1. Benchmarking an 11-qubit quantum computer
- Author
-
Sarah M. Kreikemeier, Neal C. Pisenti, Matthew J. Keesan, Mike Williams, J. Mizrahi, Andrew M. Ducore, Vandiver Chaplin, Coleman Collins, Aleksey Blinov, Nikodem Grzesiak, J. D. Wong-Campos, Mika Chmielewski, Kai Hudek, Jungsang Kim, Kristin M. Beck, Yunseong Nam, Kenneth Wright, Joel Apisdorf, Phil Solomon, Jwo-Sy Chen, Jason M. Amini, Christopher Monroe, Stewart O. Allen, and Shantanu Debnath
- Subjects
Quantum information ,Computer science ,Science ,MathematicsofComputing_GENERAL ,General Physics and Astronomy ,FOS: Physical sciences ,02 engineering and technology ,Type (model theory) ,computer.software_genre ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Field (computer science) ,0103 physical sciences ,Atomic and molecular physics ,010306 general physics ,lcsh:Science ,Quantum ,Quantum computer ,Quantum Physics ,Multidisciplinary ,General Chemistry ,Benchmarking ,021001 nanoscience & nanotechnology ,Computer engineering ,Qubit ,Quantum algorithm ,lcsh:Q ,Compiler ,0210 nano-technology ,Quantum Physics (quant-ph) ,computer - Abstract
The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 171Yb+ ions. We demonstrate average single-qubit gate fidelities of 99.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}%, average two-qubit-gate fidelities of 97.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}%, and SPAM errors of 0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}%. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}% and 35\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}%, respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware., The growing complexity of quantum computing devices makes presents challenges for benchmarking their performance as previous, exhaustive approaches become infeasible. Here the authors characterise the quality of their 11-qubit device by successfully computing two quantum algorithms.
- Published
- 2019
- Full Text
- View/download PDF