ICT-2011-7,ALMA(2011), Sentieys, Olivier, Ingénierie Numérique et Sécurité - Conception de systèmes embarqués utilisant l'arithmétique virgule fixe - - DEFIS2011 - ANR-11-INSE-0008 - INS - VALID, Architecture oriented paraLlelization for high performance embedded Multicore systems using scilAb - ALMA - - EC:FP7:ICT2011-09-01 - 2015-01-31 - 287733 - VALID, CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
[INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR] ,[INFO.INFO-AR] Computer Science [cs]/Hardware Architecture [cs.AR] ,Signal processing ,Computer science ,Quantization (signal processing) ,[INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic ,Process (computing) ,ACM: B.: Hardware ,Spectral density ,020206 networking & telecommunications ,02 engineering and technology ,[INFO.INFO-ES] Computer Science [cs]/Embedded Systems ,020202 computer hardware & architecture ,ACM: B.: Hardware/B.2: ARITHMETIC AND LOGIC STRUCTURES ,ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING ,0202 electrical engineering, electronic engineering, information engineering ,[INFO.INFO-AO] Computer Science [cs]/Computer Arithmetic ,[INFO.INFO-ES]Computer Science [cs]/Embedded Systems ,Algorithm ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Energy (signal processing) ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; The choice of fixed-point word-lengths critically impacts the system performance by impacting the quality of computation, its energy, speed and area. Making a good choice of fixed-point word-length generally requires solving an NP-hard problem by exploring a vast search space. Therefore, the entire fixed-point refinement process becomes critically dependent on evaluating the effects of accuracy degradation. In this paper, a novel technique for the system-level evaluation of fixed-point systems, which is more scalable and that renders better accuracy, is proposed. This technique makes use of the information hidden in the power-spectral density of quantization noises. It is shown to be very effective in systems consisting of more than one frequency sensitive components. Compared to state-of-the-art hierarchical methods that are agnostic to the quantization noise spectrum, we show that the proposed approach is 5× to 500× more accurate on some representative signal processing kernels.
- Published
- 2016
20. Matlab to C Compilation Targeting Application Specific Instruction Set Processors
- Author
-
Hans Cappelle, Ioannis Latifis, Francky Catthoor, Karthick Parashar, Christakis Lezos, Grigoris Dimitroulakos, and Konstantinos Masselos
- Subjects
Technology ,MATLAB ,Speedup ,Computer science ,Intrinsic function ,02 engineering and technology ,Parallel computing ,computer.software_genre ,Instruction set ,Automation & Control Systems ,Engineering ,System-on-Chip (SoC) ,Compiler construction ,0202 electrical engineering, electronic engineering, information engineering ,Interprocedural optimization ,Code generation ,Compiler correctness ,computer.programming_language ,ANSI C ,Science & Technology ,Programming language ,Inline expansion ,Engineering, Electrical & Electronic ,020207 software engineering ,Program optimization ,Single Compilation Unit ,compilation ,embedded systems ,Compiler ,Hardware_CONTROLSTRUCTURESANDMICROPROGRAMMING ,Application Specific Instruction Set Processor (ASIP) ,computer - Abstract
© 2016 EDAA. This paper discusses a MATLAB to C compiler exploiting custom instructions such as instructions for SIMD processing and instructions for complex arithmetic present in Application Specific Instruction Set Processors (ASIPs). The compiler generates ANSI C code in which the processor's special instructions are represented via specialized intrinsic functions. By doing this the generated code can be used as input to any C/C++ compiler. Thus the proposed compiler allows the description of the specialized instruction set of the target processor in a parameterized way allowing the support of any processor. The proposed compiler has been used for the generation of application code for an ASIP targeting DSP applications. The code generated by the proposed compiler achieves a speed up between 2x-30x on the targeted ASIP for six DSP benchmarks compared to the code generated by Mathworks MATLAB to C compiler. Thus the proposed compiler can be employed to reduce the development time/effort/cost and time to market by raising the abstraction of application design in an embedded systems / system-on-chip development context while still improving implementation efficiency. ispartof: pages:1453-1456 ispartof: PROCEEDINGS OF THE 2016 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE) vol:22 issue:2 pages:1453-1456 ispartof: Design, Automation and Test in Europe Conference and Exhibition (DATE) location:GERMANY, Dresden date:14 Mar - 18 Mar 2016 status: published
- Published
- 2016
- Full Text
- View/download PDF
21. Accelerated Performance Evaluation of Fixed-Point Systems With Un-Smooth Operations
- Author
-
Olivier Sentieys, Karthick Parashar, Daniel Menard, Energy Efficient Computing ArchItectures with Embedded Reconfigurable Resources (CAIRN), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-ARCHITECTURE (IRISA-D3), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut d'Électronique et des Technologies du numéRique (IETR), Nantes Université (NU)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), ANR-11-INSE-0008,DEFIS,Conception de systèmes embarqués utilisant l'arithmétique virgule fixe(2011), European Project: 287733,EC:FP7:ICT,FP7-ICT-2011-7,ALMA(2011), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), and Université de Nantes (UN)-Université de Rennes 1 (UR1)
- Subjects
Signal processing ,Mathematical optimization ,020208 electrical & electronic engineering ,quantization noise ,Process (computing) ,020206 networking & telecommunications ,02 engineering and technology ,Fixed point ,Computer Graphics and Computer-Aided Design ,accuracy estimation ,Interconnect topology ,Acceleration ,Orders of magnitude (time) ,fixed-point refinement ,0202 electrical engineering, electronic engineering, information engineering ,Perturbation theory (quantum mechanics) ,Electrical and Electronic Engineering ,Fixed-point arithmetic ,signal processing ,Algorithm ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Software ,Mathematics ,perturbation theory - Abstract
International audience; The problem of accuracy evaluation is one of the most time consuming tasks during the fixed-point refinement process. Analytical techniques based on perturbation theory have been proposed in order to overcome the need for long fixed-point simulation. However, these techniques are not applicable in the presence of certain operations classified as un-smooth operations. In such circumstances, fixed-point simulation should be used. In this paper, an algorithm detailing the hybrid technique which makes use of an analytical accuracy evaluation technique used to accelerate fixed-point simulation is presented. This technique is applicable to signal processing systems with both feed-forward and feedback interconnect topology between its operations. The acceleration obtained as a result of applications of the proposed technique is consistent with fixed-point simulation, while reducing the time taken for fixed-point simulation by several orders of magnitude.
- Published
- 2014
- Full Text
- View/download PDF
22. Shaping probability density function of quantization noise in fixed point systems
- Author
-
Daniel Menard, Romuald Rocher, Olivier Sentieys, Karthick Parashar, Energy Efficient Computing ArchItectures with Embedded Reconfigurable Resources (CAIRN), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-ARCHITECTURE (IRISA-D3), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Menard, Daniel, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Divide and conquer algorithms ,Mathematical optimization ,Finite impulse response ,[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing ,Quantization (signal processing) ,020208 electrical & electronic engineering ,MIMO ,Probability density function ,02 engineering and technology ,Fixed point ,Noise shaping ,020202 computer hardware & architecture ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0202 electrical engineering, electronic engineering, information engineering ,Cluster analysis ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,ComputingMilieux_MISCELLANEOUS ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing ,Mathematics - Abstract
Word-length optimization provides opportunities for minimization of implementation cost metrics such as power, area and delay. The constraints on cost in case of implementation on miniature embedded systems platforms continues to grow more stringent. Implementation of complex systems such as wireless communication transceivers is known to greatly benefit from optimal word-lengths. However, WL optimization of such complex systems poses a NP hard combinatorial problem. In line with a divide and conquer technique already explored, this paper proposes to study the probability density function of quantization noise at the output of an arithmetic operator based system. The proposed technique is based on clustering of noise sources according to their power using Kurtosis of the total noise as the clustering criteria. It is noted in this paper that the noise PDF becomes important only at the un-smooth boundaries in the system. The proposed technique is tested on a synthetic 32 tap FIR filter and on a MIMO algorithm. Results obtained show a marked improvement in the behavior of analytical model with the use of the proposed density distribution shaping algorithm.
- Published
- 2010
- Full Text
- View/download PDF
23. Analytical Approach for Analyzing Quantization Noise Effects on Decision Operators
- Author
-
Romuald Rocher, Olivier Sentieys, Daniel Menard, Karthick Parashar, Energy Efficient Computing ArchItectures with Embedded Reconfigurable Resources (CAIRN), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-ARCHITECTURE (IRISA-D3), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Noise power ,Signal processing ,Theoretical computer science ,Noise (signal processing) ,Quantization (signal processing) ,020208 electrical & electronic engineering ,Analytical technique ,02 engineering and technology ,020202 computer hardware & architecture ,Operator (computer programming) ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0202 electrical engineering, electronic engineering, information engineering ,Fixed-point arithmetic ,Algorithm ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Quadrature amplitude modulation ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
The presence of decision operators has proved to be a serious impediment for a fully analytical noise power estimation technique. This paper proposes a generalized decision operator which can potentially capture the behavior of all possible types of decision operators and provides a fully analytical technique to handle them while performing quantization noise power estimation. The proposed method is applied to BPSK and 16-QAM decision operators. The total error rate and the PDF of the error signal are found to follow the simulation to a great degree of accuracy.
- Published
- 2010
- Full Text
- View/download PDF
24. A Hierarchical Methodology for Word-Length Optimization of Signal Processing Systems
- Author
-
Romuald Rocher, Olivier Sentieys, Karthick Parashar, Daniel Menard, Energy Efficient Computing ArchItectures with Embedded Reconfigurable Resources (CAIRN), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-ARCHITECTURE (IRISA-D3), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), and Menard, Daniel
- Subjects
Divide and conquer algorithms ,Mathematical optimization ,Signal processing ,Propagation of uncertainty ,Optimization problem ,Floating point ,[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing ,Computer science ,020206 networking & telecommunications ,02 engineering and technology ,Fixed point ,020202 computer hardware & architecture ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0202 electrical engineering, electronic engineering, information engineering ,Fixed-point arithmetic ,Communication complexity ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; The problem of converting floating point algorithms to implementation friendly fixed point formats is a formidable challenge. This problem is often solved as an optimization problem where the precision is traded to gain in the implementation cost. The complexity of the problem is known to grow exponentially with more optimizable variables. This paper proposes a divide and conquer technique to solve the growing size of the problem. The approach in this technique is original in the sense that it is formulated from a designers perspective rather than merely attempting to divide and conquer at the algorithmic level. This paper introduces the single noise source model based on which the proposed technique is built. A mixed approach for error propagation is also explained keeping in view of the elements in the circuit that cannot be handled analytically. A W-CDMA RAKE receiver implementation is analysed using this technique. The optimal solution is arrived at with in a span of few iterations.
- Published
- 2010
25. In-Band Full-Duplex Radar-Communication System
- Author
-
François Horlin, Lauri Anttila, Mikko Valkama, Karthick Parashar, Andre Bourdoux, Seyed Ali Hassani, Vesa Lampu, Sofie Pollin, Barend van Liempd, Tampere University, and Electrical Engineering
- Subjects
opportunistic remote sensing ,Computer Networks and Communications ,Computer science ,Remote sensing application ,Doppler radar ,0211 other engineering and technologies ,in-band full duplex (IBFD) ,02 engineering and technology ,Communications system ,Sciences de l'ingénieur ,System model ,law.invention ,law ,Waveform ,Electrical and Electronic Engineering ,Radar ,wireless sensing ,021103 operations research ,Wireless network ,business.industry ,213 Electronic, automation and communications engineering, electronics ,Computer Science Applications ,Bistatic radar ,Control and Systems Engineering ,monostatic Doppler radar ,self-interference (SI) cancelation ,business ,Computer hardware ,Hand and body gesture detection ,Information Systems - Abstract
In-band full-duplex (IBFD) technology is a promising solution to boost the throughput of wireless networks. To bring IBFD to reality, the modem has to cancel the self-interference (SI) signal, which includes the strong direct Tx leakage signal and the weaker reflected Tx signal from the surroundings. Adaptive analog and digital SI cancelation schemes have been proposed. It becomes then interesting to understand, although, how the echoed SI could be exploited for enabling radar functionality while reusing the waveform and the already-existing hardware. This article formulates the monostatic radar system model starting from the communication system model. Beside simulation-based assessment, the performance is also evaluated by an IBFD system prototype, which consists of both analog and digital SI canceller modules, enabling >85 dB Tx-Rx isolation. The system is enhanced with Doppler radar functionality, reusing as much as possible the existing IBFD functional blocks. The experimental result shows the accuracy of the proposed system to measure the velocity of mobile objects at various speeds between 0.2 and 1 m/s while the device is simultaneously served as a node to perform in-band bidirectional communication. This ability suits the proposed system for a broad spectrum of opportunistic remote sensing applications, such as body and hand gesture detection., info:eu-repo/semantics/published
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.