8 results on '"Kamila, Kare"'
Search Results
2. General Hannan and Quinn Criterion for Common Time Series
- Author
-
Kamila, Kare
- Subjects
Mathematics - Statistics Theory ,Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
This paper aims to study data driven model selection criteria for a large class of time series, which includes ARMA or AR($\infty$) processes, as well as GARCH or ARCH($\infty$), APARCH and many others processes. We tackled the challenging issue of designing adaptive criteria which enjoys the strong consistency property. When the observations are generated from one of the aforementioned models, the new criteria, select the true model almost surely asymptotically. The proposed criteria are based on the minimization of a penalized contrast akin to the Hannan and Quinn's criterion and then involved a term which is known for most classical time series models and for more complex models, this term can be data driven calibrated. Monte-Carlo experiments and an illustrative example on the CAC 40 index are performed to highlight the obtained results.
- Published
- 2021
3. Consistent model selection criteria and goodness-of-fit test for affine causal processes
- Author
-
Bardet, Jean-Marc, Kamila, Kare, and Kengne, William
- Subjects
Mathematics - Statistics Theory - Abstract
This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($\infty$) processes, as well as the GARCH or ARCH($\infty$), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient conditions for the penalty term to ensure the consistency of the proposed procedure as well as the consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the chosen model. It appears from these conditions that the Bayesian Information Criterion (BIC) does not always guarantee the consistency. We also propose a tool for diagnosing the goodness-of-fit of the chosen model based on the portmanteau Test. Numerical simulations and an illustrative example on the FTSE index are performed to highlight the obtained asymptotic results, including a numerical evidence of the non consistency of the usual BIC penalty for order selection of an AR(p) models with ARCH($\infty$) errors.
- Published
- 2019
4. Data-driven model selection for same-realization predictions in autoregressive processes
- Author
-
Kamila, Kare, primary
- Published
- 2022
- Full Text
- View/download PDF
5. Model selection for affine causal processes
- Author
-
Kamila, Kare, Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) (SAMM), Université Paris 1 Panthéon-Sorbonne (UP1), Université Paris 1 - Panthéon-Sorbonne, Jean-Marc BARDET, William KENGNE, and KAMILA, Kare
- Subjects
model selection ,efficient criteria ,estimation par quasi-vraisemblance ,critères consistants ,critères efficients ,quasi-likelihood estimation ,oracle inequality ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,consistent criteria ,Causal affine models ,slope heuristic ,data-driven ,sélection de modèles ,heuristique de pente ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] ,Modèles affines causaux ,inégalité oracle - Abstract
Time series analysis is a very active research topic in Statistics and Data Science. Theabundance of this type of data has created a huge need for efficient and accurate methodologies.Thus, several families of models have emerged. Given this multitude of models,how do you choose one to model a time series? The purpose of this thesis is to proposeand study model selection criteria for a large family of models containing autoregressivetime series such as ARMA and conditionally heteroscedastic time series such as GARCH.We start with a brief presentation of time series, in particular of the family of causalaffine models, while recalling some previous results useful for this thesis. We then describesome classical model selection criteria obtained for time series and end with a brief summaryof our main contributions.The rest of our work presents our four contributions. The first chapter gives sufficientconditions on the penalty depending on the regularity of the dependence of the process onits past in order to obtain a consistent criterion. We also propose a goodness-of-fit test ofthe selected model based on the autocorrelation of the square of the model residuals. Thenumerical simulations have shown satisfactory results.In Chapter 3, we propose a generalization of the Hannan and Quinn criterion to theclass of causal affine series. This generalization induces a certain constant known for classicalmodels (ARMA, GARCH or APARCH type) and can be data-driven estimated forcomplex models like ARMA-GARCH. Here again, some simulation studies have attestedto the quality of the criteria obtained.In the third contribution, we construct asymptotically efficient criteria. We propose ageneralization of Akaike’s AIC criterion based on the so-called ideal penalty. The asymptoticbehavior of this ideal penalty suggested a penalty term which is exactly $2\,D_m$ asin the AIC for simple models, and for complex models, we give a less explicit formula.Following Schwartz, we also derive the BIC criterion based on the maximization of the aposteriori probability of choosing the true model.In Chapter 5, we restricted ourselves to the non-asymptotic study of a particular processof the class of causal affines. A penalized least-squares estimator is built on a datadriven selected model among a collection of linear models. We showed that the final estimatorperforms almost as well as the best over the considered collection, i.e. it achieves,up to a constant, the bias-variance tradeoff. The penalty obtained generalizes Mallows’penalty and depends on a constant that is estimated with data-driven calibration algorithms.Finally, we give some research directions in the General Conclusion of the work., L’analyse des séries temporelles est un sujet de recherche très actif en Statistique eten Data Science. L’abondance de ce type de données a créé d’énormes besoins de méthodologiesefficaces et précises. C’est ainsi que plusieurs familles de modèles ont vu lejour. Étant donnée cette multitude de modèles, comment en choisir un pour modéliserune série temporelle ? L’objet de cette thèse est de proposer et d’étudier des critères desélection de modèles pour une grande famille de modèles contenant les séries temporellesautorégressives telles les ARMA ainsi que les séries temporelles conditionnellement hétéroscédastiquestelles les GARCH.Nous commençons par une brève présentation des séries temporelles, en particulier dela famille des modèles affines causaux tout en rappelant quelques précédents résultatsutiles pour cette thèse. Nous décrivons ensuite quelques critères classiques de sélection demodèles obtenus pour les séries temporelles et terminons par un succinct résumé de nosprincipales contributions.Dans la suite, nous allons présenter les quatre contributions originales de cette thèse.Le chapitre 2 donne des conditions suffisantes sur la pénalité en fonction de la régularitéde la dépendance du processus par rapport à son passé afin d’obtenir un critère consistanten probabilité. Nous proposons également un test d’adéquation du modèle sélectionnébasé sur l’autocorrélation du carré des résidus du modèle. Les simulations numériques ontmontré des résultats satisfaisants.Au chapitre 3, nous proposons une généralisation du critère de Hannan et Quinn à laclasse des séries affines causales. Cette généralisation induit une certaine constante connuepour les modèles classiques (type ARMA, GARCH ou APARCH) et pour les modèlescomplexes tels les ARMA-GARCH, la constante est inconnue mais peut être estimée demanière adaptative via l’heuristique de pente. Là également, quelques études de simulationont attesté de la qualité des critères obtenus.Dans la troisième contribution, nous construisons des critères asymptotiquement efficients.Nous proposons une généralisation du critère AIC d’Akaike se basant sur la pénalité diteidéale. Le comportement asymptotique de cette pénalité idéale nous a suggéré un termede pénalité qui vaut exactement $2\,D_m$ comme dans l’AIC pour des modèles assez simples,et pour des modèles complexes, nous avons donné une formule moins explicite. A la suitede Schwartz, nous dérivons également le critère BIC qui s’appuie sur la maximisation dela probabilité a posteriori de choisir le vrai modèle.Au chapitre 5, nous nous sommes restreints à l’étude non asymptotique d’un processusparticulier de la classe des modèles affines causaux. Un estimateur des moindres carréspénalisé est construit à partir d’un critère de sélection adaptatif et la sélection est opéréeparmi une collection de modèles linéaires. Nous avons montré que l’estimateur final estpresque aussi performant que le meilleur sur la collection considérée, i.e. qu’il réalise, àune constante près, le compromis biais-variance. La pénalité obtenue généralise celle deMallows et dépend d’une constante que l’on pourrait estimer avec des algorithmes de calibrationadaptative.Enfin, nous donnons quelques pistes de recherche dans la Conclusion générale du travail.
- Published
- 2021
6. DATA DRIVEN MODEL SELECTION FOR SAME-REALIZATION PREDICTIONS IN AUTOREGRESSIVE PROCESSES
- Author
-
Kamila, Kare, Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) (SAMM), Université Paris 1 Panthéon-Sorbonne (UP1), and KAMILA, Kare
- Subjects
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,[STAT.TH] Statistics [stat]/Statistics Theory [stat.TH] ,efficiency ,data driven ,[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH] ,autoregressive process ,Model selection ,oracle inequality ,[STAT.ML] Statistics [stat]/Machine Learning [stat.ML] - Abstract
This paper is about the one-step ahead prediction of the future of observations drawn from an infinite-order autoregressive AR(∞) process. The aim of this paper is to design penalties (complete data driven) ensuring that the selected model verifies the efficiency property but in the non asymptotic framework. We present an oracle inequality with a leading constant equal to one. Moreover, we also show that the excess risk of the selected estimator enjoys the best bias-variance trade-off over the considered collection. To achieve these results, we needed to overcome the dependence difficulties by following a classical approach which consists in restricting to a set where the empirical covariance matrix is equivalent to the theoretical one. We show that this event happens with probability larger than 1 − c 0 /n 3 with c 0 > 0. The proposed data driven criteria are based on the minimization of the penalized criterion akin to the Mallows's C p. Monte Carlo experiments are performed to highlight the obtained results.
- Published
- 2021
7. General Hannan and Quinn criterion for common time series
- Author
-
Kamila, Kare, primary
- Published
- 2022
- Full Text
- View/download PDF
8. Consistent model selection criteria and goodness-of-fit test for common time series models
- Author
-
Bardet, Jean-Marc, primary, Kamila, Kare, additional, and Kengne, William, additional
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.