184 results on '"Karpushov, A. N."'
Search Results
2. Beam duct for the 1 MW neutral beam injector on TCV
- Author
-
Toussaint, Matthieu, Coda, Stefano, Dolizy, Frédéric, Duval, Basil, Karpushov, Alexander N., Martin, Yves, and Maurizio, Roberto
- Published
- 2020
- Full Text
- View/download PDF
3. Progress in the development of the ITER baseline scenario in TCV
- Author
-
Labit, Benoit, primary, Sauter, Olivier, additional, Pütterich, Thomas, additional, Bagnato, Filippo, additional, Camenen, Yann, additional, Coda, Stefano, additional, Contré, Cassandre, additional, Coosemans, Reinart, additional, Eriksson, Frida, additional, Février, Olivier, additional, Fransson, Emil, additional, Karpushov, Alexander N, additional, Krutkin, Oleg, additional, Marchioni, Stefano, additional, Merle, Antoine, additional, Pau, Alessandro, additional, Piron, Lidia, additional, Vallar, Matteo, additional, Van Mulders, Simon, additional, and Voitsekhovitch, Irina, additional
- Published
- 2024
- Full Text
- View/download PDF
4. TCV Tokamak Neutron Shielding Upgrade for Dual NBI Operation
- Author
-
Weisen, H., primary, Blanchard, P., additional, Vallar, M., additional, Karpushov, A. N., additional, Dubray, J., additional, Merle, A., additional, Duval, B. P., additional, Cazabonne, J., additional, Testa, D., additional, Elaian, H. Hamac, additional, TCV Team, and the, additional, Žohar, A., additional, Snoj, L., additional, Kos, B., additional, Fortuna, M., additional, Čufar, A., additional, Tesse, F., additional, Fontana, F., additional, Gloor, C., additional, Iannarelli, R., additional, Palacios, H., additional, Tille, C., additional, and Molteni, M., additional
- Published
- 2023
- Full Text
- View/download PDF
5. Commissioning of the heating neutral beam injector on the TCV tokamak
- Author
-
Fasel, Damien, Andrebe, Yanis, Dubray, Jeremie, Karpushov, Alexander N., Kolmogorov, Vyacheslav V., Marletaz, Blaise, Marmillod, Philippe, Muehle, Lukas, Perez, Albert, Shikhovtsev, Igor V., and Siravo, Ugo
- Published
- 2017
- Full Text
- View/download PDF
6. Neutral beam heating on the TCV tokamak
- Author
-
Karpushov, Alexander N., Chavan, René, Coda, Stefano, Davydenko, Vladimir I., Dolizy, Frédéric, Dranitchnikov, Aleksandr N., Duval, Basil P., Ivanov, Alexander A., Fasel, Damien, Fasoli, Ambrogio, Kolmogorov, Vyacheslav V., Lavanchy, Pierre, Llobet, Xavier, Marlétaz, Blaise, Marmillod, Philippe, Martin, Yves, Merle, Antoine, Perez, Albert, Sauter, Olivier, Siravo, Ugo, Shikhovtsev, Igor V., Sorokin, Aleksey V., and Toussaint, Matthieu
- Published
- 2017
- Full Text
- View/download PDF
7. TCV Tokamak Neutron Shielding Upgrade for Dual NBI Operation
- Author
-
Weisen, H., Blanchard, P., Vallar, M., Karpushov, A. N., Dubray, J., Merle, A., Duval, B. P., Cazabonne, J., Testa, D., Elaian, H. Hamac, TCV Team, the, Žohar, A., Snoj, L., Kos, B., Fortuna, M., Čufar, A., Tesse, F., Fontana, F., Gloor, C., Iannarelli, R., Palacios, H., Tille, C., and Molteni, M.
- Abstract
AbstractThe Tokamak à Configuration variable (TCV) is equipped with two neutral beam injection (NBI) systems delivering up to 1.2 MW each for pulse durations of up to 2 s. The first system (NBI1), designed for an injection energy in the range of 25 to 30 keV has been operational since 2016. The existing concrete neutron shielding of the experimental hall proved insufficient for fully protecting human accessible areas, limiting the number of daily plasma pulses using NBI1. The recently commissioned second system (NBI2) is designed for injection synergies in the range 50 to 60 keV. Both systems are tangentially oriented in opposite directions in order to permit experiments with low or no net torque.Calculations with the TRANSP and ORBIS heating codes show that neutron rates from deuterium-deuterium fusion reactions may be as high as 1014 n/s, up to 10 times higher than with the lower energy beam only. This is due both to the ~five times larger beam-plasma neutron rates from the higher energy beam and to an exceptionally high contribution from beam-beam reactions between the opposing beams. The radiation protection policy at the Swiss Plasma Center is that all staff members be considered as members of the general public, limiting the daily personal dose to 4 µSv. This is also the maximum admissible daily dose in any publicly accessible zone, whether occupied or not.Currently, with only the lower energy beam, this limit can be attained in the control room adjacent to the device hall after only five NBI pulses out of a possible 30 daily pulses. To allow for exploitation of the two beams at full specifications, the source side of the existing barite concrete walls of the 15 × 20 × 8 m large TCV hall will be covered with 20-cm-thick polythene (PE) cladding and a ceiling made of 35-cm-thick PE will be added. The total mass of PE will be 200 tons. The usage of PE at this scale for neutron shielding is unprecedented at any fusion research facility.
- Published
- 2024
- Full Text
- View/download PDF
8. Excitation of toroidal Alfvén eigenmodes with counter-current NBI in the TCV tokamak
- Author
-
Vallar, Matteo, primary, Dreval, Mykola, additional, Garcia-Munoz, Manuel, additional, Sharapov, Sergei E, additional, Poley, Jesus, additional, Karpushov, Alexander N, additional, Lauber, Philipp, additional, Mazzi, Samuele, additional, and Porte, Laurie, additional
- Published
- 2023
- Full Text
- View/download PDF
9. Determination of MHD mode structures using soft x-ray diagnostics in TCV
- Author
-
Dreval, M B, primary, Sharapov, S E, additional, Vallar, M, additional, Labit, B, additional, Karpushov, A N, additional, and Garcia-Munoz, M, additional
- Published
- 2023
- Full Text
- View/download PDF
10. Overview of the TCV tokamak experimental programme
- Author
-
Reimerdes, H., Agostini, M., Alessi, E., Alberti, S., Andrebe, Y., Arnichand, H., Balbin, J., Bagnato, F., Baquero-Ruiz, M., Bernert, M., Bin, W., Blanchard, P., Blanken, T. C., Boedo, J. A., Brida, D., Brunner, S., Bogar, C., Bogar, O., Bolzonella, T., Bombarda, F., Bouquey, F., Bowman, C., Brunetti, D., Buermans, J., Bufferand, H., Calacci, L., Camenen, Y., Carli, S., Carnevale, D., Carpanese, F., Causa, F., Cavalier, J., Cavedon, M., Cazabonne, J. A., Cerovsky, J., Chandra, R., Chandrarajan Jayalekshmi, A., Chellaï, O., Chmielewski, P., Choi, D., Ciraolo, G., Classen, I.G.J., Coda, S., Colandrea, C., Dal Molin, A., David, P., de Baar, M.R., Decker, J., Dekeyser, W., De Oliveira, H., Douai, D., Dreval, M., Dunne, M. G., Duval, B. P., Elmore, S., Embreus, O., Eriksson, F., Faitsch, M., Falchetto, G., Farnik, M., Fasoli, A., Fedorczak, N., Felici, F., Février, O., Ficker, O., Fil, A., Fontana, M., Fransson, E., Frassinetti, L., Furno, I., Gahle, D. S., Galassi, D., Galazka, K., Galperti, C., Garavaglia, S., Garcia-Munoz, M., Geiger, B., Giacomin, M., Giruzzi, G., Gobbin, M., Golfinopoulos, T., Goodman, T., Gorno, S., Granucci, G., Graves, J. P., Griener, M., Gruca, M., Gyergyek, T., Haelterman, R., Hakola, A., Han, W., Happel, T., Harrer, G., Harrison, J. R., Henderson, S., Hogeweij, G. M.D., Hogge, J. P., Hoppe, M., Horacek, J., Huang, Z., Iantchenko, A., Innocente, P., Insulander Björk, K., Ionita-Schrittweiser, C., Isliker, H., Jardin, A., Jaspers, R.J.E., Karimov, R., Karpushov, A. N., Kazakov, Y., Komm, M., Kong, M., Kovacic, J., Krutkin, O., Kudlacek, O., Kumar, U., Kwiatkowski, R., Labit, B., Laguardia, L., Lammers, J.T., Laribi, E., Laszynska, E., Lazaros, A., Linder, O., Linehan, B., Lipschultz, B., Llobet, X., Loizu, J., Lunt, T., Macusova, E., Marandet, Y., Maraschek, M., Marceca, G., Marchetto, C., Marchioni, S., Marmar, E. S., Martin, Y., Martinelli, L., Matos, F., Maurizio, R., Mayoral, M. L., Mazon, D., Menkovski, V., Merle, A., Merlo, G., Meyer, H., Mikszuta-Michalik, K., Molina Cabrera, P. A., Morales, J., Moret, J. M., Moro, A., Moulton, D., Muhammed, H., Myatra, O., Mykytchuk, D., Napoli, F., Nem, R.D., Nielsen, A. H., Nocente, M., Nowak, S., Offeddu, N., Olsen, J., Orsitto, F. P., Pan, O., Papp, G., Pau, A., Perek, A., Pesamosca, F., Peysson, Y., Pigatto, L., Piron, C., Poradzinski, M., Porte, L., Pütterich, T., Rabinski, M., Raj, H., Rasmussen, J. J., Rattá, G. A., Ravensbergen, T., Ricci, D., Ricci, P., Rispoli, N., Riva, F., Rivero-Rodriguez, J. F., Salewski, M., Sauter, O., Schmidt, B. S., Schrittweiser, R., Sharapov, S., Sheikh, U. A., Sieglin, B., Silva, M., Smolders, A., Snicker, A., Sozzi, C., Spolaore, M., Stagni, A., Stipani, L., Sun, G., Tala, T., Tamain, P., Tanaka, K., Tema Biwole, A., Terranova, D., Terry, J. L., Testa, D., Theiler, C., Thornton, A., Thrysøe, A., Torreblanca, H., Tsui, C. K., Vaccaro, D., Vallar, M., van Berkel, M., Van Eester, D., van Kampen, R.J.R., van Mulders, S., Verhaegh, K., Verhaeghe, T., Vianello, N., Villone, F., Viezzer, E., Vincent, B., Voitsekhovitch, I., Vu, N. M.T., Walkden, N., Wauters, T., Weisen, H., Wendler, N., Wensing, M., Widmer, F., Wiesen, S., Wischmeier, M., Wijkamp, T.A., Wünderlich, D., Wüthrich, C., Yanovskiy, V., Zebrowski, J., Reimerdes, H., Agostini, M., Alessi, E., Alberti, S., Andrebe, Y., Arnichand, H., Balbin, J., Bagnato, F., Baquero-Ruiz, M., Bernert, M., Bin, W., Blanchard, P., Blanken, T. C., Boedo, J. A., Brida, D., Brunner, S., Bogar, C., Bogar, O., Bolzonella, T., Bombarda, F., Bouquey, F., Bowman, C., Brunetti, D., Buermans, J., Bufferand, H., Calacci, L., Camenen, Y., Carli, S., Carnevale, D., Carpanese, F., Causa, F., Cavalier, J., Cavedon, M., Cazabonne, J. A., Cerovsky, J., Chandra, R., Chandrarajan Jayalekshmi, A., Chellaï, O., Chmielewski, P., Choi, D., Ciraolo, G., Classen, I.G.J., Coda, S., Colandrea, C., Dal Molin, A., David, P., de Baar, M.R., Decker, J., Dekeyser, W., De Oliveira, H., Douai, D., Dreval, M., Dunne, M. G., Duval, B. P., Elmore, S., Embreus, O., Eriksson, F., Faitsch, M., Falchetto, G., Farnik, M., Fasoli, A., Fedorczak, N., Felici, F., Février, O., Ficker, O., Fil, A., Fontana, M., Fransson, E., Frassinetti, L., Furno, I., Gahle, D. S., Galassi, D., Galazka, K., Galperti, C., Garavaglia, S., Garcia-Munoz, M., Geiger, B., Giacomin, M., Giruzzi, G., Gobbin, M., Golfinopoulos, T., Goodman, T., Gorno, S., Granucci, G., Graves, J. P., Griener, M., Gruca, M., Gyergyek, T., Haelterman, R., Hakola, A., Han, W., Happel, T., Harrer, G., Harrison, J. R., Henderson, S., Hogeweij, G. M.D., Hogge, J. P., Hoppe, M., Horacek, J., Huang, Z., Iantchenko, A., Innocente, P., Insulander Björk, K., Ionita-Schrittweiser, C., Isliker, H., Jardin, A., Jaspers, R.J.E., Karimov, R., Karpushov, A. N., Kazakov, Y., Komm, M., Kong, M., Kovacic, J., Krutkin, O., Kudlacek, O., Kumar, U., Kwiatkowski, R., Labit, B., Laguardia, L., Lammers, J.T., Laribi, E., Laszynska, E., Lazaros, A., Linder, O., Linehan, B., Lipschultz, B., Llobet, X., Loizu, J., Lunt, T., Macusova, E., Marandet, Y., Maraschek, M., Marceca, G., Marchetto, C., Marchioni, S., Marmar, E. S., Martin, Y., Martinelli, L., Matos, F., Maurizio, R., Mayoral, M. L., Mazon, D., Menkovski, V., Merle, A., Merlo, G., Meyer, H., Mikszuta-Michalik, K., Molina Cabrera, P. A., Morales, J., Moret, J. M., Moro, A., Moulton, D., Muhammed, H., Myatra, O., Mykytchuk, D., Napoli, F., Nem, R.D., Nielsen, A. H., Nocente, M., Nowak, S., Offeddu, N., Olsen, J., Orsitto, F. P., Pan, O., Papp, G., Pau, A., Perek, A., Pesamosca, F., Peysson, Y., Pigatto, L., Piron, C., Poradzinski, M., Porte, L., Pütterich, T., Rabinski, M., Raj, H., Rasmussen, J. J., Rattá, G. A., Ravensbergen, T., Ricci, D., Ricci, P., Rispoli, N., Riva, F., Rivero-Rodriguez, J. F., Salewski, M., Sauter, O., Schmidt, B. S., Schrittweiser, R., Sharapov, S., Sheikh, U. A., Sieglin, B., Silva, M., Smolders, A., Snicker, A., Sozzi, C., Spolaore, M., Stagni, A., Stipani, L., Sun, G., Tala, T., Tamain, P., Tanaka, K., Tema Biwole, A., Terranova, D., Terry, J. L., Testa, D., Theiler, C., Thornton, A., Thrysøe, A., Torreblanca, H., Tsui, C. K., Vaccaro, D., Vallar, M., van Berkel, M., Van Eester, D., van Kampen, R.J.R., van Mulders, S., Verhaegh, K., Verhaeghe, T., Vianello, N., Villone, F., Viezzer, E., Vincent, B., Voitsekhovitch, I., Vu, N. M.T., Walkden, N., Wauters, T., Weisen, H., Wendler, N., Wensing, M., Widmer, F., Wiesen, S., Wischmeier, M., Wijkamp, T.A., Wünderlich, D., Wüthrich, C., Yanovskiy, V., and Zebrowski, J.
- Abstract
The tokamak à configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include Te/Ti ∼1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
- Published
- 2022
11. Overview of the TCV tokamak experimental programme
- Author
-
Reimerdes, H, Agostini, M, Alessi, E, Alberti, S, Andrebe, Y, Arnichand, H, Balbin, J, Bagnato, F, Baquero-Ruiz, M, Bernert, M, Bin, W, Blanchard, P, Blanken, T, Boedo, J, Brida, D, Brunner, S, Bogar, C, Bogar, O, Bolzonella, T, Bombarda, F, Bouquey, F, Bowman, C, Brunetti, D, Buermans, J, Bufferand, H, Calacci, L, Camenen, Y, Carli, S, Carnevale, D, Carpanese, F, Causa, F, Cavalier, J, Cavedon, M, Cazabonne, J, Cerovsky, J, Chandra, R, Chandrarajan Jayalekshmi, A, Chellai, O, Chmielewski, P, Choi, D, Ciraolo, G, Classen, I, Coda, S, Colandrea, C, Dal Molin, A, David, P, De Baar, M, Decker, J, Dekeyser, W, De Oliveira, H, Douai, D, Dreval, M, Dunne, M, Duval, B, Elmore, S, Embreus, O, Eriksson, F, Faitsch, M, Falchetto, G, Farnik, M, Fasoli, A, Fedorczak, N, Felici, F, Fevrier, O, Ficker, O, Fil, A, Fontana, M, Fransson, E, Frassinetti, L, Furno, I, Gahle, D, Galassi, D, Galazka, K, Galperti, C, Garavaglia, S, Garcia-Munoz, M, Geiger, B, Giacomin, M, Giruzzi, G, Gobbin, M, Golfinopoulos, T, Goodman, T, Gorno, S, Granucci, G, Graves, J, Griener, M, Gruca, M, Gyergyek, T, Haelterman, R, Hakola, A, Han, W, Happel, T, Harrer, G, Harrison, J, Henderson, S, Hogeweij, G, Hogge, J, Hoppe, M, Horacek, J, Huang, Z, Iantchenko, A, Innocente, P, Insulander Bjork, K, Ionita-Schrittweiser, C, Isliker, H, Jardin, A, Jaspers, R, Karimov, R, Karpushov, A, Kazakov, Y, Komm, M, Kong, M, Kovacic, J, Krutkin, O, Kudlacek, O, Kumar, U, Kwiatkowski, R, Labit, B, Laguardia, L, Lammers, J, Laribi, E, Laszynska, E, Lazaros, A, Linder, O, Linehan, B, Lipschultz, B, Llobet, X, Loizu, J, Lunt, T, Macusova, E, Marandet, Y, Maraschek, M, Marceca, G, Marchetto, C, Marchioni, S, Marmar, E, Martin, Y, Martinelli, L, Matos, F, Maurizio, R, Mayoral, M, Mazon, D, Menkovski, V, Merle, A, Merlo, G, Meyer, H, Mikszuta-Michalik, K, Molina Cabrera, P, Morales, J, Moret, J, Moro, A, Moulton, D, Muhammed, H, Myatra, O, Mykytchuk, D, Napoli, F, Nem, R, Nielsen, A, Nocente, M, Nowak, S, Offeddu, N, Olsen, J, Orsitto, F, Pan, O, Papp, G, Pau, A, Perek, A, Pesamosca, F, Peysson, Y, Pigatto, L, Piron, C, Poradzinski, M, Porte, L, Putterich, T, Rabinski, M, Raj, H, Rasmussen, J, Ratta, G, Ravensbergen, T, Ricci, D, Ricci, P, Rispoli, N, Riva, F, Rivero-Rodriguez, J, Salewski, M, Sauter, O, Schmidt, B, Schrittweiser, R, Sharapov, S, Sheikh, U, Sieglin, B, Silva, M, Smolders, A, Snicker, A, Sozzi, C, Spolaore, M, Stagni, A, Stipani, L, Sun, G, Tala, T, Tamain, P, Tanaka, K, Tema Biwole, A, Terranova, D, Terry, J, Testa, D, Theiler, C, Thornton, A, Thrysoe, A, Torreblanca, H, Tsui, C, Vaccaro, D, Vallar, M, Van Berkel, M, Van Eester, D, Van Kampen, R, Van Mulders, S, Verhaegh, K, Verhaeghe, T, Vianello, N, Villone, F, Viezzer, E, Vincent, B, Voitsekhovitch, I, Vu, N, Walkden, N, Wauters, T, Weisen, H, Wendler, N, Wensing, M, Widmer, F, Wiesen, S, Wischmeier, M, Wijkamp, T, Wunderlich, D, Wuthrich, C, Yanovskiy, V, Zebrowski, J, Reimerdes H., Agostini M., Alessi E., Alberti S., Andrebe Y., Arnichand H., Balbin J., Bagnato F., Baquero-Ruiz M., Bernert M., Bin W., Blanchard P., Blanken T. C., Boedo J. A., Brida D., Brunner S., Bogar C., Bogar O., Bolzonella T., Bombarda F., Bouquey F., Bowman C., Brunetti D., Buermans J., Bufferand H., Calacci L., Camenen Y., Carli S., Carnevale D., Carpanese F., Causa F., Cavalier J., Cavedon M., Cazabonne J. A., Cerovsky J., Chandra R., Chandrarajan Jayalekshmi A., Chellai O., Chmielewski P., Choi D., Ciraolo G., Classen I. G. J., Coda S., Colandrea C., Dal Molin A., David P., De Baar M. R., Decker J., Dekeyser W., De Oliveira H., Douai D., Dreval M., Dunne M. G., Duval B. P., Elmore S., Embreus O., Eriksson F., Faitsch M., Falchetto G., Farnik M., Fasoli A., Fedorczak N., Felici F., Fevrier O., Ficker O., Fil A., Fontana M., Fransson E., Frassinetti L., Furno I., Gahle D. S., Galassi D., Galazka K., Galperti C., Garavaglia S., Garcia-Munoz M., Geiger B., Giacomin M., Giruzzi G., Gobbin M., Golfinopoulos T., Goodman T., Gorno S., Granucci G., Graves J. P., Griener M., Gruca M., Gyergyek T., Haelterman R., Hakola A., Han W., Happel T., Harrer G., Harrison J. R., Henderson S., Hogeweij G. M. D., Hogge J. -P., Hoppe M., Horacek J., Huang Z., Iantchenko A., Innocente P., Insulander Bjork K., Ionita-Schrittweiser C., Isliker H., Jardin A., Jaspers R. J. E., Karimov R., Karpushov A. N., Kazakov Y., Komm M., Kong M., Kovacic J., Krutkin O., Kudlacek O., Kumar U., Kwiatkowski R., Labit B., Laguardia L., Lammers J. T., Laribi E., Laszynska E., Lazaros A., Linder O., Linehan B., Lipschultz B., Llobet X., Loizu J., Lunt T., Macusova E., Marandet Y., Maraschek M., Marceca G., Marchetto C., Marchioni S., Marmar E. S., Martin Y., Martinelli L., Matos F., Maurizio R., Mayoral M. -L., Mazon D., Menkovski V., Merle A., Merlo G., Meyer H., Mikszuta-Michalik K., Molina Cabrera P. A., Morales J., Moret J. -M., Moro A., Moulton D., Muhammed H., Myatra O., Mykytchuk D., Napoli F., Nem R. D., Nielsen A. H., Nocente M., Nowak S., Offeddu N., Olsen J., Orsitto F. P., Pan O., Papp G., Pau A., Perek A., Pesamosca F., Peysson Y., Pigatto L., Piron C., Poradzinski M., Porte L., Putterich T., Rabinski M., Raj H., Rasmussen J. J., Ratta G. A., Ravensbergen T., Ricci D., Ricci P., Rispoli N., Riva F., Rivero-Rodriguez J. F., Salewski M., Sauter O., Schmidt B. S., Schrittweiser R., Sharapov S., Sheikh U. A., Sieglin B., Silva M., Smolders A., Snicker A., Sozzi C., Spolaore M., Stagni A., Stipani L., Sun G., Tala T., Tamain P., Tanaka K., Tema Biwole A., Terranova D., Terry J. L., Testa D., Theiler C., Thornton A., Thrysoe A., Torreblanca H., Tsui C. K., Vaccaro D., Vallar M., Van Berkel M., Van Eester D., Van Kampen R. J. R., Van Mulders S., Verhaegh K., Verhaeghe T., Vianello N., Villone F., Viezzer E., Vincent B., Voitsekhovitch I., Vu N. M. T., Walkden N., Wauters T., Weisen H., Wendler N., Wensing M., Widmer F., Wiesen S., Wischmeier M., Wijkamp T. A., Wunderlich D., Wuthrich C., Yanovskiy V., Zebrowski J., Reimerdes, H, Agostini, M, Alessi, E, Alberti, S, Andrebe, Y, Arnichand, H, Balbin, J, Bagnato, F, Baquero-Ruiz, M, Bernert, M, Bin, W, Blanchard, P, Blanken, T, Boedo, J, Brida, D, Brunner, S, Bogar, C, Bogar, O, Bolzonella, T, Bombarda, F, Bouquey, F, Bowman, C, Brunetti, D, Buermans, J, Bufferand, H, Calacci, L, Camenen, Y, Carli, S, Carnevale, D, Carpanese, F, Causa, F, Cavalier, J, Cavedon, M, Cazabonne, J, Cerovsky, J, Chandra, R, Chandrarajan Jayalekshmi, A, Chellai, O, Chmielewski, P, Choi, D, Ciraolo, G, Classen, I, Coda, S, Colandrea, C, Dal Molin, A, David, P, De Baar, M, Decker, J, Dekeyser, W, De Oliveira, H, Douai, D, Dreval, M, Dunne, M, Duval, B, Elmore, S, Embreus, O, Eriksson, F, Faitsch, M, Falchetto, G, Farnik, M, Fasoli, A, Fedorczak, N, Felici, F, Fevrier, O, Ficker, O, Fil, A, Fontana, M, Fransson, E, Frassinetti, L, Furno, I, Gahle, D, Galassi, D, Galazka, K, Galperti, C, Garavaglia, S, Garcia-Munoz, M, Geiger, B, Giacomin, M, Giruzzi, G, Gobbin, M, Golfinopoulos, T, Goodman, T, Gorno, S, Granucci, G, Graves, J, Griener, M, Gruca, M, Gyergyek, T, Haelterman, R, Hakola, A, Han, W, Happel, T, Harrer, G, Harrison, J, Henderson, S, Hogeweij, G, Hogge, J, Hoppe, M, Horacek, J, Huang, Z, Iantchenko, A, Innocente, P, Insulander Bjork, K, Ionita-Schrittweiser, C, Isliker, H, Jardin, A, Jaspers, R, Karimov, R, Karpushov, A, Kazakov, Y, Komm, M, Kong, M, Kovacic, J, Krutkin, O, Kudlacek, O, Kumar, U, Kwiatkowski, R, Labit, B, Laguardia, L, Lammers, J, Laribi, E, Laszynska, E, Lazaros, A, Linder, O, Linehan, B, Lipschultz, B, Llobet, X, Loizu, J, Lunt, T, Macusova, E, Marandet, Y, Maraschek, M, Marceca, G, Marchetto, C, Marchioni, S, Marmar, E, Martin, Y, Martinelli, L, Matos, F, Maurizio, R, Mayoral, M, Mazon, D, Menkovski, V, Merle, A, Merlo, G, Meyer, H, Mikszuta-Michalik, K, Molina Cabrera, P, Morales, J, Moret, J, Moro, A, Moulton, D, Muhammed, H, Myatra, O, Mykytchuk, D, Napoli, F, Nem, R, Nielsen, A, Nocente, M, Nowak, S, Offeddu, N, Olsen, J, Orsitto, F, Pan, O, Papp, G, Pau, A, Perek, A, Pesamosca, F, Peysson, Y, Pigatto, L, Piron, C, Poradzinski, M, Porte, L, Putterich, T, Rabinski, M, Raj, H, Rasmussen, J, Ratta, G, Ravensbergen, T, Ricci, D, Ricci, P, Rispoli, N, Riva, F, Rivero-Rodriguez, J, Salewski, M, Sauter, O, Schmidt, B, Schrittweiser, R, Sharapov, S, Sheikh, U, Sieglin, B, Silva, M, Smolders, A, Snicker, A, Sozzi, C, Spolaore, M, Stagni, A, Stipani, L, Sun, G, Tala, T, Tamain, P, Tanaka, K, Tema Biwole, A, Terranova, D, Terry, J, Testa, D, Theiler, C, Thornton, A, Thrysoe, A, Torreblanca, H, Tsui, C, Vaccaro, D, Vallar, M, Van Berkel, M, Van Eester, D, Van Kampen, R, Van Mulders, S, Verhaegh, K, Verhaeghe, T, Vianello, N, Villone, F, Viezzer, E, Vincent, B, Voitsekhovitch, I, Vu, N, Walkden, N, Wauters, T, Weisen, H, Wendler, N, Wensing, M, Widmer, F, Wiesen, S, Wischmeier, M, Wijkamp, T, Wunderlich, D, Wuthrich, C, Yanovskiy, V, Zebrowski, J, Reimerdes H., Agostini M., Alessi E., Alberti S., Andrebe Y., Arnichand H., Balbin J., Bagnato F., Baquero-Ruiz M., Bernert M., Bin W., Blanchard P., Blanken T. C., Boedo J. A., Brida D., Brunner S., Bogar C., Bogar O., Bolzonella T., Bombarda F., Bouquey F., Bowman C., Brunetti D., Buermans J., Bufferand H., Calacci L., Camenen Y., Carli S., Carnevale D., Carpanese F., Causa F., Cavalier J., Cavedon M., Cazabonne J. A., Cerovsky J., Chandra R., Chandrarajan Jayalekshmi A., Chellai O., Chmielewski P., Choi D., Ciraolo G., Classen I. G. J., Coda S., Colandrea C., Dal Molin A., David P., De Baar M. R., Decker J., Dekeyser W., De Oliveira H., Douai D., Dreval M., Dunne M. G., Duval B. P., Elmore S., Embreus O., Eriksson F., Faitsch M., Falchetto G., Farnik M., Fasoli A., Fedorczak N., Felici F., Fevrier O., Ficker O., Fil A., Fontana M., Fransson E., Frassinetti L., Furno I., Gahle D. S., Galassi D., Galazka K., Galperti C., Garavaglia S., Garcia-Munoz M., Geiger B., Giacomin M., Giruzzi G., Gobbin M., Golfinopoulos T., Goodman T., Gorno S., Granucci G., Graves J. P., Griener M., Gruca M., Gyergyek T., Haelterman R., Hakola A., Han W., Happel T., Harrer G., Harrison J. R., Henderson S., Hogeweij G. M. D., Hogge J. -P., Hoppe M., Horacek J., Huang Z., Iantchenko A., Innocente P., Insulander Bjork K., Ionita-Schrittweiser C., Isliker H., Jardin A., Jaspers R. J. E., Karimov R., Karpushov A. N., Kazakov Y., Komm M., Kong M., Kovacic J., Krutkin O., Kudlacek O., Kumar U., Kwiatkowski R., Labit B., Laguardia L., Lammers J. T., Laribi E., Laszynska E., Lazaros A., Linder O., Linehan B., Lipschultz B., Llobet X., Loizu J., Lunt T., Macusova E., Marandet Y., Maraschek M., Marceca G., Marchetto C., Marchioni S., Marmar E. S., Martin Y., Martinelli L., Matos F., Maurizio R., Mayoral M. -L., Mazon D., Menkovski V., Merle A., Merlo G., Meyer H., Mikszuta-Michalik K., Molina Cabrera P. A., Morales J., Moret J. -M., Moro A., Moulton D., Muhammed H., Myatra O., Mykytchuk D., Napoli F., Nem R. D., Nielsen A. H., Nocente M., Nowak S., Offeddu N., Olsen J., Orsitto F. P., Pan O., Papp G., Pau A., Perek A., Pesamosca F., Peysson Y., Pigatto L., Piron C., Poradzinski M., Porte L., Putterich T., Rabinski M., Raj H., Rasmussen J. J., Ratta G. A., Ravensbergen T., Ricci D., Ricci P., Rispoli N., Riva F., Rivero-Rodriguez J. F., Salewski M., Sauter O., Schmidt B. S., Schrittweiser R., Sharapov S., Sheikh U. A., Sieglin B., Silva M., Smolders A., Snicker A., Sozzi C., Spolaore M., Stagni A., Stipani L., Sun G., Tala T., Tamain P., Tanaka K., Tema Biwole A., Terranova D., Terry J. L., Testa D., Theiler C., Thornton A., Thrysoe A., Torreblanca H., Tsui C. K., Vaccaro D., Vallar M., Van Berkel M., Van Eester D., Van Kampen R. J. R., Van Mulders S., Verhaegh K., Verhaeghe T., Vianello N., Villone F., Viezzer E., Vincent B., Voitsekhovitch I., Vu N. M. T., Walkden N., Wauters T., Weisen H., Wendler N., Wensing M., Widmer F., Wiesen S., Wischmeier M., Wijkamp T. A., Wunderlich D., Wuthrich C., Yanovskiy V., and Zebrowski J.
- Abstract
The tokamak à configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include Te/Ti ∼1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
- Published
- 2022
12. Overview of the TCV tokamak experimental programme
- Author
-
Reimerdes, H. Agostini, M. Alessi, E. Alberti, S. and Andrebe, Y. Arnichand, H. Balbin, J. Bagnato, F. and Baquero-Ruiz, M. Bernert, M. Bin, W. Blanchard, P. and Blanken, T. C. Boedo, J. A. Brida, D. Brunner, S. Bogar, C. Bogar, O. Bolzonella, T. Bombarda, F. Bouquey, F. and Bowman, C. Brunetti, D. Buermans, J. Bufferand, H. and Calacci, L. Camenen, Y. Carli, S. Carnevale, D. and Carpanese, F. Causa, F. Cavalier, J. Cavedon, M. and Cazabonne, J. A. Cerovsky, J. Chandra, R. Jayalekshmi, A. Chandrarajan Chellai, O. Chmielewski, P. Choi, D. and Ciraolo, G. Classen, I. G. J. Coda, S. Colandrea, C. Dal Molin, A. David, P. de Baar, M. R. Decker, J. Dekeyser, W. de Oliveira, H. Douai, D. Dreval, M. Dunne, M. G. and Duval, B. P. Elmore, S. Embreus, O. Eriksson, F. and Faitsch, M. Falchetto, G. Farnik, M. Fasoli, A. and Fedorczak, N. Felici, F. Fevrier, O. Ficker, O. Fil, A. and Fontana, M. Fransson, E. Frassinetti, L. Furno, I and Gahle, D. S. Galassi, D. Galazka, K. Galperti, C. and Garavaglia, S. Garcia-Munoz, M. Geiger, B. Giacomin, M. and Giruzzi, G. Gobbin, M. Golfinopoulos, T. Goodman, T. and Gorno, S. Granucci, G. Graves, J. P. Griener, M. Gruca, M. Gyergyek, T. Haelterman, R. Hakola, A. Han, W. and Happel, T. Harrer, G. Harrison, J. R. Henderson, S. and Hogeweij, G. M. D. Hogge, J-P Hoppe, M. Horacek, J. and Huang, Z. Iantchenko, A. Innocente, P. Bjork, K. Insulander and Ionita-Schrittweiser, C. Isliker, H. Jardin, A. Jaspers, R. J. E. Karimov, R. Karpushov, A. N. Kazakov, Y. Komm, M. Kong, M. Kovacic, J. Krutkin, O. Kudlacek, O. and Kumar, U. Kwiatkowski, R. Labit, B. Laguardia, L. and Lammers, J. T. Laribi, E. Laszynska, E. Lazaros, A. and Linder, O. Linehan, B. Lipschultz, B. Llobet, X. Loizu, J. Lunt, T. Macusova, E. Marandet, Y. Maraschek, M. and Marceca, G. Marchetto, C. Marchioni, S. Marmar, E. S. and Martin, Y. Martinelli, L. Matos, F. Maurizio, R. and Mayoral, M-L Mazon, D. Menkovski, V Merle, A. Merlo, G. and Meyer, H. Mikszuta-Michalik, K. Cabrera, P. A. Molina and Morales, J. Moret, J-M Moro, A. Moulton, D. Muhammed, H. and Myatra, O. Mykytchuk, D. Napoli, F. Nem, R. D. and Nielsen, A. H. Nocente, M. Nowak, S. Offeddu, N. Olsen, J. Orsitto, F. P. Pan, O. Papp, G. Pau, A. Perek, A. and Pesamosca, F. Peysson, Y. Pigatto, L. Piron, C. and Poradzinski, M. Porte, L. Putterich, T. Rabinski, M. and Raj, H. Rasmussen, J. J. Ratta, G. A. Ravensbergen, T. and Ricci, D. Ricci, P. Rispoli, N. Riva, F. and Rivero-Rodriguez, J. F. Salewski, M. Sauter, O. Schmidt, B. S. Schrittweiser, R. Sharapov, S. Sheikh, U. A. Sieglin, B. Silva, M. Smolders, A. Snicker, A. Sozzi, C. and Spolaore, M. Stagni, A. Stipani, L. Sun, G. Tala, T. and Tamain, P. Tanaka, K. Biwole, A. Tema Terranova, D. and Terry, J. L. Testa, D. Theiler, C. Thornton, A. Thrysoe, A. Torreblanca, H. Tsui, C. K. Vaccaro, D. Vallar, M. and van Berkel, M. Van Eester, D. van Kampen, R. J. R. Van Mulders, S. Verhaegh, K. Verhaeghe, T. Vianello, N. and Villone, F. Viezzer, E. Vincent, B. Voitsekhovitch, I and Vu, N. M. T. Walkden, N. Wauters, T. Weisen, H. Wendler, N. Wensing, M. Widmer, F. Wiesen, S. Wischmeier, M. and Wijkamp, T. A. Wunderlich, D. Wuthrich, C. Yanovskiy, V and Zebrowski, J. EUROfusion MST1 Team
- Abstract
The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with `small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
- Published
- 2022
13. A scoping study of the application of neutral beam heating on the TCV tokamak
- Author
-
Karpushov, Alexander N., Duval, Basil P., Chavan, René, Fable, Emiliano, Mayor, Jean-Michel, Sauter, Olivier, and Weisen, Henri
- Published
- 2011
- Full Text
- View/download PDF
14. Modelling of sawtooth-induced fast ion transport in positive and negative triangularity in TCV
- Author
-
Vallar, Matteo, primary, Podesta, Mario, additional, Baquero-Ruiz, Marcelo, additional, Bonofiglo, Phillip, additional, Duval, Basil P, additional, Karpushov, Alexander N, additional, Merle, Antoine, additional, Mykytchuk, Dmytry, additional, Sauter, Olivier, additional, Stipani, Lorenzo, additional, and Testa, Duccio S, additional
- Published
- 2021
- Full Text
- View/download PDF
15. The diagnostic neutral beam injector with arc-discharge plasma source on the TCV Tokamak
- Author
-
Karpushov, Alexander N., Andrebe, Yanis, Duval, Basil P., and Bortolon, Alessandro
- Published
- 2009
- Full Text
- View/download PDF
16. Observation of Alfvén Eigenmodes Driven by Off-axis Neutral Beam Injection in the TCV Tokamak
- Author
-
Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear, European Commission (EC), Geiger, B., Karpushov, A. N., Lauber, P., Sharapov, S., Dreval, M., Bagnato, F., Baquero Ruiz, M., Dal Molin, A., Duval, B. P., García Muñoz, Manuel, Marini, C., Nocente, M., Sauter, O., Stipani, L., Testa, D., Vallar, M., Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear, European Commission (EC), Geiger, B., Karpushov, A. N., Lauber, P., Sharapov, S., Dreval, M., Bagnato, F., Baquero Ruiz, M., Dal Molin, A., Duval, B. P., García Muñoz, Manuel, Marini, C., Nocente, M., Sauter, O., Stipani, L., Testa, D., and Vallar, M.
- Abstract
Fast-particle driven Alfvén Eigenmodes have been observed in low-collisionality discharges with off-axis neutral beam injection (NBI), electron cyclotron resonance heating (ECRH) and a reduced toroidal magnetic field. During NBI and ECRH, toroidicity induced Alfvén Eigenmodes (TAEs) appear in frequency bands close to 200 kHz and energetic-particle-induced geodesic acoustic modes (EGAMs) are observed at about 40 and 80 kHz. When turning off ECRH in the experiment, those beam-driven modes disappear which can be explained by a modification of the fast-ion slowing down distribution. In contrast, coherent fluctuations close to the frequency of the beam-driven TAEs are present throughout the experiment. The modes are even observed during ohmic plasma conditions, which clearly demonstrates that they are not caused by fast particles and suggests an alternative drive, such as turbulence. The mode-induced fast-ion transport has been found to be weak and marginal in terms of the fast-ion diagnostic sensitivities. Measurements of the plasma stored energy, neutron rates, neutral particle fluxes and fast-ion D-alpha spectroscopy show good agreement with neoclassical modelling results from TRANSP. This is further supported by a similarly good agreement between measurement and modelling in cases with and without ECRH and therefore with and without the modes. Instead, a significant level of charge exchange losses are predicted and observed which generate a bump-on-tail fast-ion distribution function that can provide the necessary free energy to EGAMs.
- Published
- 2020
17. Observation of Alfvén Eigenmodes driven by off-axis neutral beam injection in the TCV tokamak
- Author
-
Geiger, B, Karpushov, A, Lauber, P, Sharapov, S, Dreval, M, Bagnato, F, Baquero-Ruiz, M, Dal Molin, A, Duval, B, Garcia-Munoz, M, Marini, C, Nocente, M, Sauter, O, Stipani, L, Testa, D, Vallar, M, Geiger B., Karpushov A. N., Lauber P., Sharapov S., Dreval M., Bagnato F., Baquero-Ruiz M., Dal Molin A., Duval B. P., Garcia-Munoz M., Marini C., Nocente M., Sauter O., Stipani L., Testa D., Vallar M., Geiger, B, Karpushov, A, Lauber, P, Sharapov, S, Dreval, M, Bagnato, F, Baquero-Ruiz, M, Dal Molin, A, Duval, B, Garcia-Munoz, M, Marini, C, Nocente, M, Sauter, O, Stipani, L, Testa, D, Vallar, M, Geiger B., Karpushov A. N., Lauber P., Sharapov S., Dreval M., Bagnato F., Baquero-Ruiz M., Dal Molin A., Duval B. P., Garcia-Munoz M., Marini C., Nocente M., Sauter O., Stipani L., Testa D., and Vallar M.
- Abstract
Fast-particle driven Alfvén Eigenmodes have been observed in low-collisionality discharges with off-axis neutral beam injection (NBI), electron cyclotron resonance heating (ECRH) and a reduced toroidal magnetic field. During NBI and ECRH, toroidicity induced Alfvén Eigenmodes (TAEs) appear in frequency bands close to 200 kHz and energetic-particle-induced geodesic acoustic modes (EGAMs) are observed at about 40 and 80 kHz. When turning off ECRH in the experiment, those beam-driven modes disappear which can be explained by a modification of the fast-ion slowing down distribution. In contrast, coherent fluctuations close to the frequency of the beam-driven TAEs are present throughout the experiment. The modes are even observed during ohmic plasma conditions, which clearly demonstrates that they are not caused by fast particles and suggests an alternative drive, such as turbulence. The mode-induced fast-ion transport has been found to be weak and marginal in terms of the fast-ion diagnostic sensitivities. Measurements of the plasma stored energy, neutron rates, neutral particle fluxes and fast-ion D-alpha spectroscopy show good agreement with neoclassical modelling results from TRANSP. This is further supported by a similarly good agreement between measurement and modelling in cases with and without ECRH and therefore with and without the modes. Instead, a significant level of charge exchange losses are predicted and observed which generate a bump-on-tail fast-ion distribution function that can provide the necessary free energy to EGAMs.
- Published
- 2020
18. Conducting and reflecting properties of thin metal films
- Author
-
Antonets, I. V., Kotov, L. N., Nekipelov, S. V., and Karpushov, E. N.
- Published
- 2004
- Full Text
- View/download PDF
19. Dynamics of ion heating in a gas-dynamic trap during neutral beam injection
- Author
-
Zuev, A. A., Ivanov, A. A., Karpushov, A. N., Kolesnikov, E. Yu., Murakhtin, S. V., and Strogalova, S. L.
- Published
- 2002
- Full Text
- View/download PDF
20. Progress in modelling fast-ion D-alpha spectra and neutral particle analyzer fluxes using FIDASIM
- Author
-
Geiger, B., primary, Stagner, L., additional, Heidbrink, W.W., additional, Dux, R., additional, Fischer, R., additional, Fujiwara, Y., additional, Garcia, A.V., additional, Jacobsen, A. S., additional, Jansen van Vuuren, A., additional, Karpushov, A. N., additional, Liu, D., additional, Schneider, P. A., additional, Sfiligoi, I., additional, Zs. Poloskei, P., additional, and Weiland, M., additional
- Published
- 2020
- Full Text
- View/download PDF
21. Update of ion-optical system of neutral beam of Tokamak à Configuration Variable
- Author
-
Sorokin, A. V., primary, Akhmetov, T. D., additional, Brul, A. V., additional, Davydenko, V. I., additional, Ivanov, A. A., additional, Karpushov, A. N., additional, Mishagin, V. V., additional, and Shikhovtsev, I. V., additional
- Published
- 2020
- Full Text
- View/download PDF
22. Two steps towards the realization of fusion: New plasma configurations in the TCV tokamak and its ongoing upgrades
- Author
-
Martin Yves, Duval Basil P., Karpushov Alexander N., Labit Benoit, and Reimerdes Holger
- Subjects
Physics ,QC1-999 - Abstract
To realise the potential of fusion as an abundant energy source, several challenges remain. The TCV tokamak, featuring high shaping capability and a flexible heating system, is strongly contributing to solving these challenges. A fundamental challenge remains in controlling heat exhaust from the plasma. ITER's currently foreseen operational regime implies heat flows to the plasma facing materials that are not compatible with a commercial fusion reactor. TCV has demonstrated alternative plasma divertor configurations, termed “snowflakes”, that have the potential to strongly reduce the heat flux towards the vessel walls. Measurements of particle fluxes, together with IR camera imaging, show a clear reduction of the peak heat fluxes to the walls when the exhaust power is particularly large and a reduction of the heat fluxes most needed. Another challenge lies in the control of plasma instabilities and turbulence in reactor relevant operational regimes. To address this issue, TCV is presently complementing its electron heating system with an ion heating system: a 1MW neutral beam injector. With these ion and electron heating capabilities, TCV will be able to operate high temperature, reactor relevant, plasmas with of ion to electron temperature ratios.
- Published
- 2014
- Full Text
- View/download PDF
23. Upgrade of the diagnostic neutral beam injector for the TCV tokamak
- Author
-
Karpushov, Alexander N., Abdrashitov, G.F., Averboukh, I.I., Bosshard, P., Condrea, I., Duval, B.P., Ivanov, A.A., Kolmogorov, V.V., Mlynar, J., Perez, A., Shikhovtsev, I.V., Shukaev, A.N., and Weisen, H.
- Published
- 2003
- Full Text
- View/download PDF
24. Spectroscopic measurements of hydrogen dissociation degree and H- production in resonant antenna-generated plasmas
- Author
-
Marini, C., Demolon, P., Duval, B. P., Furno, I., Howling, A. A., Jacquier, R., Karpushov, A. N., Guittienne, Ph., Fantz, U., Wünderlich, D., Simonin, A., Béchu, Stéphane, Ecole Polytechnique Fédérale de Lausanne (EPFL), Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Vernay, Emmanuelle
- Subjects
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,[PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] - Abstract
International audience; A new generation of Neutral Beam systems will be required in future fusion reactors, suchas DEMO, able to deliver high power (up to 150 MW) with high neutral energy (>1 MeV).Negative ion beams can attain this performance, resulting in a strong research focus on negativeion production from either surface or volumetric plasma sources.A novel helicon plasma source, employing on a resonant birdcage network antenna, is currentlyunder study at the Swiss Plasma Center (SPC), before installation on the Cybele negativeion source [1] at CEA-IRFM. The source delivers up to 10 kW at 13.56 MHz, and was installedon a linear (1.8 m length) Resonant Antenna Ion Device (RAID). Passive spectroscopic measurementsof the Ha, Hb and Hg Balmer lines and of all the diagonal Fulcher-a bands were performedwith a sensitive f/2 spectrometer. Multiple viewing lines setup and an absolute intensitycalibration were used to determine the plasma radiance profile, with a space resolution < 3 mm.A minimum Fisher regularisation algorithm is then applied to calculate the absolute emissivityprofile for each emission line, in cylindrical symmetry as experimentally observed. An errorestimate of the Abel-inverted profiles was performed using a Monte Carlo approach. Finally, anRF-compensated Langmuir probe measured the electron temperature and density profiles. Themeasured absolute line emissivities, electron density and temperature are interpreted using thecollisional-radiative code YACORA [2] which estimates the dissociation degree and the distributionof the different atomic and molecular species, including the density of negative ions. Inthis paper, the results of a power scan up to 5 kW in conditions satisfying DEMO requirements,i.e. p 0:3 Pa and B 150 G, are shown.
- Published
- 2016
25. X-Point-Position-Dependent Intrinsic Toroidal Rotation in the Edge of ă the TCV Tokamak
- Author
-
Stoltzfus-Dueck, T., Karpushov, A. N., Sauter, Olivier, Duval, B. P. ă, Labit, B., Reimerdes, Holger, Vijvers, W. A. J., Camenen, Y. ă, Team, TCV, Ecole Polytechnique Fédérale de Lausanne (EPFL), Physique des interactions ioniques et moléculaires (PIIM), and Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[PHYS]Physics [physics] ,Tokamak ,Toroid ,business.industry ,Rotation around a fixed axis ,General Physics and Astronomy ,Rotational speed ,Edge (geometry) ,Rotation ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Computational physics ,Core (optical fiber) ,Optics ,law ,0103 physical sciences ,Tokamak à configuration variable ,010306 general physics ,business - Abstract
International audience; Edge intrinsic rotation was investigated in Ohmic L-mode discharges on ă the Tokamak a Configuration Variable, scanning the major radial position ă of the X point, R-X. Edge rotation decreased linearly with increasing ă RX, vanishing or becoming countercurrent for an outboard X point, in ă agreement with theoretical expectations. The core rotation profile ă shifted fairly rigidly with the edge rotation, changing the central ă rotation speed by more than a factor of two. Core rotation reversals had ă little effect on the edge rotation velocity. Edge rotation was modestly ă more countercurrent in unfavorable than favorable del B shots.
- Published
- 2015
26. X-point position dependence of edge intrinsic toroidal rotation on the ă Tokamak a Configuration Variable
- Author
-
Stoltzfus-Dueck, T., Karpushov, A. N., Sauter, Olivier, Duval, B. P. ă, Labit, B., Reimerdes, Holger, Vijvers, W. A. J., Camenen, Y. ă, Team, TCV, Ecole Polytechnique Fédérale de Lausanne (EPFL), Physique des interactions ioniques et moléculaires (PIIM), and Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[PHYS]Physics [physics] ,Toroid ,Tokamak ,Magnetic confinement fusion ,Geometry ,Edge (geometry) ,Condensed Matter Physics ,Rotation ,01 natural sciences ,Instability ,010305 fluids & plasmas ,law.invention ,Core (optical fiber) ,law ,0103 physical sciences ,Atomic physics ,Tokamak à configuration variable ,010306 general physics - Abstract
56th Annual Meeting of the APS Division of Plasma Physics, New Orleans, ă LA, OCT 27-31, 2014; International audience; Recent theoretical work predicts intrinsic toroidal rotation in the ă tokamak edge to depend strongly on the normalized major radial position ă of the X-point. With this motivation, we conducted a series of Ohmic ă L-mode shots on the Tokamak a Configuration Variable, moving the X-point ă from the inboard to the outboard edge of the last closed flux surface in ă both lower and upper single null configurations. The edge toroidal ă rotation evolved from strongly co-current for an inboard X-point to ă either vanishing or counter-current for an outboard X-point, in ă agreement with the theoretical expectations. The whole rotation profile ă shifted roughly rigidly with the edge rotation, resulting in variation ă of the peak core rotation by more than a factor of two. Core rotation ă reversals had little effect on the edge rotation. Edge rotation was ă slightly more counter-current for unfavorable than favorable del B drift ă discharges. (c) 2015 AIP Publishing LLC.
- Published
- 2015
27. Diffusive and non-diffusive contributions to momentum transport in AUG experiments and the European intrinsic rotation database
- Author
-
Mcdermott, R. M., Tomas Odstrcil, Angioni, C., Duval, B. P., Karpushov, A. N., Fischer, R., Salmi, A., Tala, T., Tardini, G., Viezzer, E., and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Published
- 2015
28. Multi-slit triode ion optical system with ballistic beam focusing
- Author
-
Davydenko, V., primary, Amirov, V., additional, Gorbovsky, A., additional, Deichuli, P., additional, Ivanov, A., additional, Kolmogorov, A., additional, Kapitonov, V., additional, Mishagin, V., additional, Shikhovtsev, I., additional, Sorokin, A., additional, Stupishin, N., additional, Karpushov, A. N., additional, Smirnov, A., additional, and Uhlemann, R., additional
- Published
- 2016
- Full Text
- View/download PDF
29. Assessment of neutron production in neutral beam injector of TCV tokamak
- Author
-
Polosatkin, S. V., primary, Davydenko, V. I., additional, Deichuli, P. P., additional, Ivanov, A. A., additional, Ivanova, A. A., additional, Karpushov, A. N., additional, Kolmogorov, A. V., additional, Puryga, E. A., additional, Shikhovtsev, I. V., additional, Sorokin, A. V., additional, Sorokina, N. V., additional, and Shvyrev, V. G., additional
- Published
- 2016
- Full Text
- View/download PDF
30. Plasma rotation and NTM onset driven by central EC deposition in TCV tokamak
- Author
-
Nowak S., Lazzaro E., Sauter O., Canal G., Duval B., Federspie L., Karpushov A. N., Kim D., Reimerders H., Rossel J., Testa D., Wagner D., and the TCV Team
- Subjects
____ - Abstract
_____
- Published
- 2013
31. Triggerless onset and 'natural' rotation on NTMs in TCV tokamak
- Author
-
Lazzaro E., Nowak S., Sauter O., Canal G., Duval B., Federspiel L., Karpushov A. N., Kim D., Reimerders H., Rossel J., Wagner D., and the TCV Team
- Subjects
____ - Abstract
____
- Published
- 2012
32. Upgrade of the TCV tokamak, first phase: Neutral beam heating system
- Author
-
Karpushov, Alexander N., primary, Alberti, Stefano, additional, Chavan, René, additional, Davydenko, Vladimir I., additional, Duval, Basil P., additional, Ivanov, Alexander A., additional, Fasel, Damien, additional, Fasoli, Ambrogio, additional, Gorbovsky, Aleksander I., additional, Goodman, Timothy, additional, Kolmogorov, Vyacheslav V., additional, Martin, Yves, additional, Sauter, Olivier, additional, Sorokin, Aleksey V., additional, and Toussaint, Matthieu, additional
- Published
- 2015
- Full Text
- View/download PDF
33. Supply equipment to the new NBH system for the TCV tokamak
- Author
-
Fasel, Damien, primary, Dubray, Jeremie, additional, Karpushov, Alexander N., additional, Kolmogorov, Vyacheslav V., additional, Perez, Albert, additional, Siravo, Ugo, additional, and Sorokin, Aleksey V., additional
- Published
- 2015
- Full Text
- View/download PDF
34. High density experiments in TCV ohmically heated and L-mode plasmas
- Author
-
Kirneva, N A, primary, Behn, R, additional, Canal, G P, additional, Coda, S, additional, Duval, B P, additional, Goodman, T P, additional, Labit, B, additional, Mustafin, N A, additional, Karpushov, A N, additional, Pochelon, A, additional, Porte, L, additional, Sauter, O, additional, Silva, M, additional, Tal, B, additional, and Vuille, V, additional
- Published
- 2014
- Full Text
- View/download PDF
35. Experimental Investigation of Cardiac Electric Field
- Author
-
Roschevsky, M.P., primary, Barabanova, V.V., additional, Gagiev, N. G., additional, Kaliberda, N. M., additional, Karpushov, E. N., additional, Kondrashova, K. K., additional, Kuznetzov, V. P., additional, Prokhorov, V. N., additional, and Roschevskaya, I. M., additional
- Published
- 1988
- Full Text
- View/download PDF
36. Upgrade of the Gas Dynamic Trap: Physical Concepts and Numerical Models
- Author
-
Anikeev, A. V., Bagryansky, P. A., Ivanov, A. A., Karpushov, A. N., Noack, K., and Strogalova, S. L.
- Subjects
neutron source ,gas dynamic trap ,plasma physics ,fusion materials ,magnetic mirror - Abstract
The Budker Institute of Nuclear Physics Novosibirsk develops a project of an intense 14 MeV neutron source (NS) based on a gas dynamic trap (GDT) which is mainly intended for fusion material irradiation. Its actual disadvantage is the lack of data for the parameter range of the projected GDT-NS which does not yet allow a reliable interpolation from the parameters of the existing GDT experimental facility to the neutron source. At present, experimental and computational researches are carried out to complete the required data base. So far, rather promising results have been achieved concerning the main plasma-physical issues like MHD stability, longitudinal confinement, cross-field transport and the fast ion behaviour [1,2]. For the investigations in the latter field the Integrated Transport Code System (ITCS) has been used [3,4]. These investigations must be extended to a higher level of plasma parameters. To this end a substantial upgrade of the GDT facility is planned. The main subsystems which are to be upgraded are the neutral beam injection (NBI) system and the magnetic field power supply. The higher power and the longer duration of the injection will provide a substantially higher energy content of the fast ions and, consequently, will increase the electron temperature. During the last years several transport codes have been developed and applied for computational studies in parallel to the experimental research. They have been coupled by appropriate data file transfers to the ITCS. The report is focused on the application of the code system to study possible operation regimes of the upgraded GDT. The results of numerical simulations enable us to conclude that an electron temperature of 250-300 eV can be achieved in the GDT-Upgrade with a NBI of 10 MW and a duration of 3-6 ms. The maximum fast ion density in the region of their turning points is estimated at ~5x1013 cm-3.
- Published
- 2001
37. Axial Distribution of DD-Neutron Yield in GDT under Skew Injection of Deuterium Neutral Beams
- Author
-
Ivanov, A. A., Andrey Anikeev, Bagryansky, P. A., Karpushov, A. N., Kornilov, V. N., Maximov, V. V., and Noack, K.
- Subjects
deuterium injection ,DD fusion products ,fusion ,neutron source ,gas dynamic trap ,neutral beam injection ,scintillation counters ,Physics::Plasma Physics ,14 MeV neutrons ,material irradiation ,Nuclear Experiment - Abstract
Experiments with 3 MW deuterium injection have been carried out in the Gas Dynamic Trap (GDT) to simulate the axial profile of the fusion reaction intensity in the proposed neutron source based on the GDT. Quite narrow angular distribution function of the fast ions produced by an oblique neutral beam injection results in a peaked axial profile of the fusion yield. This strong peaking is essential to produce an intense neutron flux in the testing zones of the GDT-based neutron source. The scintillation counters were installed in the central cell of the device to monitor the DD fusion reaction products: neutrons (2.45 MeV) and protons (3,02 MeV). They were closely located to the plasma column inside of the vacuum chamber in oreder to avoid contribution from the scattered neutrons and to improve the spatial resolution of the measurements. The axial profiles of the fusion neutrons and protons have been measured in the high-beta regime of the GDT operation. In the paper the experimental data are compared with the results of numerical simulations. The conclusion may be drawn that the kinetics of the fast ion relaxation and scattering is determined by classical Coulomb collisions.
- Published
- 2000
38. Study of Hot-Ion Plasma Confinement in the Gas-Dynamic Trap
- Author
-
Anikeev, A. V., Bagryansky, P. A., Ivanov, A. A., Karpushov, A. N., Kornilov, V. N., Maximov, V. V., Murakhtin, S. V., Noack, K., and Smirnov, A. Y.
- Subjects
Physics::Plasma Physics - Abstract
Studies of hot anisotropic ion confinement is one of the main objectives of the experimental program on the gas-dynamic trap (GDT). Hot ions are produced in the trap by injection of six neutral beams with energy 13-17 keV into collisional target plasma. The total injected power was up to 4.5 MW, pulse duration 1.2 ms. The behavior of hot ions with mean energy 3-10 keV and peak density of 0.5-1.0´ 1013 cm-3 was studied in detail in the experiments with plasma β up to 20%. The method of confinement study consists essentially in comparison of the measured ion parameters with those predicted by computer simulations based on theory of Coulomb collisions. Additionally the measurements of D-D neutron flux were used to measure the hot ion distribution along GDT axis.
- Published
- 1999
39. Investigation of Fast Ion Confinement in the Gas Dynamic Trap
- Author
-
Anikeev, A. V., Bagryansky, P. A., Ivanov, A. A., Karpushov, A. N., Korepanov, S. A., Maximov, V. V., Murakhtin, S. V., Smirnov, A. Y., Noack, K., and Otto, G.
- Subjects
Monte Carlo method ,gas dynamic trap ,Physics::Plasma Physics ,Coulomb collisions ,diagnostic ,fast ion confinement ,code FIT ,plasma - Abstract
The confinement of the fast, anisotropic ions is one of the basic objectives of the GDT experimental research program. The approach consists in comparing the measured ion parameters with those predicted by computer simulations based on the theory of Coulomb collisions. A broad set of diagnostics for measurements of fast ion parameters has been developed. In particular, it includes the measurement of the local energy distribution function. In parallel the Monte Carlo transport code FIT, which simulates fast ion histories in the frame of the lassical theory has been developed. The comparison of the measured and computed parameters clearly shows that the energy confinement time of the fast ions is governed by Coulomb collisions only and significant anomalous ion losses were not yet observed in GDT experiments up to the present plasma parameters.
- Published
- 1999
40. Energy Confinement of the High ß Two-Component Plasma in the Gas Dynamic Trap
- Author
-
Karpushov, A. N. E. A.
- Published
- 1998
41. Experimental Studies of Plasma Confinement and Heating in the Gas Dynamic Trap
- Author
-
Anikeev, A. V., Bagryansky, P. A., Deichuli, P. P., Ivanov, A. A., Karpushov, A. N., Lizunov, A. A., Maximov, V. V., Shichovtsev, I. V., Stupishin, N. V., Tsidulko, Y. A., Murakhtin, S. V., Noack, K., and Otto, G.
- Subjects
plasma confinement ,gas dynamic trap ,electron temperature ,plasma heating - Abstract
By upgrading the high-energetic neutral beam injection system of the gas dynamic trap (GDT) experimental facility of the Budker Institute Novosibirsk the plasma heating could be substantially improved. Now an electron temperature up to 120 eV is attainable compared to 70 eV before. Under the new conditions various heating scenarios and the plasma confinement were studied.
- Published
- 1997
42. Plasma Rotation and NTM Onset Driven by Central EC Deposition in TCV Tokamak.
- Author
-
Nowak, S., Lazzaro, E., Sauter, O., Canal, G., Duval, B., Federspiel, L., Karpushov, A. N., Kim, D., Raju, D., Reimerders, H., Rossel, J., Testa, D., and Wagner, D.
- Subjects
ROTATIONAL motion (Rigid dynamics) ,PLASMA physics ,PLASMA fluctuations ,PLASMA dynamics ,TOROIDAL harmonics ,TOROIDAL plasma - Abstract
The effects of the central electron cyclotron heating (ECH) and current drive (ECCD) on the spontaneous plasma rotation and on the presence of Tearing Modes (TM), observed in the TCV tokamak[1], were recently investigated as an interplay between the toroidal velocity and NTM onset in absence of sawteeth, ELMs and error fields [2-3]. In a set of reproducible TCV discharges (I
p ~ -150 kA, Bt~ -1.4 T, ne,av~ 1.5 1019 m-3 , Te ~ 3 keV and Ti ~0.25 keV, q95~5.8) with both pure EC heating and current drive the cnt-Ip toroidal velocity was observed to be reduced with subsequent co-Ip appearance of 3/2 and 2/1 modes during the ramp up EC phases. The understanding of the capability of the on-axis EC power to modify the rotation profiles before and after the TM onset and of the sudden disappearance of 3/2 mode when 2/1 starts is the main purpose of this work. The velocity profile modifications are due to a direct effect of the EC absorbed power and also related to some variation of the perpendicular diffusion of the toroidal momentum and to magnetic braking effects of the kind of neoclassical toroidal viscosity (NTV) due to the NTM resonant field perturbations associated to the presence of TM. Numerical investigations are performed using a 1D toroidal momentum balance equation including contributions by external sources, as EC power, and NTV torques. Furthermore, the combined evolution of the 3/2 and 2/1 modes requires considering also coupling effects included in a generalized Rutherford equation for the modelling of the TM time growth. [ABSTRACT FROM AUTHOR]- Published
- 2014
- Full Text
- View/download PDF
43. The Plasma Neutron Source Simulations in the GDT Experiment
- Author
-
Anikeev, A. V., Bagryansky, P. A., Deichuli, P. P., Ivanov, A. A., Karpushov, A. N., Kuznetsov, G. I., Lizunov, A. A., Maximov, V. V., Shichovtsev, I. V., Stupishin, N. V., Tsidulko, Y. A., Voropaev, S. G., Murakhtin, S. V., Noack, K., Kumpf, G., Krahl, S., and Otto, G.
- Published
- 1996
44. Plasma confinement and stability studies in the gas-dynamic trap experiment
- Author
-
Anikeev, A., Noack, K., Kumpf, H., Krahl, S., Otto, G., Bagryansky, P. A., Deichuli, P. P., Ivanov, A. A., Karpushov, A. N., Maximov, V. V., Shichovtsev, I. V., Stupishin, N. V., Tsidulko, Y. A., Voropaev, S. G., and Murakhtin, S. V.
- Published
- 1996
45. Studies of Plasma Axial Confinement and Transverse Transport in the GDT Experiment
- Author
-
Anikeev, A. V., Bagryansky, P. A., Deichuli, P. P., Ivanov, A. A., Karpushov, A. N., Kuznetsov, G. I., Lizunov, A. A., Maximiov, V. V., Murakhtin, S. V., Saunichev, K. N., Stupishin, N. V., and Noack, K.
- Published
- 1996
46. Experimental Evidence of Momentum Transport Induced by an Up-Down Asymmetric Magnetic Equilibrium in Toroidal Plasmas
- Author
-
Camenen, Y., primary, Bortolon, A., additional, Duval, B. P., additional, Federspiel, L., additional, Peeters, A. G., additional, Casson, F. J., additional, Hornsby, W. A., additional, Karpushov, A. N., additional, Piras, F., additional, Sauter, O., additional, Snodin, A. P., additional, and Szepesi, G., additional
- Published
- 2010
- Full Text
- View/download PDF
47. GDT Device: Recent Results and Future Plans for GDT Upgrade
- Author
-
Ivanov, A. A., Abdrashitov, G. F., Anikeev, A. A., Bagryansky, P. A., Deichuli, P. P., Karpushov, A. N., Korepanov, S. A., Lizunov, A. A., Maximov, V. V., Murakhtin, S. V., Smirnov, A. Y., Zouev, A. A., Noack, K., Otto, G., Ivanov, A. A., Abdrashitov, G. F., Anikeev, A. A., Bagryansky, P. A., Deichuli, P. P., Karpushov, A. N., Korepanov, S. A., Lizunov, A. A., Maximov, V. V., Murakhtin, S. V., Smirnov, A. Y., Zouev, A. A., Noack, K., and Otto, G.
- Abstract
GDT experiments of significance to a GDT based neutron source development are reported in the areas of generation of axially peaked neutron flux profile, stable confinement with on-axis plasma beta ~40%, and radial electric field control. Skew injection of 4 MW 15-17 keV deuterium neutral beams into central cell resulted in generation of strongly peaked axial profile of neutron flux density. This can be described by a model of fast ion relaxation, which involves classical mechanisms of electron drag and binary ion-ion collisions only. Experiments with the radial limiter biasing show that the plasma density profile and radial losses respond to the electric field profile. An increase of plasma energy was achieved with increased magnetic field in the central cell and optimised radial profile of electric field. In these regimes the on-axis plasma beta near the turning points of fast deuterons exceeded ~40%. The plans for future upgrade of the GDT device are discussed. It suggests considerable increase of NB injected power (up to 10 MW) and extension of the pulse duration from 1 ms up to 3-5 ms. After the upgrade, a significant increase of the electron temperature up to 250-300 eV could be obtained. Properties of the plasma with parameters approaching those in the full-scale neutron source are planned to study in experiments with NB injection into an additional mirror cell which will be installed near to one of the standard mirror coils.
- Published
- 2002
48. Ion Temperature Fluctuations in ELMy H-mode of the X3 EC-heated Plasmas on TCV
- Author
-
Karpushov, A. N., primary, Duval, B. P., additional, Schlatter, Ch., additional, Hartfuss, Hans-Jürgen, additional, Dudeck, Michel, additional, Musielok, Jozef, additional, and Sadowski, Marek J., additional
- Published
- 2008
- Full Text
- View/download PDF
49. Integrated Transport Code Sytem for Multicomponent High-ß Plasmas in the Gas Dynamic Trap
- Author
-
Karpushov, A. N., Anikeev, A. V., Noack, K., Strogalova, S. L., Karpushov, A. N., Anikeev, A. V., Noack, K., and Strogalova, S. L.
- Abstract
The Budker Institute Novosibirsk made the proposal for a high-power 14 MeV neutron source on the base of a gas dynamic trap (GDT). The GDT is an axisymmetric open trap with a high mirror ratio confining a collisional plasma. To be able to calculate the dynamics of the particle fields appearing inside the existing experimental GDT device of the Budker Institute, and later, inside the neutron source an Integrated Transport Code System (ITCS) is under development. It is to consider the full dependencies of the transport phenomena on space, time, energy and angle variables as well as the interactions between the fields. The paper briefly describes the theoretical and numerical models of the code system and illustrates its first application to calculate the particle fields inside the experimental GDT facility.
- Published
- 2000
50. Fast Ion Relaxation and Confinement in the Gas Dynamic Trap
- Author
-
Anikeev, A. V., Bagryansky, P. A., Ivanov, A. A., Karpushov, A. N., Korepanov, S. A., Maximov, V. V., Murakhtin, S. V., Smirnov, A. Y., Noack, K., Otto, G., Anikeev, A. V., Bagryansky, P. A., Ivanov, A. A., Karpushov, A. N., Korepanov, S. A., Maximov, V. V., Murakhtin, S. V., Smirnov, A. Y., Noack, K., and Otto, G.
- Abstract
Studies of the relaxation and confinement of hot anisotropic ions are considered to be the key elements of the gas dynamic trap (GDT) experimental research programme. The method of confinement study described consists essentially in the comparison of measured ion parameters with those predicted by computer simulations. To realize this approach a set of diagnostics for the measurements of local and global parameters of the fast ions has been developed. In particular, this set includes diagnostics to measure the local energy and the angular distribution functions. For numerical studies of the fast ion dynamics a Monte Carlo code based on the theory of two body Coulomb collisions has been elaborated. Comparison of the experimental data with the results of the simulation clearly demonstrates that the fast ion characteristic relaxation times in the warm target plasma are close to those determined by binary Coulomb collisions. Significant anomalous energy losses or scattering of fast ions have not been observed as yet. The measurements provide a maximum density of the fast ions with mean energy of about 8 keV up to 10E+13/cm^3, in good agreement with computer simulations. The increase of the neutral beam power and improved vacuum conditions of GDT made possible the access to plasma ß of as high as 30%.
- Published
- 2000
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.