1. Organic anion transporters, OAT1 and OAT3, are crucial biopterin transporters involved in bodily distribution of tetrahydrobiopterin and exclusion of its excess
- Author
-
Shin Aizawa, Akiko Ohashi, Tomonori Harada, Tomihisa Takahashi, Hiroyuki Hasegawa, Masako Naito, and Kaori Mamada
- Subjects
0301 basic medicine ,Sepiapterin ,medicine.medical_specialty ,Organic anion transporter 1 ,Xenopus ,Clinical Biochemistry ,Biopterin ,Biological Transport, Active ,Phenylalanine ,Organic Anion Transporters, Sodium-Independent ,Article ,Cell Line ,Rats, Sprague-Dawley ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Organic Anion Transport Protein 1 ,Dihydrobiopterin ,Internal medicine ,medicine ,Animals ,Molecular Biology ,Tetrahydrobiopterin ,biology ,Probenecid ,Alkylglycerol monooxygenase ,Cell Biology ,General Medicine ,Biopterin transport ,Rats ,030104 developmental biology ,Endocrinology ,chemistry ,biology.protein ,Oocytes ,NOS dysfunction ,Equilibrative nucleoside transporter ,030217 neurology & neurosurgery ,Organic anion transporter ,medicine.drug - Abstract
Tetrahydrobiopterin (BH4) is a common coenzyme of phenylalanine-, tyrosine-, and tryptophan hydroxylases, alkylglycerol monooxygenase, and NO synthases (NOS). Synthetic BH4 is used medicinally for BH4-responsive phenylketonuria and inherited BH4 deficiency. BH4 supplementation has also drawn attention as a therapy for various NOS-related cardio-vascular diseases, but its use has met with limited success in decreasing BH2, the oxidized form of BH4. An increase in the BH2/BH4 ratio leads to NOS dysfunction. Previous studies revealed that BH4 supplementation caused a rapid urinary loss of BH4 accompanied by an increase in the blood BH2/BH4 ratio and an involvement of probenecid-sensitive but unknown transporters was strongly suggested in these processes. Here we show that OAT1 and OAT3 enabled cells to take up BP (BH4 and/or BH2) in a probenecid-sensitive manner using rat kidney slices and transporter-expressing cell systems, LLC-PK1 cells and Xenopus oocytes. Both OAT1 and OAT3 preferred BH2 and sepiapterin as their substrate roughly 5- to 10-fold more than BH4. Administration of probenecid acutely reduced the urinary exclusion of endogenous BP accompanied by a rise in blood BP in vivo. These results indicated that OAT1 and OAT3 played crucial roles: (1) in determining baseline levels of blood BP by excluding endogenous BP through the urine, (2) in the rapid distribution to organs of exogenous BH4 and the exclusion to urine of a BH4 excess, particularly when BH4 was administered, and (3) in scavenging blood BH2 by cellular uptake as the gateway to the salvage pathway of BH4, which reduces BH2 back to BH4.
- Published
- 2017