1. Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin
- Author
-
Yeh, K., Jabal, M. S., Gupta, V., Kallmes, D. F., Brinjikji, W., and Erdal, B. S.
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Background and Purpose: Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention yet is often undetermined. This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin from histopathological images. Methods: The dataset included whole slide images (WSI) from the STRIP AI Kaggle challenge, consisting of retrieved clots from ischemic stroke patients following mechanical thrombectomy. Transformer-based deep learning models were developed using transfer learning and self-supervised pretraining for classifying WSI. Customizations included an attention pooling layer, weighted loss function, and threshold optimization. Various model architectures were tested and compared, and model performances were primarily evaluated using weighted logarithmic loss. Results: The model achieved a logloss score of 0.662 in cross-validation and 0.659 on the test set. Different model backbones were compared, with the swin_large_patch4_window12_384 showed higher performance. Thresholding techniques for clot origin classification were employed to balance false positives and negatives. Conclusion: The study demonstrates the extent of efficacy of transformer-based deep learning models in identifying ischemic stroke clot origins from histopathological images and emphasizes the need for refined modeling techniques specifically adapted to thrombi WSI. Further research is needed to improve model performance, interpretability, validate its effectiveness. Future enhancement could include integrating larger patient cohorts, advanced preprocessing strategies, and exploring ensemble multimodal methods for enhanced diagnostic accuracy.
- Published
- 2024