4 results on '"Kanashiro MA"'
Search Results
2. iPSC-derived megakaryocytes and platelets accelerate wound healing and angiogenesis.
- Author
-
Kosaka K, Takayama N, Paul SK, Kanashiro MA, Oshima M, Fukuyo M, Rahmutulla B, Tajiri I, Mukai M, Kubota Y, Akita S, Furuyama N, Kaneda A, Iwama A, Eto K, and Mitsukawa N
- Subjects
- Humans, Animals, Mice, Human Umbilical Vein Endothelial Cells metabolism, Diabetes Mellitus, Experimental metabolism, Angiogenesis, Wound Healing, Induced Pluripotent Stem Cells metabolism, Induced Pluripotent Stem Cells cytology, Neovascularization, Physiologic, Megakaryocytes metabolism, Megakaryocytes cytology, Blood Platelets metabolism
- Abstract
Background: Platelet-rich plasma (PRP), which is prepared by concentrating platelets in autologous blood, shows efficacy in chronic skin wounds via multiple growth factors. However, it exhibits heterogeneity across patients, leading to unstable therapeutic efficacy. Human induced pluripotent stem cell (iPSC)-derived megakaryocytes and platelets (iMPs) are capable of providing a stable supply, holding promise as materials for novel platelet concentrate-based therapies. In this context, we evaluated the effect of iMPs on wound healing and validated lyophilization for clinical applications., Methods: The growth factors released by activated iMPs were measured. The effect of the administration of iMPs on human fibroblasts and human umbilical vein endothelial cells (HUVECs) was investigated in vitro. iMPs were applied to dorsal skin defects of diabetic mice to assess the wound closure rate and quantify collagen deposition and angiogenesis. Following the storage of freeze-dried iMPs (FD-iMPs) for three months, the stability of growth factors and their efficacy in animal models were determined., Result: Multiple growth factors that promote wound healing were detected in activated iMPs. iMPs specifically released FGF2 and exhibited a superior enhancement of HUVEC proliferation compared to PRP. Moreover, an RNA-seq analysis revealed that iMPs induce polarization to stalk cells and enhance ANGPTL4 gene expression in HUVECs. Animal studies demonstrated that iMPs promoted wound closure and angiogenesis in chronic wounds caused by diabetes. We also confirmed the long-term stability of growth factors in FD-iMPs and their comparable effects to those of original iMPs in the animal model., Conclusion: Our study demonstrates that iMPs promote angiogenesis and wound healing through the activation of vascular endothelial cells. iMPs exhibited more effectiveness than PRP, an effect attributed to the exclusive presence of specific factors including FGF2. Lyophilization enabled the long-term maintenance of the composition of the growth factors and efficacy of the iMPs, therefore contributing to stable supply for clinical application. These findings suggest that iMPs provide a novel treatment for chronic wounds., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. A let-7 microRNA-RALB axis links the immune properties of iPSC-derived megakaryocytes with platelet producibility.
- Author
-
Chen SJ, Hashimoto K, Fujio K, Hayashi K, Paul SK, Yuzuriha A, Qiu WY, Nakamura E, Kanashiro MA, Kabata M, Nakamura S, Sugimoto N, Kaneda A, Yamamoto T, Saito H, Takayama N, and Eto K
- Subjects
- Humans, Megakaryocytes, Blood Platelets metabolism, Thrombopoiesis genetics, Induced Pluripotent Stem Cells metabolism, MicroRNAs genetics, MicroRNAs metabolism
- Abstract
We recently achieved the first-in-human transfusion of induced pluripotent stem cell-derived platelets (iPSC-PLTs) as an alternative to standard transfusions, which are dependent on donors and therefore variable in supply. However, heterogeneity characterized by thrombopoiesis-biased or immune-biased megakaryocytes (MKs) continues to pose a bottleneck against the standardization of iPSC-PLT manufacturing. To address this problem, here we employ microRNA (miRNA) switch biotechnology to distinguish subpopulations of imMKCLs, the MK cell lines producing iPSC-PLTs. Upon miRNA switch-based screening, we find imMKCLs with lower let-7 activity exhibit an immune-skewed transcriptional signature. Notably, the low activity of let-7a-5p results in the upregulation of RAS like proto-oncogene B (RALB) expression, which is crucial for the lineage determination of immune-biased imMKCL subpopulations and leads to the activation of interferon-dependent signaling. The dysregulation of immune properties/subpopulations, along with the secretion of inflammatory cytokines, contributes to a decline in the quality of the whole imMKCL population., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Silencing of p53 and CDKN1A establishes sustainable immortalized megakaryocyte progenitor cells from human iPSCs.
- Author
-
Sone M, Nakamura S, Umeda S, Ginya H, Oshima M, Kanashiro MA, Paul SK, Hashimoto K, Nakamura E, Harada Y, Tsujimura K, Saraya A, Yamaguchi T, Sugimoto N, Sawaguchi A, Iwama A, Eto K, and Takayama N
- Subjects
- Blood Platelets metabolism, Cell Line, Cell Proliferation, Clone Cells, Gene Knockdown Techniques, HEK293 Cells, Humans, Polycomb Repressive Complex 1 metabolism, Proto-Oncogene Proteins c-myc metabolism, Up-Regulation, bcl-X Protein metabolism, Cyclin-Dependent Kinase Inhibitor p21 metabolism, Gene Silencing, Induced Pluripotent Stem Cells metabolism, Megakaryocyte Progenitor Cells metabolism, Tumor Suppressor Protein p53 metabolism
- Abstract
Platelet transfusions are critical for severe thrombocytopenia but depend on blood donors. The shortage of donors and the potential of universal HLA-null platelet products have stimulated research on the ex vivo differentiation of human pluripotent stem cells (hPSCs) to platelets. We recently established expandable immortalized megakaryocyte cell lines (imMKCLs) from hPSCs by transducing MYC, BMI1, and BCL-XL (MBX). imMKCLs can act as cryopreservable master cells to supply platelet concentrates. However, the proliferation rates of the imMKCLs vary with the starting hPSC clone. In this study, we reveal from the gene expression profiles of several MKCL clones that the proliferation arrest is correlated with the expression levels of specific cyclin-dependent kinase inhibitors. Silencing CDKN1A and p53 with the overexpression of MBX was effective at stably inducing imMKCLs that generate functional platelets irrespective of the hPSC clone. Collectively, this improvement in generating imMKCLs should contribute to platelet industrialization and platelet biology., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.