Dirk Schwarzer, Trinh V. Dinh, Iris Finkemeier, Felix Alexander Weyer, Ruediger Hell, Dominik Layer, Pavlina Miklankova, Irmgard Sinning, Willy V. Bienvenut, Carmela Giglione, Marion Hoffrichter, Eric Linster, Jürgen Kopp, Annika Brünje, Markus Wirtz, Karine Lapouge, Julia Sindlinger, Thierry Meinnel, Wiebke Leemhuis, Centre for Organismal Studies [Heidelberg] (COS), Heidelberg University, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Maturation des proteines, destinée cellulaire et thérapeutique (PROMTI), Département Biologie des Génomes (DBG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of Muenster, Interfaculty Institute of Biochemistry [Tuebingen, Germany], University of Tuebingen, University of Münster, Westfälische Wilhelms-Universität Münster = University of Münster (WWU), University of Tübingen, ANR-13-BSV6-0004,eNergiome,N-terminome des organelles de conversion de l'énergie: Une meilleure comprehension de la maturation des protéines impliquées dans ces organelles(2013), and ANR-10-LABX-0040,SPS,Saclay Plant Sciences(2010)
International audience; In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80 % of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and was not identified in plants. Here we identify and characterize the first plasma membrane-anchored post-translationally acting N-acetyltransferase AtNAA60 in the reference plant Arabidopsis thaliana by the combined application of reverse genetics, global proteomics, live-cell imaging, microscale thermophoresis, CD-spectroscopy, nano differential scanning fluorometry, intrinsic tryptophan fluorescence and X-ray crystallography. We demonstrate that AtNAA60 like HsNAA60 is membrane-localized in vivo by an α-helical membrane anchor at its C-terminus, but in contrast to HsNAA60, AtNAA60 localizes to the plasma membrane. The AtNAA60 crystal structure provides insights into substrate-binding, the broad substrate specificity and the catalytic mechanism probed by structure-based mutagenesis. Characterization of the NAA60 loss-of-function mutants (naa60-1 and naa60-2) uncovers a plasma membrane-localized substrate of AtNAA60 and the importance of NAA60 during high salt stress. Our findings provide evidence for the plant-specific evolution of a plasma membrane-anchored N-acetyltransferase that is vital for adaptation to stress.