138 results on '"Karatekin, O"'
Search Results
2. Moons and Jupiter Imaging Spectrometer (MAJIS) on Jupiter Icy Moons Explorer (JUICE)
- Author
-
Poulet, F., Piccioni, G., Langevin, Y., Dumesnil, C., Tommasi, L., Carlier, V., Filacchione, G., Amoroso, M., Arondel, A., D’Aversa, E., Barbis, A., Bini, A., Bolsée, D., Bousquet, P., Caprini, C., Carter, J., Dubois, J.-P., Condamin, M., Couturier, S., Dassas, K., Dexet, M., Fletcher, L., Grassi, D., Guerri, I., Haffoud, P., Larigauderie, C., Le Du, M., Mugnuolo, R., Pilato, G., Rossi, M., Stefani, S., Tosi, F., Vincendon, M., Zambelli, M., Arnold, G., Bibring, J.-P., Biondi, D., Boccaccini, A., Brunetto, R., Carapelle, A., Cisneros González, M., Hannou, C., Karatekin, O., Le Cle’ch, J.-C., Leyrat, C., Migliorini, A., Nathues, A., Rodriguez, S., Saggin, B., Sanchez-Lavega, A., Schmitt, B., Seignovert, B., Sordini, R., Stephan, K., Tobie, G., Zambon, F., Adriani, A., Altieri, F., Bockelée, D., Capaccioni, F., De Angelis, S., De Sanctis, M.-C., Drossart, P., Fouchet, T., Gérard, J.-C., Grodent, D., Ignatiev, N., Irwin, P., Ligier, N., Manaud, N., Mangold, N., Mura, A., Pilorget, C., Quirico, E., Renotte, E., Strazzulla, G., Turrini, D., Vandaele, A.-C., Carli, C., Ciarniello, M., Guerlet, S., Lellouch, E., Mancarella, F., Morbidelli, A., Le Mouélic, S., Raponi, A., Sindoni, G., and Snels, M.
- Published
- 2024
- Full Text
- View/download PDF
3. The Castalia Mission to Main Belt Comet 133P/Elst-Pizarro
- Author
-
Snodgrass, C., Jones, G. H., Boehnhardt, H., Gibbings, A., Homeister, M., Andre, N., Beck, P., Bentley, M. S., Bertini, I., Bowles, N., Capria, M. T., Carr, C., Ceriotti, M., Coates, A. J., Della Corte, V., Hanna, K. L. Donaldson, Fitzsimmons, A., Gutierrez, P. J., Hainaut, O. R., Herique, A., Hilchenbach, M., Hsieh, H. H., Jehin, E., Karatekin, O., Kofman, W., Lara, L. M., Laudan, K., Licandro, J., Lowry, S. C., Marzari, F., Masters, A., Meech, K. J., Moreno, F., Morse, A., Orosei, R., Pack, A., Plettemeier, D., Prialnik, D., Rotundi, A., Rubin, M., Sanchez, J. P., Sheridan, S., Trieloff, M., and Winterboer, A.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC's activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA's highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these., Comment: Accepted for publication in Advances in Space Research (special issue on Small Body Exploration). 30 pages
- Published
- 2017
- Full Text
- View/download PDF
4. Direct observations of asteroid interior and regolith structure: Science measurement requirements
- Author
-
Herique, A., Agnus, B., Asphaug, E., Barucci, A., Beck, P., Bellerose, J., Biele, J., Bonal, L., Bousquet, P., Bruzzone, L., Buck, C., Carnelli, I., Cheng, A., Ciarletti, V., Delbo, M., Du, J., Du, X., Eyraud, C., Fa, W., Gil Fernandez, J., Gassot, O., Granados-Alfaro, R., Green, S.F., Grieger, B., Grundmann, J.T., Grygorczuk, J., Hahnel, R., Heggy, E., Ho, T-M., Karatekin, O., Kasaba, Y., Kobayashi, T., Kofman, W., Krause, C., Kumamoto, A., Küppers, M., Laabs, M., Lange, C., Lasue, J., Levasseur-Regourd, A.C., Mallet, A., Michel, P., Mottola, S., Murdoch, N., Mütze, M., Oberst, J., Orosei, R., Plettemeier, D., Rochat, S., RodriguezSuquet, R., Rogez, Y., Schaffer, P., Snodgrass, C., Souyris, J-C., Tokarz, M., Ulamec, S., Wahlund, J-E., and Zine, S.
- Published
- 2018
- Full Text
- View/download PDF
5. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season
- Author
-
Harri, A.-M., Montmessin, F., Wilson, C., Rodríguez, I. Arruego, Abbaki, S., Apestigue, V., Bellucci, G., Berthelier, J.-J., Calcutt, S.B., Forget, F., Genzer, M., Gilbert, P., Haukka, H., Jiménez, J.J., Jiménez, S., Josset, J.-L., Karatekin, O., Landis, G., Lorenz, R., Martinez, J., Möhlmann, D., Moirin, D., Palomba, E., Patel, M., Pommereau, J.-P., Popa, C.I., Rafkin, S., Rannou, P., Renno, N.O., Schmidt, W., Simoes, F., Spiga, A., Valero, F., Vázquez, L., Vivat, F., Witasse, O., Bettanini, C., Esposito, F., Debei, S., Molfese, C., Colombatti, G., Aboudan, A., Brucato, J.R., Cortecchia, F., Di Achille, G., Guizzo, G.P., Friso, E., Ferri, F., Marty, L., Mennella, V., Molinaro, R., Schipani, P., Silvestro, S., Mugnuolo, R., Pirrotta, S., and Marchetti, E.
- Published
- 2018
- Full Text
- View/download PDF
6. Probing the internal structure of the asteriod Didymoon with a passive seismic investigation
- Author
-
Murdoch, N., Hempel, S., Pou, L., Cadu, A., Garcia, R.F., Mimoun, D., Margerin, L., and Karatekin, O.
- Published
- 2017
- Full Text
- View/download PDF
7. Titan as Revealed by the Cassini Radar
- Author
-
Lopes, R. M. C., Wall, S. D., Elachi, C., Birch, S. P. D., Corlies, P., Coustenis, A., Hayes, A. G., Hofgartner, J. D., Janssen, M. A., Kirk, R. L., LeGall, A., Lorenz, R. D., Lunine, J. I., Malaska, M. J., Mastroguiseppe, M., Mitri, G., Neish, C. D., Notarnicola, C., Paganelli, F., Paillou, P., Poggiali, V., Radebaugh, J., Rodriguez, S., Schoenfeld, A., Soderblom, J. M., Solomonidou, A., Stofan, E. R., Stiles, B. W., Tosi, F., Turtle, E. P., West, R. D., Wood, C. A., Zebker, H. A., Barnes, J. W., Casarano, D., Encrenaz, P., Farr, T., Grima, C., Hemingway, D., Karatekin, O., Lucas, A., Mitchell, K. L., Ori, G., Orosei, R., Ries, P., Riccio, D., Soderblom, L. A., and Zhang, Z.
- Published
- 2019
- Full Text
- View/download PDF
8. Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission
- Author
-
Vandaele, A.C., Neefs, E., Drummond, R., Thomas, I.R., Daerden, F., Lopez-Moreno, J.-J., Rodriguez, J., Patel, M.R., Bellucci, G., Allen, M., Altieri, F., Bolsée, D., Clancy, T., Delanoye, S., Depiesse, C., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Geminale, A., Gérard, J.-C., Giuranna, M., Ignatiev, N., Kaminski, J., Karatekin, O., Lefèvre, F., López-Puertas, M., López-Valverde, M., Mahieux, A., McConnell, J., Mumma, M., Neary, L., Renotte, E., Ristic, B., Robert, S., Smith, M., Trokhimovsky, S., Vander Auwera, J., Villanueva, G., Whiteway, J., Wilquet, V., and Wolff, M.
- Published
- 2015
- Full Text
- View/download PDF
9. A Review of Communications and Radio Science with Planetary Entry Probes
- Author
-
Mercolino, M, Lazio, J, Krasner, S. M, Karatekin, O, Gladden, R. E, Ferri, F, Clark, I. G, Atkinson, D. H, and Asmar, S. W
- Abstract
UNKNOWN
- Published
- 2019
10. A Review of Communications and Radio Science with Planetary Entry Probes
- Author
-
Asmar, S. W, Atkinson, D. H, Clark, I. G, Ferri, F, Gladden, R. E, Karatekin, O, Krasner, S. M, Lazio, J, and Mercolino, M
- Published
- 2019
11. The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets
- Author
-
Arridge, C.S., Achilleos, N., Agarwal, J., Agnor, C.B., Ambrosi, R., André, N., Badman, S.V., Baines, K., Banfield, D., Barthélémy, M., Bisi, M.M., Blum, J., Bocanegra-Bahamon, T., Bonfond, B., Bracken, C., Brandt, P., Briand, C., Briois, C., Brooks, S., Castillo-Rogez, J., Cavalié, T., Christophe, B., Coates, A.J., Collinson, G., Cooper, J.F., Costa-Sitja, M., Courtin, R., Daglis, I.A., de Pater, I., Desai, M., Dirkx, D., Dougherty, M.K., Ebert, R.W., Filacchione, G., Fletcher, L.N., Fortney, J., Gerth, I., Grassi, D., Grodent, D., Grün, E., Gustin, J., Hedman, M., Helled, R., Henri, P., Hess, S., Hillier, J.K., Hofstadter, M.H., Holme, R., Horanyi, M., Hospodarsky, G., Hsu, S., Irwin, P., Jackman, C.M., Karatekin, O., Kempf, S., Khalisi, E., Konstantinidis, K., Krüger, H., Kurth, W.S., Labrianidis, C., Lainey, V., Lamy, L.L., Laneuville, M., Lucchesi, D., Luntzer, A., MacArthur, J., Maier, A., Masters, A., McKenna-Lawlor, S., Melin, H., Milillo, A., Moragas-Klostermeyer, G., Morschhauser, A., Moses, J.I., Mousis, O., Nettelmann, N., Neubauer, F.M., Nordheim, T., Noyelles, B., Orton, G.S., Owens, M., Peron, R., Plainaki, C., Postberg, F., Rambaux, N., Retherford, K., Reynaud, S., Roussos, E., Russell, C.T., Rymer, A.M., Sallantin, R., Sánchez-Lavega, A., Santolik, O., Saur, J., Sayanagi, K.M., Schenk, P., Schubert, J., Sergis, N., Sittler, E.C., Smith, A., Spahn, F., Srama, R., Stallard, T., Sterken, V., Sternovsky, Z., Tiscareno, M., Tobie, G., Tosi, F., Trieloff, M., Turrini, D., Turtle, E.P., Vinatier, S., Wilson, R., and Zarka, P.
- Published
- 2014
- Full Text
- View/download PDF
12. High Precision SEIS Calibration for the InSight Mission and Its Applications
- Author
-
Pou, L., Mimoun, D., Lognonne, P., Garcia, R. F., Karatekin, O., Nonon-Latapie, M., and Llorca-Cejudo, R.
- Published
- 2018
- Full Text
- View/download PDF
13. The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results
- Author
-
Esposito, F., Debei, S., Bettanini, C., Molfese, C., Arruego Rodríguez, I., Colombatti, G., Harri, A.-M., Montmessin, F., Wilson, C., Aboudan, A., Schipani, P., Marty, L., Álvarez, F. J., Apestigue, V., Bellucci, G., Berthelier, J.-J., Brucato, J. R., Calcutt, S. B., Chiodini, S., Cortecchia, F., Cozzolino, F., Cucciarrè, F., Deniskina, N., Déprez, G., Di Achille, G., Ferri, F., Forget, F., Franzese, G., Friso, E., Genzer, M., Hassen-Kodja, R., Haukka, H., Hieta, M., Jiménez, J. J., Josset, J.-L., Kahanpää, H., Karatekin, O., Landis, G., Lapauw, L., Lorenz, R., Martinez-Oter, J., Mennella, V., Möhlmann, D., Moirin, D., Molinaro, R., Nikkanen, T., Palomba, E., Patel, M. R., Pommereau, J.-P., Popa, C. I., Rafkin, S., Rannou, P., Renno, N. O., Rivas, J., Schmidt, W., Segato, E., Silvestro, S., Spiga, A., Toledo, D., Trautner, R., Valero, F., Vázquez, L., Vivat, F., Witasse, O., Yela, M., Mugnuolo, R., Marchetti, E., and Pirrotta, S.
- Published
- 2018
- Full Text
- View/download PDF
14. ExoMars 2016 Schiaparelli Module Trajectory and Atmospheric Profiles Reconstruction: Analysis of the On-board Inertial and Radar Measurements
- Author
-
Aboudan, A., Colombatti, G., Bettanini, C., Ferri, F., Lewis, S., Van Hove, B., Karatekin, O., and Debei, S.
- Published
- 2018
- Full Text
- View/download PDF
15. NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
- Author
-
Vandaele, A. C., Lopez-Moreno, J.-J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., Robert, S., Thomas, I. R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, S., Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, B., González-Galindo, F., Geminale, A., Gérard, J.-C., Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, M., López-Valverde, M., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Willame, Y., Wolff, M., and the NOMAD Team
- Published
- 2018
- Full Text
- View/download PDF
16. Young or not so young? Constraining the thermal evolution of the Moon with a landed mission to Ina-D
- Author
-
Hauber, Ernst, Auster, H-U., Biele, Jens, Brož, Petr, Grott, Matthias, Heyner, D., Hübers, Heinz-Wilhelm, Karatekin, O, Lichtenheldt, Roy, Ritter, B., Schmitz, Nicole, Schröder, Susanne, Ulamec, Stephan, Wedler, Armin, De Sanctis, C.M., Besse, S., Hiesinger, H., Frigeri, A., Crawford, I.A., Tartese, R., Ciarletti, V., Massironi, M, Rull, F., Ehlmann, B, Klima, R. L., Head, J W, Wilson, L., Qiao, L., McDonald, Francesca, and Carpenter, J.
- Subjects
volcanism ,geology ,Argonaut ,EL3 ,Moon ,exploration ,lander - Published
- 2022
17. GENESIS-1 mission for improved reference frames and Earth science applications
- Author
-
UCL - SST/ELI/ELIC - Earth & Climate, Karatekin, O., Dehant, Véronique, Ventura-Traveset, J., Rothacher, M., Delva, P., EGU 2022 General Assembly, UCL - SST/ELI/ELIC - Earth & Climate, Karatekin, O., Dehant, Véronique, Ventura-Traveset, J., Rothacher, M., Delva, P., and EGU 2022 General Assembly
- Abstract
Improving and homogenizing time and space references on Earth and, more directly, realizing the terrestrial reference system with an accuracy of 1 mm and a long-term stability of 0.1 mm/yr are relevant for many scientific and societal endeavours. The knowledge of the terrestrial reference frame (TRF) is fundamental for Earth system monitoring and related applications. For instance, quantifying sea level change strongly depends on an accurate determination of the geocenter motion but also of the position of continental or island reference stations, such as those located at tide gauges, as well as the ground stations of the tracking networks. Also, numerous applications in geophysics require absolute millimetre precision from the reference frame, as for example monitoring tectonic motion or crustal deformation for predicting natural hazards. The TRF accuracy to be achieved (mentioned above) represents the consensus of various authorities, including the International Association of Geodesy, which has enunciated geodesy requirements for Earth science (see GGOS-2020). Moreover, as stated in the A/RES/69/266 United Nations Resolution: “A global geodetic reference frame for sustainable development”, the UN recognizes the importance of “the investments of Member States in developing satellite missions for positioning and remote sensing of the Earth, supporting a range of scientific endeavours that improve our understanding of the Earth system and underpin decision-making, and… that the full societal benefits of these investments are realized only if they are referenced to a common global geodetic reference frame at the national, regional and global levels”. These strong statements by international bodies underline that a dedicated mission is highly needed and timely. Today we are still far away from this ambitious goal. It can be achieved by combining and co-locating, on one satellite platform, the full set of fundamental space-time geodetic systems, namely GNSS and DORIS r
- Published
- 2022
18. Water ice clouds detection with NOMAD LNO nadir channel on board ExoMars TGO
- Author
-
UCL - SST/ELI/ELIC - Earth & Climate, Ruiz Lozano, Luca, Karatekin, O, Dehant, Véronique, Belluci, G., Olivia, F, 5 th Chianti Topics – International Focus Workshop, UCL - SST/ELI/ELIC - Earth & Climate, Ruiz Lozano, Luca, Karatekin, O, Dehant, Véronique, Belluci, G., Olivia, F, and 5 th Chianti Topics – International Focus Workshop
- Published
- 2022
19. Newly formed craters on Mars located using seismic and acoustic wave data from InSight
- Author
-
Garcia, R.F., Daubar, I.J., Beucler, É., Posiolova, L.V., Collins, G.S., Lognonné, P., Rolland, L., Xu, Z., Wójcicka, N., Spiga, A., Fernando, B., Speth, G., Martire, L., Rajšić, Andrea, Miljković, Katarina, Sansom, Eleanor, Charalambous, C., Ceylan, S., Menina, S., Margerin, L., Lapeyre, R., Neidhart, Tanja, Teanby, N.A., Schmerr, N.C., Bonnin, M., Froment, M., Clinton, J.F., Karatekin, O., Stähler, S.C., Dahmen, N.L., Durán, C., Horleston, A., Kawamura, T., Plasman, M., Zenhäusern, G., Giardini, D., Panning, M., Malin, M., Banerdt, W.B., Garcia, R.F., Daubar, I.J., Beucler, É., Posiolova, L.V., Collins, G.S., Lognonné, P., Rolland, L., Xu, Z., Wójcicka, N., Spiga, A., Fernando, B., Speth, G., Martire, L., Rajšić, Andrea, Miljković, Katarina, Sansom, Eleanor, Charalambous, C., Ceylan, S., Menina, S., Margerin, L., Lapeyre, R., Neidhart, Tanja, Teanby, N.A., Schmerr, N.C., Bonnin, M., Froment, M., Clinton, J.F., Karatekin, O., Stähler, S.C., Dahmen, N.L., Durán, C., Horleston, A., Kawamura, T., Plasman, M., Zenhäusern, G., Giardini, D., Panning, M., Malin, M., and Banerdt, W.B.
- Abstract
Meteoroid impacts shape planetary surfaces by forming new craters and alter atmospheric composition. During atmospheric entry and impact on the ground, meteoroids excite transient acoustic and seismic waves. However, new crater formation and the associated impact-induced mechanical waves have yet to be observed jointly beyond Earth. Here we report observations of seismic and acoustic waves from the NASA InSight lander’s seismometer that we link to four meteoroid impact events on Mars observed in spacecraft imagery. We analysed arrival times and polarization of seismic and acoustic waves to estimate impact locations, which were subsequently confirmed by orbital imaging of the associated craters. Crater dimensions and estimates of meteoroid trajectories are consistent with waveform modelling of the recorded seismograms. With identified seismic sources, the seismic waves can be used to constrain the structure of the Martian interior, corroborating previous crustal structure models, and constrain scaling relationships between the distance and amplitude of impact-generated seismic waves on Mars, supporting a link between the seismic moment of impacts and the vertical impactor momentum. Our findings demonstrate the capability of planetary seismology to identify impact-generated seismic sources and constrain both impact processes and planetary interiors.
- Published
- 2022
20. Penetrators for in situ subsurface investigations of Europa
- Author
-
Gowen, R.A., Smith, A., Fortes, A.D., Barber, S., Brown, P., Church, P., Collinson, G., Coates, A.J., Collins, G., Crawford, I.A., Dehant, V., Chela-Flores, J., Griffiths, A.D., Grindrod, P.M., Gurvits, L.I., Hagermann, A., Hussmann, H., Jaumann, R., Jones, A.P., Joy, K.H., Karatekin, O., Miljkovic, K., Palomba, E., Pike, W.T., Prieto-Ballesteros, O., Raulin, F., Sephton, M.A., Sheridan, S., Sims, M., Storrie-Lombardi, M.C., Ambrosi, R., Fielding, J., Fraser, G., Gao, Y., Jones, G.H., Kargl, G., Karl, W.J., Macagnano, A., Mukherjee, A., Muller, J.P., Phipps, A., Pullan, D., Richter, L., Sohl, F., Snape, J., Sykes, J., and Wells, N.
- Published
- 2011
- Full Text
- View/download PDF
21. Martian CO2 Ice Observation at High Spectral Resolution With ExoMars/TGO NOMAD
- Author
-
Oliva, F., primary, D’Aversa, E., additional, Bellucci, G., additional, Carrozzo, F. G., additional, Ruiz Lozano, L., additional, Altieri, F., additional, Thomas, I. R., additional, Karatekin, O., additional, Cruz Mermy, G., additional, Schmidt, F., additional, Robert, S., additional, Vandaele, A. C., additional, Daerden, F., additional, Ristic, B., additional, Patel, M. R., additional, López‐Moreno, J.‐J., additional, and Sindoni, G., additional
- Published
- 2022
- Full Text
- View/download PDF
22. Water ice clouds detection with NOMAD LNO nadir channel on board ExoMars TGO
- Author
-
Ruiz Lozano, Luca, Karatekin, O, Dehant, Véronique, Belluci, G., Olivia, F, 5 th Chianti Topics – International Focus Workshop, and UCL - SST/ELI/ELIC - Earth & Climate
- Published
- 2022
23. An impact-driven dynamo for the early Moon
- Author
-
Bars, M. Le, Wieczorek, M.A., Karatekin, O., Cebron, D., and Laneuville, M.
- Subjects
Discovery and exploration ,Thermal properties ,Origin ,Magnetic properties ,Models ,Natural history ,Moon -- Magnetic properties -- Thermal properties -- Natural history ,Astronomical dynamos -- Models ,Magnetic anomalies -- Origin -- Discovery and exploration ,Dynamo theory (Cosmic physics) -- Models - Abstract
Magnetic field measurements of the Moon from orbit demonstrate that portions of its crust are strongly magnetized (1), and palaeomagnetic analyses of lunar rocks show that some samples possess stable [...], The origin of lunar magnetic anomalies (1-5) remains unresolved after their discovery more than four decades ago. A commonly invoked hypothesis is that the Moon might once have possessed a thermally driven core dynamo (3), but this theory is problematical given the small size of the core and the required surface magnetic field strengths (6). An alternative hypothesis is that impact events might have amplified ambient fields near the antipodes of the largest basins (7), but many magnetic anomalies exist that are not associated with basin antipodes. Here we propose a new model for magnetic field generation, in which dynamo action comes from impact-induced changes in the Moon's rotation rate. Basin-forming impact events are energetic enough to have unlocked the Moon from synchronous rotation (8), and we demonstrate that the subsequent large-scale fluid flows in the core, excited by the tidal distortion of the core-mantle boundary (9), could have powered a lunar dynamo. Predicted surface magnetic field strengths are on the order of several microteslas, consistent with palaeomagnetic measurements (5), and the duration of these fields is sufficient to explain the central magnetic anomalies associated with several large impact basins.
- Published
- 2011
- Full Text
- View/download PDF
24. Listening for the Landing: Seismic Detections of Perseverance's Arrival at Mars With InSight
- Author
-
Fernando, B., Wójcicka, N., Froment, M., Maguire, R., Stähler, S.C., Rolland, L., Collins, G.S., Karatekin, O., Larmat, C., Sansom, Ellie, Teanby, N.A., Spiga, A., Karakostas, F., Leng, K., Nissen-Meyer, T., Kawamura, T., Giardini, D., Lognonné, P., Banerdt, B., Daubar, I.J., Fernando, B., Wójcicka, N., Froment, M., Maguire, R., Stähler, S.C., Rolland, L., Collins, G.S., Karatekin, O., Larmat, C., Sansom, Ellie, Teanby, N.A., Spiga, A., Karakostas, F., Leng, K., Nissen-Meyer, T., Kawamura, T., Giardini, D., Lognonné, P., Banerdt, B., and Daubar, I.J.
- Abstract
The entry, descent, and landing (EDL) sequence of NASA's Mars 2020 Perseverance Rover will act as a seismic source of known temporal and spatial localization. We evaluate whether the signals produced by this event will be detectable by the InSight lander (3,452 km away), comparing expected signal amplitudes to noise levels at the instrument. Modeling is undertaken to predict the propagation of the acoustic signal (purely in the atmosphere), the seismoacoustic signal (atmosphere-to-ground coupled), and the elastodynamic seismic signal (in the ground only). Our results suggest that the acoustic and seismoacoustic signals, produced by the atmospheric shock wave from the EDL, are unlikely to be detectable due to the pattern of winds in the martian atmosphere and the weak air-to-ground coupling, respectively. However, the elastodynamic seismic signal produced by the impact of the spacecraft's cruise balance masses on the surface may be detected by InSight. The upper and lower bounds on predicted ground velocity at InSight are 2.0 × 10−14 and 1.3 × 10−10 m s−1. The upper value is above the noise floor at the time of landing 40% of the time on average. The large range of possible values reflects uncertainties in the current understanding of impact-generated seismic waves and their subsequent propagation and attenuation through Mars. Uncertainty in the detectability also stems from the indeterminate instrument noise level at the time of this future event. A positive detection would be of enormous value in constraining the seismic properties of Mars, and in improving our understanding of impact-generated seismic waves.
- Published
- 2021
25. Martian CO2 Ice Observation at High Spectral Resolution With ExoMars/TGO NOMAD.
- Author
-
Oliva, F., D'Aversa, E., Bellucci, G., Carrozzo, F. G., Ruiz Lozano, L., Altieri, F., Thomas, I. R., Karatekin, O., Cruz Mermy, G., Schmidt, F., Robert, S., Vandaele, A. C., Daerden, F., Ristic, B., Patel, M. R., López‐Moreno, J.‐J., and Sindoni, G.
- Subjects
ICE clouds ,MARTIAN atmosphere ,MARTIAN surface ,TRACE gases ,ICE ,DUST storms - Abstract
The Nadir and Occultation for MArs Discovery (NOMAD) instrument suite aboard ExoMars/Trace Gas Orbiter spacecraft is mainly conceived for the study of minor atmospheric species, but it also offers the opportunity to investigate surface composition and aerosols properties. We investigate the information content of the Limb, Nadir, and Occultation (LNO) infrared channel of NOMAD and demonstrate how spectral orders 169, 189, and 190 can be exploited to detect surface CO2 ice. We study the strong CO2 ice absorption band at 2.7 μm and the shallower band at 2.35 μm taking advantage of observations across Martian Years 34 and 35 (March 2018 to February 2020), straddling a global dust storm. We obtain latitudinal‐seasonal maps for CO2 ice in both polar regions, in overall agreement with predictions by a general climate model and with the Mars Express/OMEGA spectrometer Martian Years 27 and 28 observations. We find that the narrow 2.35 μm absorption band, spectrally well covered by LNO order 189, offers the most promising potential for the retrieval of CO2 ice microphysical properties. Occurrences of CO2 ice spectra are also detected at low latitudes and we discuss about their interpretation as daytime high altitude CO2 ice clouds as opposed to surface frost. We find that the clouds hypothesis is preferable on the basis of surface temperature, local time and grain size considerations, resulting in the first detection of CO2 ice clouds through the study of this spectral range. Through radiative transfer considerations on these detections we find that the 2.35 μm absorption feature of CO2 ice clouds is possibly sensitive to nm‐sized ice grains. Plain Language Summary: The Nadir and Occultation for MArs Discovery (NOMAD) instrument aboard the ExoMars/Trace Gas Orbiter spacecraft is conceived for the study of non‐abundant gaseous species in the atmosphere of Mars. Nevertheless, we investigate its capability to observe the Martian surface, suspended dust and CO2 ice clouds. We verify that part of the signal registered by the instrument contains information on the presence of CO2 ice on the surface of Mars. We produce maps that predict the seasonal condensation/sublimation of the ice that are in general good agreement with a Mars climate model and with observations acquired by the OMEGA instrument aboard the Mars Express spacecraft. The data we study also observed a dust storm that globally enveloped the planet in 2018, allowing us to deduce that the dust in the atmosphere strongly affects the capability to detect the ice on the surface. Finally, we also find that some observations are compatible with CO2 ice clouds made of extremely small crystals (dimensions of some millionths of millimeters) that have never been observed by studying such specific part of the signal registered by NOMAD. Key Points: Martian surface CO2 ice detection at high spectral resolution with Trace Gas Orbiter/Nadir and Occultation for MArs DiscoveryGeneral good agreement of the seasonal surface CO2 ice maps with Mars Express/OMEGA observations and with Mars Climate Database predictionsCO2 ice clouds detection through the 2.35 micron CO2 ice absorption band, likely sensitive to a population of nm‐sized ice grains [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
26. Half a Mars Year of Atmospheric Results from InSight (Invited)
- Author
-
Newman, C., Banfield, D., Spiga, A., McQueen Baker, M., Banerdt, W.B., Charalambous, C., Forget, F., Garcia, R., Karatekin, O, Kenda, B., Lemmon, M.T., Lewis, S., Lognonne, P., Lorenz, R. D., Millour, E., Mimoun, David, Mueller, N., Murdoch, N., Pike, T., Pla-Garcia, J., Rodriguez, S., Teanby, N., and Viudez-Moreira, D.
- Subjects
Mars ,Atmosphäre - Published
- 2019
27. ExoMars 2020 – AMELIA: the EDL science experiment for the entry and descent module of the ExoMars 2020 mission
- Author
-
Ferri, F., Aboudan, A., Colombatti, G., Bettanini, C., Debei, S., Karatekin, O., Stephen Lewis, Forget, F., Asmar, S., Lipatov, A., Polyanskiy, I., Harri, A. -M, Ori, G. G., Pacifici, A., Machenkov, K., Rodionov, D., and Modzhina, N.
- Published
- 2019
28. Mars Atmospheric Science from NASA's InSight Lander
- Author
-
Banfield, D., Spiga, Aymeric, Newman, C., Lorenz, R.D., Forget, F., Lemmon, M. T., Viudez-Moreira, D., Pla-Garcia, J., Teanby, N., Murdoch, N., Garcia, R., Lognonne, P., Kenda, B., Perrin, C., Rodriguez, S., Lucas, A., Kawamura, T., Mimoun, D., Karatekin, O., Lewis, S., Pike, W.T., McClean, J., Charalambous, C., Mueller, N., Millour, E., Mora-Sotomayor, L., Navarro, S., Rodriguez-Manfredi, J. -A., Torres, J., Maki, J., Smrekar, S., and Banerdt, W.B.
- Subjects
Physics::Fluid Dynamics ,Planetenphysik ,Mars ,Astrophysics::Earth and Planetary Astrophysics ,Meteorologie ,Astrophysics::Galaxy Astrophysics ,Physics::Atmospheric and Oceanic Physics ,Physics::Geophysics - Abstract
InSight carries a sophisticated Meteorological Station and has observed a dust storm, baroclinic waves, thermal tides, gravity waves, undular bores, convective vortices (with dust cleaning), infrasound, clouds and aeolian change. We report on these.
- Published
- 2019
29. The Asteroid Framing Cameras onboard HERA and payload operations at Close proximity to the Didymos binary Asteroid system
- Author
-
Tubiana, C., Ulamec, Stephan, Güttler, C., Karatekin, O., Murdoch, N., Michel, P., Küppers, M., Carnelli, Ian, and and the, HERA WG4
- Subjects
HERA ,didymos ,Asteroids - Published
- 2019
30. Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
- Author
-
Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Ristic, Bojan, Patel, Manish R., Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Smith, M.D., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, S., Gomez, A., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Perez-grande, I., Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), and Canadian Space Agency
- Subjects
010504 meteorology & atmospheric sciences ,Storm ,Atmosphere of Mars ,Mars Exploration Program ,Atmospheric sciences ,01 natural sciences ,Trace gas ,Atmosphere ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Dust storm ,Earth and Planetary Sciences (miscellaneous) ,Environmental science ,Hadley cell ,Water vapor ,0105 earth and related environmental sciences - Abstract
It has been suggested that dust storms efficiently transport water vapor from the near-surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid-September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S-60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole-to-pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S. ©2019. American Geophysical Union. All Rights Reserved., S. A. is >Charge de Recherches> of the F.R.S.-FNRS. ExoMars is a space mission of the European Space Agency and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASBBIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office, with the financial and contractual coordination by the European Space Agency Prodex Office (PEA 4000103401 and 4000121493), by the Spanish MICINN through its Plan Nacional and by European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as by UK Space Agency through grants ST/R005761/1, ST/P001262/1, ST/R001405/1, and ST/S00145X/1 and Italian Space Agency through grant 2018-2-HH.0. The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the >Center of Excellence Severo Ochoa> award for the Instituto de Astrofisica de Andalucia (SEV-2017-0709). This work was supported by the Belgian Fonds de la Recherche Scientifique-FNRS under grant numbers 30442502 (ET_HOME) and T.0171.16 (CRAMIC) and Belgian Science Policy Office BrainBe SCOOP Project. U.S. investigators were supported by the National Aeronautics and Space Administration. Canadian investigators were supported by the Canadian Space Agency. The results retrieved from the NOMAD measurements used in this article are available on the BIRA-IASB data repository: http://repository.aeronomie.be/?doi= 10.18758/71021054 (Aoki et al., 2019).
- Published
- 2019
31. Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
- Author
-
Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), Canadian Space Agency, Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Pérez Grande, Isabel, Ristic, Bojan, Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Smith, M.D., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Patel, Manish R., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, Samuel, Gomez, A., Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), Canadian Space Agency, Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Pérez Grande, Isabel, Ristic, Bojan, Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Smith, M.D., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Patel, Manish R., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, Samuel, and Gomez, A.
- Abstract
It has been suggested that dust storms efficiently transport water vapor from the near-surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid-September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S-60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole-to-pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S. ©2019. American Geophysical Union. All Rights Reserved.
- Published
- 2019
32. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter
- Author
-
Ministerio de Ciencia e Innovación (España), European Space Agency, Belgian Science Policy Office, European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Roscosmos, Centre National de la Recherche Scientifique (France), Russian Government, Vandaele, Ann Carine, Korablev, O., Daerden, Frank, Aoki, Shohei, Thomas, Ian R., Altieri, F., López-Valverde, M. A., Villanueva, Geronimo L., Liuzzi, Giuliano, Smith, M. D., Erwin, Justin T., Trompet, L., Fedorova, A. A., Montmessin, Franck, Trokhimovskiy, A., Belyaev, D.A., Ignatiev, N. I., Luginin, M., Olsen, K. S., Baggio, L., Alday, J., Bertaux, J.L., Betsis, D., Bolsée, D., Clancy, R. Todd, Cloutis, E., Depiesse, C., Funke, Bernd, García Comas, Maia, Gérard, Jean-Claude, Giuranna, M., González-Galindo, F., Grigoriev, A.V., Ivanov, Y. S., Kaminski, J., Karatekin, O., Lefèvre, F., Lewis, S., López-Puertas, Manuel, Mahieux, A., Maslov, I., Mason, J., Mumma, M.J., Neary, L., Neefs, E., Patrakeev, A., Patsaev, D., Ristic, Bojan, Robert, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Martín-Torres, F. J., Vazquez, L., Zorzano, María Paz, Ministerio de Ciencia e Innovación (España), European Space Agency, Belgian Science Policy Office, European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Roscosmos, Centre National de la Recherche Scientifique (France), Russian Government, Vandaele, Ann Carine, Korablev, O., Daerden, Frank, Aoki, Shohei, Thomas, Ian R., Altieri, F., López-Valverde, M. A., Villanueva, Geronimo L., Liuzzi, Giuliano, Smith, M. D., Erwin, Justin T., Trompet, L., Fedorova, A. A., Montmessin, Franck, Trokhimovskiy, A., Belyaev, D.A., Ignatiev, N. I., Luginin, M., Olsen, K. S., Baggio, L., Alday, J., Bertaux, J.L., Betsis, D., Bolsée, D., Clancy, R. Todd, Cloutis, E., Depiesse, C., Funke, Bernd, García Comas, Maia, Gérard, Jean-Claude, Giuranna, M., González-Galindo, F., Grigoriev, A.V., Ivanov, Y. S., Kaminski, J., Karatekin, O., Lefèvre, F., Lewis, S., López-Puertas, Manuel, Mahieux, A., Maslov, I., Mason, J., Mumma, M.J., Neary, L., Neefs, E., Patrakeev, A., Patsaev, D., Ristic, Bojan, Robert, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Martín-Torres, F. J., Vazquez, L., and Zorzano, María Paz
- Abstract
Global dust storms on Mars are rare1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere3, primarily owing to solar heating of the dust3. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars4. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes5,6, as well as a decrease in the water column at low latitudes7,8. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H2O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals3. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
- Published
- 2019
33. The Castalia mission to Main Belt Comet 133P/Elst-Pizarro
- Author
-
Snodgrass, C., primary, Jones, G.H., additional, Boehnhardt, H., additional, Gibbings, A., additional, Homeister, M., additional, Andre, N., additional, Beck, P., additional, Bentley, M.S., additional, Bertini, I., additional, Bowles, N., additional, Capria, M.T., additional, Carr, C., additional, Ceriotti, M., additional, Coates, A.J., additional, Della Corte, V., additional, Donaldson Hanna, K.L., additional, Fitzsimmons, A., additional, Gutiérrez, P.J., additional, Hainaut, O.R., additional, Herique, A., additional, Hilchenbach, M., additional, Hsieh, H.H., additional, Jehin, E., additional, Karatekin, O., additional, Kofman, W., additional, Lara, L.M., additional, Laudan, K., additional, Licandro, J., additional, Lowry, S.C., additional, Marzari, F., additional, Masters, A., additional, Meech, K.J., additional, Moreno, F., additional, Morse, A., additional, Orosei, R., additional, Pack, A., additional, Plettemeier, D., additional, Prialnik, D., additional, Rotundi, A., additional, Rubin, M., additional, Sánchez, J.P., additional, Sheridan, S., additional, Trieloff, M., additional, and Winterboer, A., additional
- Published
- 2018
- Full Text
- View/download PDF
34. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season
- Author
-
Bettanini, C., primary, Esposito, F., additional, Debei, S., additional, Molfese, C., additional, Colombatti, G., additional, Aboudan, A., additional, Brucato, J.R., additional, Cortecchia, F., additional, Di Achille, G., additional, Guizzo, G.P., additional, Friso, E., additional, Ferri, F., additional, Marty, L., additional, Mennella, V., additional, Molinaro, R., additional, Schipani, P., additional, Silvestro, S., additional, Mugnuolo, R., additional, Pirrotta, S., additional, Marchetti, E., additional, Harri, A.-M., additional, Montmessin, F., additional, Wilson, C., additional, Rodríguez, I. Arruego, additional, Abbaki, S., additional, Apestigue, V., additional, Bellucci, G., additional, Berthelier, J.-J., additional, Calcutt, S.B., additional, Forget, F., additional, Genzer, M., additional, Gilbert, P., additional, Haukka, H., additional, Jiménez, J.J., additional, Jiménez, S., additional, Josset, J.-L., additional, Karatekin, O., additional, Landis, G., additional, Lorenz, R., additional, Martinez, J., additional, Möhlmann, D., additional, Moirin, D., additional, Palomba, E., additional, Patel, M., additional, Pommereau, J.-P., additional, Popa, C.I., additional, Rafkin, S., additional, Rannou, P., additional, Renno, N.O., additional, Schmidt, W., additional, Simoes, F., additional, Spiga, A., additional, Valero, F., additional, Vázquez, L., additional, Vivat, F., additional, and Witasse, O., additional
- Published
- 2018
- Full Text
- View/download PDF
35. The Castalia mission to Main Belt Comet 133P/Elst-Pizarro
- Author
-
Snodgrass, C., Jones, G.H., Boehnhardt, H., Gibbings, A., Homeister, M., Andre, N., Beck, P., Bentley, M.S., Bertini, I., Bowles, N., Capria, M.T., Carr, C., Ceriotti, M., Coates, A.J., Della Corte, V., Donaldson Hanna, K.L., Fitzsimmons, A., Gutiérrez, P.J., Hainaut, O.R., Herique, A., Hilchenbach, M., Hsieh, H.H., Jehin, E., Karatekin, O., Kofman, W., Lara, L.M., Laudan, K., Licandro, J., Lowry, S.C., Marzari, F., Masters, A., Meech, K.J., Moreno, F., Morse, A., Orosei, R., Pack, A., Plettemeier, D., Prialnik, D., Rotundi, A., Rubin, M., Sánchez, J.P., Sheridan, S., Trieloff, M., Winterboer, A., Snodgrass, C., Jones, G.H., Boehnhardt, H., Gibbings, A., Homeister, M., Andre, N., Beck, P., Bentley, M.S., Bertini, I., Bowles, N., Capria, M.T., Carr, C., Ceriotti, M., Coates, A.J., Della Corte, V., Donaldson Hanna, K.L., Fitzsimmons, A., Gutiérrez, P.J., Hainaut, O.R., Herique, A., Hilchenbach, M., Hsieh, H.H., Jehin, E., Karatekin, O., Kofman, W., Lara, L.M., Laudan, K., Licandro, J., Lowry, S.C., Marzari, F., Masters, A., Meech, K.J., Moreno, F., Morse, A., Orosei, R., Pack, A., Plettemeier, D., Prialnik, D., Rotundi, A., Rubin, M., Sánchez, J.P., Sheridan, S., Trieloff, M., and Winterboer, A.
- Abstract
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these.
- Published
- 2018
36. NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
- Author
-
Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Vandaele, Ann Carine, López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Daerden, Frank, Ristic, Bojan, Robert, S., Thomas, Ian R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, Bernd, González-Galindo, F., Geminale, A., Gérard, Jean-Claude, Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wolff, Michael T., Patel, M., D’aversa, E., Fussen, D., García Comas, Maia, Hewson, W., McConnel, J., Novak, R., Oliva, F., Piccialli, A., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G. P., Clairquin, R., Cubas, J., De-Lanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Queirolo, C., Saggin, B., Samain, V., Sanz Andres, A., Sanz Mesa, Rosario, Simar, J.-F., Thibert, T., Jerónimo, José María, The NOMAD Team, Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Vandaele, Ann Carine, López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Daerden, Frank, Ristic, Bojan, Robert, S., Thomas, Ian R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, Bernd, González-Galindo, F., Geminale, A., Gérard, Jean-Claude, Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wolff, Michael T., Patel, M., D’aversa, E., Fussen, D., García Comas, Maia, Hewson, W., McConnel, J., Novak, R., Oliva, F., Piccialli, A., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G. P., Clairquin, R., Cubas, J., De-Lanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Queirolo, C., Saggin, B., Samain, V., Sanz Andres, A., Sanz Mesa, Rosario, Simar, J.-F., Thibert, T., Jerónimo, José María, and The NOMAD Team
- Abstract
The NOMAD (“Nadir and Occultation for MArs Discovery”) spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars’ atmosphere, with a particular focus on trace gases, clouds and dust. The detection sensitivity for trace gases is considerably improved compared to previous Mars missions, compliant with the science objectives of the TGO mission. This will allow for a major leap in our knowledge and understanding of the Martian atmospheric composition and the related physical and chemical processes. The instrument is a combination of three spectrometers, covering a spectral range from the UV to the mid-IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and explain the technical principles of the three spectrometers. We also discuss the expected performance of the instrument in terms of spatial and temporal coverage and detection sensitivity.© 2018, The Author(s).
- Published
- 2018
37. The Castalia mission to Main Belt Comet 133P/Elst-Pizarro
- Author
-
Science and Technology Facilities Council (UK), European Southern Observatory, Snodgrass, C., Jones, G. H., Boehnhardt, H., Gibbings, A., Homeister, M., Andre, N., Beck, P., Bentley, M. S., Bertini, I., Bowles, Neil, Capria, M. T., Carr, C., Ceriotti, M., Coates, A. J., Della Corte, V., Donaldson Hanna, K. L., Fitzsimmons, A., Gutiérrez, Pedro J., Hainaut, O. R., Herique, A., Hilchenbach, M., Hsieh, H. H., Jehin, E., Karatekin, O., Kofman, W., Lara, Luisa María, Laudan, K., Licandro, J., Lowry, S. C., Marzari, F., Masters, A., Meech, K. J., Moreno, Fernando, Morse, A., Orosei, R., Pack, A., Plettemeier, D., Prialnik, D., Rotundi, A., Rubin, M., Sánchez, J. P., Sheridan, S., Trieloff, M., Winterboer, A., Science and Technology Facilities Council (UK), European Southern Observatory, Snodgrass, C., Jones, G. H., Boehnhardt, H., Gibbings, A., Homeister, M., Andre, N., Beck, P., Bentley, M. S., Bertini, I., Bowles, Neil, Capria, M. T., Carr, C., Ceriotti, M., Coates, A. J., Della Corte, V., Donaldson Hanna, K. L., Fitzsimmons, A., Gutiérrez, Pedro J., Hainaut, O. R., Herique, A., Hilchenbach, M., Hsieh, H. H., Jehin, E., Karatekin, O., Kofman, W., Lara, Luisa María, Laudan, K., Licandro, J., Lowry, S. C., Marzari, F., Masters, A., Meech, K. J., Moreno, Fernando, Morse, A., Orosei, R., Pack, A., Plettemeier, D., Prialnik, D., Rotundi, A., Rubin, M., Sánchez, J. P., Sheridan, S., Trieloff, M., and Winterboer, A.
- Abstract
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC's activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA's highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these. © 2017 COSPAR
- Published
- 2018
38. Atmospheric Mars Entry and Landing Investigations & Analysis (AMELIA) by ExoMars 2016 Schiaparelli Entry Descent Module
- Author
-
Ferri, F., Karatekin, O., Aboudan, A., Vanhove, B., Colombatti, G., Bettanini, C., Debei, S., Gerbal, N., Stephen Lewis, and Forget, F.
- Published
- 2017
39. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season
- Author
-
Bettanini, C, Esposito, F, Debei, S, Molfese, C, Colombatti, G, Aboudan, A, Brucato, JR, Cortecchia, F, Di Achille, G, Guizzo, GP, Friso, E, Ferri, F, Marty, L, Mennella, V, Molinaro, R, Schipani, P, Silvestro, S, Mugnuolo, R, Pirrotta, S, Marchetti, E, Harri, A-M, Montmessin, F, Wilson, C, Rodriguez, I, Abbaki, S, Apestigue, V, Bellucci, G, Berthelier, J-J, Calcutt, SB, Forget, F, Genzer, M, Gilbert, P, Haukka, H, Jimenez, JJ, Jimenez, S, Josset, J-L, Karatekin, O, Landis, G, Lorenz, R, Martinez, J, Moehlmann, D, Moirin, D, Palomba, E, Patel, M, Pommereau, J-P, Popa, CI, Rafkin, S, Rannou, P, Renno, NO, Schmidt, W, Simoes, F, Spiga, A, Valero, F, Vazquez, L, Vivat, F, Witasse, O, Ieee, Team, IDREAMS, ITA, USA, GBR, FRA, DEU, ESP, BEL, FIN, CHE, Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' (CISAS), Universita degli Studi di Padova, INAF - Osservatorio Astronomico di Capodimonte (OAC), Istituto Nazionale di Astrofisica (INAF), INAF - Osservatorio Astrofisico di Arcetri (OAA), Agenzia Spaziale Italiana (ASI), Finnish Meteorological Institute (FMI), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Clarendon Laboratory [Oxford], University of Oxford [Oxford], Instituto Nacional de Técnica Aeroespacial (INTA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Istituto di Fisica dello Spazio Interplanetario (IFSI), Consiglio Nazionale delle Ricerche (CNR), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universidad Politécnica de Madrid (UPM), Space Exploration Institute [Neuchâtel] (SPACE - X), Royal Observatory of Belgium [Brussels] (ROB), NASA Glenn Research Center, NASA, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), The Open University [Milton Keynes] (OU), Department of Space Studies [Boulder], Southwest Research Institute [Boulder] (SwRI), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Space Physics Research Laboratory [Ann Arbor] (SPRL), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, NASA Goddard Space Flight Center (GSFC), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Research and Scientific Support Department, ESTEC (RSSD), European Space Research and Technology Centre (ESTEC), European Space Agency (ESA)-European Space Agency (ESA), European Space Agency (ESA), Università degli Studi di Padova = University of Padua (Unipd), University of Oxford, National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Agence Spatiale Européenne = European Space Agency (ESA), and NLD
- Subjects
Meridiani Planum ,atmospheric electric phenomena ,010504 meteorology & atmospheric sciences ,Planetary protection ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Solar irradiance ,7. Clean energy ,01 natural sciences ,Mars dust storm ,Dust storm ,Martian surface ,dust storm ,0103 physical sciences ,CubeSat ,Electrical and Electronic Engineering ,Aerospace engineering ,010303 astronomy & astrophysics ,Instrumentation ,Remote sensing ,0105 earth and related environmental sciences ,Martian ,autonomous instrument ,Spacecraft ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,business.industry ,Applied Mathematics ,electric phenomena characterization ,meteorological measurements ,Mars landing ,Mars Exploration Program ,Atmosphere of Mars ,Wind direction ,atmospheric measurements on Mars ,Condensed Matter Physics ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,ExoMars mission ,[SDU]Sciences of the Universe [physics] ,Mars in situ analysis ,Environmental science ,ExoMars2016 mission ,business - Abstract
International audience; The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust.Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment.DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet.A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft .During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and update mission timelines for operation. Elaboration of housekeeping data showed that the behaviour of the whole instrument was nominal during the whole cruise. Unfortunately DREAMS was not able to operate on the surface of Mars, due to the known guidance anomaly during the descent that caused Schiaparelli to crash at landing.The adverse sequence of events at 4 km altitude anyway triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions.The spare models of DREAMS are currently in use at university premises for the development of autonomous units to be used in cubesat mission and in probes for stratospheric balloons launches in collaboration with Italian Space Agency.
- Published
- 2017
- Full Text
- View/download PDF
40. Expected performances of the NOMAD/ExoMars instrument
- Author
-
Robert, S, Vandaele, A. C., Thomas, I., Willame, Y., Daerden, F., Delanoye, S., Depiesse, C., Drummond, R., Neefs, E., Neary, L., Ristic, B., Mason, J., Lopez Moreno, J. J., Rodriguez Gomez, J., Patel, M. R., Bellucci, G., Patel, M., Allen, M., Altieri, F., Aoki, S., Bolsée, D., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Garcia Comas, M., Geminale, A., Gérard, J. C., Gillotay, D., Giuranna, M., Gonzalez Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López Puertas, M., López Valverde, M., Mahieux, A., Mcconnell, J., Mumma, M., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, I. R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Wilquet, V., Wolff, M., Alonso Rodrigo, G., Aparicio Del Moral, B., Barzin, P., Ben Moussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Giordanengo, B., Gissot, S., Gomez, A., Zafra, J. J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Orban, A., Pastor Morales, M., Perez Grande, I., Saggin, Bortolino, Samain, V., Sanz Andres, A., Sanz, R., Simar, J. F., Thibert, T., UK Space Agency, Belgian Science Policy Office, European Commission, and European Space Agency
- Subjects
ExoMars ESA mission ,010504 meteorology & atmospheric sciences ,Mars ,NOMAD instrument ,01 natural sciences ,Occultation ,law.invention ,Orbiter ,law ,0103 physical sciences ,Nadir ,Radiative transfer ,Abundances ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing ,atmosphere [Mars] ,Spectrometer ,Mars, atmosphere ,Astronomy and Astrophysics ,Space and Planetary Science ,Astronomy ,Mars Exploration Program ,Atmosphere of Mars ,Trace gas ,13. Climate action ,atmosphere ,Mars: atmosphere ,Environmental science - Abstract
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers - SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in (Vandaele et al., 2015a, 2015b; Thomas et al., 2016), the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, HO, HDO, CH, CH, CH, HCO, CH, SO, HS, HCl, HCN, HO, NH, NO, NO, OCS, O. NOMAD should have the ability to measure methane concentrations, NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office (PlanetADAM no 4000107727). The research was performed as part of the >Inter-university Attraction Poles> programme financed by the Belgian Government (Planet TOPERS no P7-15) and a BRAIN Research Grant BR/143/A2/SCOOP. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 607177 CrossDrive. UK funding is acknowledged under the UK Space Agency Grant ST/I003061/1.
- Published
- 2016
41. Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission
- Author
-
Le Gall, A, Malaska, J, Lorenz, D, Janssen, A, Tokano, T, Hayes, G, Mastrogiuseppe, M, Lunine, I, Veyssiere, G, Encrenaz, P, and Karatekin, O.
- Abstract
For the last decade, the passive radiometer incorporated in the Cassini RADAR has recorded the 2.2cm wavelength thermal emission from Titan's seas. In this paper, we analyze the radiometry observations collected from February 2007 to January 2015 over one of these seas, Ligeia Mare, with the goal of providing constraints on its composition, bathymetry, and dynamics. In light of the depth profile obtained by Mastrogiuseppe et al. (2014) and of a two-layer model, we find that the dielectric constant of the sea liquid is
- Published
- 2016
42. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season
- Author
-
Bettanini, C., primary, Esposito, F., additional, Debei, S., additional, Molfese, C., additional, Colombatti, G., additional, Aboudan, A., additional, Brucato, J. R., additional, Cortecchia, F., additional, Di Achille, G., additional, Guizzo, G. P., additional, Friso, E., additional, Ferri, F., additional, Marty, L., additional, Mennella, V., additional, Molinaro, R., additional, Schipani, P., additional, Silvestro, S., additional, Mugnuolo, R., additional, Pirrotta, S., additional, Marchetti, E., additional, Harri, A-M., additional, Montmessin, F., additional, Wilson, C., additional, Rodriguez, I. Arruego, additional, Abbaki, S., additional, Apestigue, V., additional, Bellucci, G., additional, Berthelier, J-J., additional, Calcutt, S. B., additional, Forget, F., additional, Genzer, M., additional, Gilbert, P., additional, Haukka, H., additional, Jimenez, J. J., additional, Jimenez, S., additional, Josset, J-L., additional, Karatekin, O., additional, Landis, G., additional, Lorenz, R., additional, Martinez, J., additional, Mohlmann, D., additional, Moirin, D., additional, Palomba, E., additional, Pateli, M., additional, Pommereau, J-P., additional, Popa, C. I., additional, Rafkin, S., additional, Rannou, P., additional, Renno, N. O., additional, Schmidt, W., additional, Simoes, F., additional, Spiga, A., additional, Valero, F., additional, Vazquez, L., additional, Vivat, F., additional, and Witasse, O., additional
- Published
- 2017
- Full Text
- View/download PDF
43. Atmospheric mars entry and landing investigations & analysis (AMELIA) by ExoMars 2016 Schiaparelli Entry Descent module: The ExoMars entry, descent and landing science
- Author
-
Ferri, F., primary, Ahondan, A., additional, Colombatti, G., additional, Bettanini, C., additional, Bebei, S., additional, Karatekin, O., additional, Van Hove, B., additional, Gerbal, N., additional, Asmar, S., additional, Lewis, S., additional, and Forget, F., additional
- Published
- 2017
- Full Text
- View/download PDF
44. Optical and radiometric models of the NOMAD instrument part I: the UVIS channel
- Author
-
Vandaele, Ann C., Willame, Yannick, Depiesse, Cédric, Thomas, Ian R., Robert, Séverine, Bolsée, David, Patel, Manish R., Mason, Jon P., Leese, Mark, Lesschaeve, Stefan, Antoine, Philippe, Daerden, Frank, Delanoye, Sofie, Drummond, Rachel, Neefs, Eddy, Ristic, Bojan, Lopez Moreno, José Juan, Bellucci, Giancarlo, Allen, M., Altieri, F., Aoki, S., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Garcia Comas, M., Geminale, A., Gérard, J. C., Gillotay, D., Giuranna, M., Gonzalez Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López Puertas, M., López Valverde, M., Mahieux, A., Mumma, M., Neary, L., Novak, R., Renotte, E., Sindoni, G., Smith, M., Trokhimovskiy, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Wilquet, V., Wolff, M., Alonso Rodrigo, G., Aparicio Del Moral, B., Barzin, P., Benmoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Giordanengo, B., Gissot, S., Gomez, A., Zafra, J. J., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Orban, A., Pastor Morales, M., Perez Grande, I., Rodriguez Gomez, J., Saggin, Bortolino, Samain, V., Sanz Andres, A., Sanz, R., Simar, J. F., Thibert, T., European Space Agency, UK Space Agency, and Belgian Science Policy Office
- Subjects
Solar occultation ,Radiometric model ,Occultation ,Signal ,law.invention ,Orbiter ,Optics ,law ,Atomic and Molecular Physics ,Nadir ,Optical constants ,Science objectives ,Remote sensing ,Physics ,Martian ,business.industry ,Signal to noise ,Atmosphere of Mars ,IR spectral range ,Atomic and Molecular Physics, and Optics ,Trace gas ,Wavelength ,Optical models ,Atmospheric absorption ,and Optics ,business ,Martian atmospheres - Abstract
The NOMAD instrument has been designed to best fulfil the science objectives of the ExoMars Trace Gas Orbiter mission that will be launched in 2016. The instrument is a combination of three channels that cover the UV, visible and IR spectral ranges and can perform solar occultation, nadir and limb observations. In this series of two papers, we present the optical models representing the three channels of the instrument and use them to determine signal to noise levels for different observation modes and Martian conditions. In this first part, we focus on the UVIS channel, which will sound the Martian atmosphere using nadir and solar occultation viewing modes, covering the 200-650nm spectral range. High SNR levels (, NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office (contracts no 4000107727 and 4000103401). The research was performed as part of the >Interuniversity Attraction Poles> programme financed by the Belgian government (Planet TOPERS, contract PAI no P7/15). UK funding is acknowledged under the UK Space Agency grant ST/I003061/1.
- Published
- 2015
45. The DREAMS experiment on the ExoMars 2016 mission for the study of Martian environment during the dust storm season
- Author
-
Bettanini, C., Esposito, F., Debei, S., Molfese, C., Arruego Rodriguez, I., Colombatti, G., Ari-Matti Harri, Montmessin, F., Wilson, C., Aboudan, A., Abbaki, S., Apestigue, V., Bellucci, G., Berthelier, J-J, Brucato, J. R., Calcutt, S. B., Cortecchia, F., Di Achille, G., Ferri, F., Forget, F., Guizzo, G. P., Friso, E., Genzer, M., Gilbert, P., Haukka, H., Jimenez, J. J., Jimenez, S., Josset, J-L, Karatekin, O., Landis, G., Lorenz, R., Martinez, J., Mennella, Marty V., Moehlmann, D., Moirin, D., Molinaro, R., Palomba, E., Patell, M., Pommereau, J-P, Popa, C. I., Rafkin, S., Rannou, P., Renno, N. O., Schipani, P., Schmidt, W., Silvestro, S., Simoes, F., Spiga, A., Valero, F., Vazquez, L., Vivat, F., Witasse, O., Mugnuolo, R., Pirrotta, S., Marchetti, E., IEEE, Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' (CISAS), Università degli Studi di Padova = University of Padua (Unipd), INAF - Osservatorio Astronomico di Capodimonte (OAC), Istituto Nazionale di Astrofisica (INAF), Instituto Nacional de Técnica Aeroespacial (INTA), Finnish Meteorological Institute (FMI), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Oxford, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), INAF - Osservatorio Astrofisico di Arcetri (OAA), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Space Exploration Institute [Neuchâtel] (SPACE - X), Royal Observatory of Belgium [Brussels] (ROB), NASA Glenn Research Center, NASA, University of Arizona, DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Department of Space Studies [Boulder], Southwest Research Institute [Boulder] (SwRI), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), University of Michigan [Ann Arbor], University of Michigan System, NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), Agenzia Spaziale Italiana (ASI), Universita degli Studi di Padova, University of Oxford [Oxford], Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), and European Space Agency (ESA)
- Subjects
atmospheric electric phenomena ,Mars dust storm ,autonomous instrument ,ExoMars ,meteorological measurements ,Aerospace Engineering ,13. Climate action ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,7. Clean energy - Abstract
International audience; The ExoMars programme, which is carried out by European Space Agency (ESA) in cooperation with the Russian federal Space Agency (Roscosmos), foresees a two-steps mission to Mars. The first mission consists of an orbiter and an Entry Descent and Landing Demonstrator Module (EDM) to be launched in January 2016 and is scheduled to land on the planet during the statistical dust storm season; the second mission includes a descent module, a surface platform and a rover and will be launched in 2018. The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment for ExoMars 2016 is an autonomous meteorological station designed to study the effect of dust on Martian environment which will operate for two Martian days (sols) relying on its own power supply after landing. DREAMS includes a suite of sensors able to analyse temperature, pressure, humidity, wind speed and direction and solar irradiance as well as an electric field probe which will perform the first electrical characterization of Mars surface atmosphere.
- Published
- 2014
46. Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission
- Author
-
Le Gall, A., Malaska, M. J., Lorenz, R. D., Janssen, M. A., Tokano, T., Hayes, A. G., Mastrogiuseppe, M., Lunine, J. I., Veyssiere, G., Encrenaz, P., Karatekin, O., Le Gall, A., Malaska, M. J., Lorenz, R. D., Janssen, M. A., Tokano, T., Hayes, A. G., Mastrogiuseppe, M., Lunine, J. I., Veyssiere, G., Encrenaz, P., and Karatekin, O.
- Abstract
For the last decade, the passive radiometer incorporated in the Cassini RADAR has recorded the 2.2cm wavelength thermal emission from Titan's seas. In this paper, we analyze the radiometry observations collected from February 2007 to January 2015 over one of these seas, Ligeia Mare, with the goal of providing constraints on its composition, bathymetry, and dynamics. In light of the depth profile obtained by Mastrogiuseppe et al. (2014) and of a two-layer model, we find that the dielectric constant of the sea liquid is <1.8, and its loss tangent is 3.6-2.1+4.3x10-5. Both results point to a composition dominated by liquid methane rather than ethane. A high methane concentration suggests that Ligeia Mare is primarily fed by methane-rich precipitation and/or ethane has been removed from it (e.g., by crustal interaction). Our result on the dielectric constant of the seafloor is less constraining
- Published
- 2016
47. Expected performances of the NOMAD/ExoMars instrument
- Author
-
UK Space Agency, Belgian Science Policy Office, European Commission, European Space Agency, Vandaele, Ann Carine, López-Moreno, José Juan, Bellucci, Giancarlo, Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Daerden, Frank, Depiesse, C., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., Giuranna, M., González-Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, Ian R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wilquet, V., Wolff, Michael T., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Delanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Zafra, J.-J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Ristic, Bojan, Rodríguez Gómez, Julio, Saggin, B., Samain, V., Sanz Andres, A., Sanz, R., Simar, J.-F., Thibert, T., Alonso-Rodrigo, G., UK Space Agency, Belgian Science Policy Office, European Commission, European Space Agency, Vandaele, Ann Carine, López-Moreno, José Juan, Bellucci, Giancarlo, Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Daerden, Frank, Depiesse, C., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., Giuranna, M., González-Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, Ian R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wilquet, V., Wolff, Michael T., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Delanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Zafra, J.-J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Ristic, Bojan, Rodríguez Gómez, Julio, Saggin, B., Samain, V., Sanz Andres, A., Sanz, R., Simar, J.-F., Thibert, T., and Alonso-Rodrigo, G.
- Abstract
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers - SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in (Vandaele et al., 2015a, 2015b; Thomas et al., 2016), the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, HO, HDO, CH, CH, CH, HCO, CH, SO, HS, HCl, HCN, HO, NH, NO, NO, OCS, O. NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged (Drummond et al., 2011). Results have been obtained for all three channels in nadir and in solar occultation.© 2016 The Authors. Published by Elsevier Ltd.
- Published
- 2016
48. A radar map of Titan Seas: tidal dissipation and ocean mixing through the throat of Kraken
- Author
-
Lorenz, D, Kirk, L, Hayes, G, Anderson, Z, Lunine, I, Tokano, T, Turtle, P, Malaska, J, Soderblom, M, Lucas, A, Karatekin, O., and Wall, D
- Abstract
We present a radar map of the Titan's seas, with bathymetry estimated as proportional to distance from the nearest shore. This naive analytic bathymetry, scaled to a recent radar sounding of Ligeia Mare, suggests a total liquid volume of 32,000 km(3), at the low end of estimates made in 2008 when mapping coverage was incomplete. We note that Kraken Mare has two principal basins, separated by a narrow (similar to 17 km wide, similar to 40 km long) strait we refer to as the 'throat'. Tidal currents in this strait may be dramatic (similar to 0.5 m/s), generating observable effects such as dynamic topography, whirlpools, and acoustic noise, much like tidal races on Earth such as the Corryvreckan off Scotland. If tidal flow through this strait is the dominant mixing process, the two basins take 20 Earth years to exchange their liquid inventory. Thus compositional differences over seasonal timescales may exist, but the composition of solutes (and thus evaporites) over Croll-Milankovich timescales should be homogenized.
- Published
- 2014
49. Kraken Mare bathymetry and composition from Cassini RADAR
- Author
-
Mastrogiuseppe M., Hayes A., Le Gall A., Casarano D., Hofgartner J., Lorenz R., Lunine J., Notarnicola C., Poggiali V., Karatekin O., and Seu R.
- Published
- 2014
50. The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets
- Author
-
Arridge, C.S. Achilleos, N. Agarwal, J. Agnor, C.B. Ambrosi, R. André, N. Badman, S.V. Baines, K. Banfield, D. Barthélémy, M. Bisi, M.M. Blum, J. Bocanegra-Bahamon, T. Bonfond, B. Bracken, C. Brandt, P. Briand, C. Briois, C. Brooks, S. Castillo-Rogez, J. Cavalié, T. Christophe, B. Coates, A.J. Collinson, G. Cooper, J.F. Costa-Sitja, M. Courtin, R. Daglis, I.A. De Pater, I. Desai, M. Dirkx, D. Dougherty, M.K. Ebert, R.W. Filacchione, G. Fletcher, L.N. Fortney, J. Gerth, I. Grassi, D. Grodent, D. Grün, E. Gustin, J. Hedman, M. Helled, R. Henri, P. Hess, S. Hillier, J.K. Hofstadter, M.H. Holme, R. Horanyi, M. Hospodarsky, G. Hsu, S. Irwin, P. Jackman, C.M. Karatekin, O. Kempf, S. Khalisi, E. Konstantinidis, K. Krüger, H. Kurth, W.S. Labrianidis, C. Lainey, V. Lamy, L.L. Laneuville, M. Lucchesi, D. Luntzer, A. MacArthur, J. Maier, A. Masters, A. McKenna-Lawlor, S. Melin, H. Milillo, A. Moragas-Klostermeyer, G. Morschhauser, A. Moses, J.I. Mousis, O. Nettelmann, N. Neubauer, F.M. Nordheim, T. Noyelles, B. Orton, G.S. Owens, M. Peron, R. Plainaki, C. Postberg, F. Rambaux, N. Retherford, K. Reynaud, S. Roussos, E. Russell, C.T. Rymer, A.M. Sallantin, R. Sánchez-Lavega, A. Santolik, O. Saur, J. Sayanagi, K.M. Schenk, P. Schubert, J. Sergis, N. Sittler, E.C. Smith, A. Spahn, F. Srama, R. Stallard, T. Sterken, V. Sternovsky, Z. Tiscareno, M. Tobie, G. Tosi, F. Trieloff, M. Turrini, D. Turtle, E.P. Vinatier, S. Wilson, R. Zarka, P.
- Subjects
Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013. © 2014 Elsevier Ltd.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.