36 results on '"KTH School of Electrical Engineering"'
Search Results
2. The Transient Impulse Response Modeling Method and the Local Polynomial Method for Nonparametric System Identification
- Author
-
UCL - SST/ICTM/INMA - Pôle en ingénierie mathématique, KTH - School of Electrical Engineering, VUB - ELEC, Gevers, Michel, Hägg, Per, Hjalmarsson, Hakan, Pintelon, Rik, Schoukens, Johan, 16th IFAC Symposium on System Identification (SYSID 2012), UCL - SST/ICTM/INMA - Pôle en ingénierie mathématique, KTH - School of Electrical Engineering, VUB - ELEC, Gevers, Michel, Hägg, Per, Hjalmarsson, Hakan, Pintelon, Rik, Schoukens, Johan, and 16th IFAC Symposium on System Identification (SYSID 2012)
- Abstract
This paper analyzes two recent methods for the nonparametric estimation of the Frequency Response Function (FRF) from input-output data using Prediction Error identification. Such FRF estimate can be the main goal of the identification exercise, or it can be a tool for the computation of a nonparametric estimate of the noise spectrum. We show that the choice of the method depends on the signal to noise ratio and on the objective. The method that delivers the best FRF estimate may not deliver the best estimate of the noise spectrum. Our theoretical analysis is illustrated by simulations.
- Published
- 2012
3. CFD simulation benchmark on thermal-hydraulic behaviour of light metal layer
- Author
-
Seiler, Nathalie, Drouillet, A., Bian, B., Villanueva, W., Vorobyov, Y., Zhabin, O., Kratochvil, M., Vyskocil, L., Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (IRESNE), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), Bangor University, SSTC NRS (Vasylya Stusa St, 35-37, Kyiv, Ukraine), CVŘ, Husinec-Rez 130, and The numerical French work was granted access to the HPC resources of the CEA's Very Large Computing Centre (TGCC) under the allocation 2022 A0092A07691 made by GENCI.
- Subjects
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn] ,benchmark ,Rayleigh-Bénard ,CFD Simulation ,turbulence ,BALI experiment ,Focusing effect - Abstract
International audience; In the framework of the IAEA Coordinated Research Projects on In-Vessel Melt Retention, a benchmark of CFD simulations, devoted to thermal-hydraulic behavior of the light metal layer involves several research organizations: KTH of Sweden, SSTC NRS of Ukraine, ÚJV Řež of Czech Republic and CEA of France. This work aims at better simulating the focusing effect phenomenon leading to a heat flux peak along the height of the light metal layer, which is formed above the oxide layer in a stratified corium pool configuration during a PWR severe accident. This is a known safety issue compromising the reactor vessel integrity. The final stage of this benchmark is the simulation of realistic prototypical light metal layer configuration in case of severe accident. The first benchmark step provides a solid foundation to the CFD schemes (physical models, meshes) by comparing the results of CFD simulations with thermal-hydraulic experimental data obtained using water as simulating fluid in a representative and quite laminar configuration. Then a similar but highly turbulent case, of higher height, is considered for more complex validation of the numerical simulation approach. Results with different turbulent models are compared. On the strength of this encouraging work, a simulation of the same height configuration but considering steel fluid and severe accident conditions is foreseen at the final stage of this benchmark.
- Published
- 2023
4. Information-Energy Regions in the Finite Block-Length Regime with Finite Channel Inputs
- Author
-
Ul Zuhra, Sadaf, Perlaza, Samir, Poor, H. Vincent, Altman, Eitan, Skoglund, Mikael, Network Engineering and Operations (NEO ), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Department of Electrical and Computer Engineering [Princeton] (ECE), Princeton University, Laboratoire de Géométrie Algébrique et Applications à la Théorie de l'Information (GAATI), Université de la Polynésie Française (UPF), Laboratoire Informatique d'Avignon (LIA), Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI, Laboratory of Information, Network and Communication Sciences (LINCS), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)-Sorbonne Université (SU), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), ANR-18-CE25-0012,MAESTRO5G,Gestion de slices dans le réseau d'accès mobile de la 5G(2018), European Project: 872172,H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions,TESTBED2(2020), Zuhra, Sadaf ul, APPEL À PROJETS GÉNÉRIQUE 2018 - Gestion de slices dans le réseau d'accès mobile de la 5G - - MAESTRO5G2018 - ANR-18-CE25-0012 - AAPG2018 - VALID, and Testing and Evaluating Sophisticated information and communication Technologies for enaBling scalablE smart griD Deployment - TESTBED2 - - H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions2020-02-01 - 2025-07-31 - 872172 - VALID
- Subjects
converse ,finite channel inputs ,SWIPT ,[MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT] ,finite block-length ,information-energy regions ,[MATH.MATH-IT] Mathematics [math]/Information Theory [math.IT] ,[INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] ,SIET ,achievability ,[INFO.INFO-IT] Computer Science [cs]/Information Theory [cs.IT] ,Simultaneous information and energy transmission ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
This paper provides a complete characterization of the information-energy region of simultaneous information and energy transmission over an additive white Gaussian noise channel in the finite block-length regime with finite sets of channel input symbols. Given a set of channel input symbols, the converse characterizes the tuples of information rate, energy rate, decoding error probability (DEP) and energy outage probability (EOP) that cannot be achieved by any code built using the given set of channel inputs. A novel method for constructing a family of codes that respects the given information rate, energy rate, DEP and EOP requirements is proposed. The achievable region identifies the set of tuples of information rate, energy rate, DEP and EOP that can be achieved by the constructed family of codes. The proposed construction proves to be information rate, energy rate, and EOP optimal. The achieved DEP is, however, sub-optimal, owing to the choice of the decoding regions made during the construction.
- Published
- 2022
5. Computational Analysis of Flow Structures in Turbulent Ventricular Blood Flow Associated With Mitral Valve Intervention
- Author
-
Kronborg, Joel, Svelander, Frida, Eriksson-Lidbrink, Samuel, Lindström, Ludvig, Homs-Pons, Carme, Lucor, Didier, Hoffman, Johan, Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), DAtascience, trAnsition, Fluid instability, contrOl, Turbulence (DATAFLOT), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Mécanique-Energétique (M.-E.), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), DAta science, TrAnsition, Fluid instabiLity, contrOl, Turbulence (DATAFLOT), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,[SPI]Engineering Sciences [physics] ,[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system ,Physiology ,Physiology (medical) ,Fluid Dynamics (physics.flu-dyn) ,FOS: Physical sciences ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,Physics - Fluid Dynamics ,Medical Physics (physics.med-ph) ,[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,Physics - Medical Physics - Abstract
Cardiac disease and clinical intervention may both lead to an increased risk for thrombosis events due to modified blood flow in the heart, and thereby a change in the mechanical stimuli of blood cells passing through the chambers of the heart. Specifically, the degree of platelet activation is influenced by the level and type of mechanical stresses in the blood flow. Here we analyze the blood flow in the left ventricle of the heart through a computational model constructed from patient-specific data. The blood flow in the ventricle is modeled by the Navier-Stokes equations, and the flow through the mitral valve by a parameterized model which represents the projected opening of the valve. A finite element method is used to solve the equations, from which a simulation of the velocity and pressure of the blood flow is constructed. A triple decomposition of the velocity gradient tensor is then used to distinguish between rigid body rotational flow, irrotational straining flow, and shear flow. The triple decomposition enables the separation of three fundamentally different flow structures, each generating a distinct type of mechanical stimulus on the blood cells in the flow. We compare the results to simulations where a mitral valve clip intervention is modelled, which leads to a significant modification of the ventricular flow. It was found that the shear in the simulation cases treated with clips increased more compared to the untreated case than the rotation and strain did. A decrease in valve opening area of 64 % in one of the cases led to a 90 % increase in rotation and strain, but a 150 % increase in shear. The computational analysis suggests a process for patient-specific simulation of clinical interventions in the heart with a detailed analysis of the resulting blood flow, which could support clinical risk assessment with respect to platelet activation and thrombosis events., Comment: The following article has been submitted to Frontiers in Physiology
- Published
- 2022
- Full Text
- View/download PDF
6. Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission
- Author
-
Oleg Korablev, M. Fujimoto, Léa Griton, Cesare Grava, Masafumi Hirahara, Hirotsugu Kojima, S. Barabash, Wolfgang Baumjohann, A. Martindale, Chuanfei Dong, François Leblanc, Chris Carr, S. T. Lindsay, Yasumasa Kasaba, M. Kobayashi, Herbert Lichtenegger, Philippe-A. Bourdin, Karri Muinonen, J. S. Oliveira, Jan-Erik Wahlund, Ferdinand Plaschke, Christina Plainaki, S. M. P. McKenna-Lawlor, Dominique Delcourt, Eric Quémerais, Xianzhe Jia, Dusan Odstrcil, James A. Slavin, V. Mangano, M. G. Pelizzo, Benoit Langlais, Joe Zender, Emma J. Bunce, Ichiro Yoshikawa, Peter Wurz, Stavro Ivanovski, Stefano Massetti, George C. Ho, Y. Saito, Juhani Huovelin, Suzanne M. Imber, Sae Aizawa, Alessandro Mura, Jim M. Raines, Ayako Matsuoka, F. Sahraoui, Karl-Heinz Glassmeier, Pierre Henri, Rami Vainio, Matthew K. James, Rosemary M. Killen, Stefano Orsini, Shahab Fatemi, Tomas Karlsson, Monica Laurenza, Esa Kallio, Christoph Lhotka, Michiko Morooka, Johannes Benkhoff, David A. Rothery, Yasuhito Narita, Michel Moncuquet, Anna Milillo, Alexey A. Berezhnoy, Satoshi Yagitani, Adam Masters, F. Califano, Manuel Grande, Stefano Livi, Daniel Heyner, Emilia Kilpua, G. Murakami, Jan Deca, S. de la Fuente, R. Moissl, Bernard V. Jackson, Kanako Seki, N. André, M. Dósa, Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Wigner Research Centre for Physics [Budapest], Hungarian Academy of Sciences (MTA), Institut für Geophysik und Extraterrestrische Physik [Braunschweig] (IGEP), Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig], Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Space Research Centre [Leicester], University of Leicester, Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), NASA Goddard Space Flight Center (GSFC), Space Technology Ireland Limited, Department of Climate and Space Sciences and Engineering (CLaSP), School of Physical Sciences [Milton Keynes], Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU), Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Sternberg Astronomical Institute [Moscow], Lomonosov Moscow State University (MSU), University of Pisa - Università di Pisa, University of Colorado [Boulder], European Space Astronomy Centre (ESAC), Princeton Plasma Physics Laboratory (PPPL), Princeton University, Department of Astrophysical Sciences [Princeton], Southwest Research Institute [San Antonio] (SwRI), Swedish Institute of Space Physics [Kiruna] (IRF), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), INAF - Osservatorio Astronomico di Trieste (OAT), University of California [San Diego] (UC San Diego), University of California (UC), Department of Electronics and Nanoengineering [Espoo], School of Electrical Engineering [Aalto Univ], Aalto University-Aalto University, Planetary Plasma and Atmospheric Research Center [Sendai] (PPARC), Tohoku University [Sendai], Department of Physics [Helsinki], Falculty of Science [Helsinki], Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Planetary Exploration Research Center [Chiba] (PERC), Chiba Institute of Technology (CIT), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Blackett Laboratory, Imperial College London, Swedish Institute of Space Physics [Uppsala] (IRF), Institute of Physics [Graz], Karl-Franzens-Universität Graz, Centro de Investigação da Terra e do Espaço da UC (CITEUC), Universidade de Coimbra [Coimbra], CNR Institute for Photonics and Nanotechnologies (IFN), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Italian Space Agency, Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Department of Earth and Planetary Science [Tokyo], Graduate School of Science [Tokyo], The University of Tokyo (UTokyo)-The University of Tokyo (UTokyo), Space Research Laboratory [Turku] (SRL), Department of Physics and Astronomy [Turku], University of Turku-University of Turku, Physics Institute [Bern], University of Bern, Department of Physics [Imperial College London], Institute of Mathematical and Physical Sciences [Aberystwyth], University of Wales, Institute for Space-Earth Environmental Research [Nagoya] (ISEE), Nagoya University, Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Graduate School of the Natural Science and Technology [Kanazawa], Kanazawa University (KU), Department of Complexity Science and Engineering [Tokyo], The University of Tokyo (UTokyo), European Space Agency (ESA), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National d’Études Spatiales [Paris] (CNES), University of California, University of Helsinki-University of Helsinki, Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Karl-Franzens-Universität [Graz, Autriche], Consiglio Nazionale delle Ricerche [Roma] (CNR), Kyoto University [Kyoto], Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), The Royal Society, Science and Technology Facilities Council, INAF National Institute for Astrophysics, JAXA Institute of Space and Astronautical Science, European Space Research and Technology Centre, IRAP, Hungarian Academy of Sciences, Technical University of Braunschweig, Johns Hopkins Applied Physics Laboratory, University of Michigan, Ann Arbor, KTH Royal Institute of Technology, NASA Goddard Space Flight Center, Space Technology Ireland, Open University Milton Keynes, Austrian Academy of Sciences, Lomonosov Moscow State University, University of Pisa, University of Colorado Boulder, European Space Astronomy Centre, Princeton Plasma Physics Laboratory, Southwest Research Institute, Uppsala University, Université d'Orléans, Osservatorio Astronomico di Trieste, University of California San Diego, Department of Electronics and Nanoengineering, Tohoku University, University of Helsinki, Chiba Institute of Technology, Université de Nantes, Sorbonne Université, University of Graz, National Research Council of Italy, Agenzia Spaziale Italiana, The University of Tokyo, University of Turku, Aberystwyth University, Space Research Institute of the Russian Academy of Sciences, Université de Versailles Saint-Quentin-en-Yvelines, Kanazawa University, Aalto-yliopisto, and Aalto University
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,BepiColombo ,chemistry.chemical_element ,FOS: Physical sciences ,Astronomy & Astrophysics ,01 natural sciences ,Mercury’s environment ,Fusion, plasma och rymdfysik ,Interplanetary dust cloud ,Astronomi, astrofysik och kosmologi ,0201 Astronomical and Space Sciences ,0103 physical sciences ,Astronomy, Astrophysics and Cosmology ,Exosphere ,Magnetosphere ,Aerospace engineering ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,0105 earth and related environmental sciences ,Scientific instrument ,Earth and Planetary Astrophysics (astro-ph.EP) ,Spacecraft ,business.industry ,520 Astronomy ,Astronomy and Astrophysics ,620 Engineering ,Fusion, Plasma and Space Physics ,Mercury (element) ,Solar wind ,Planetary science ,chemistry ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Mercury's environment ,Mercury’s environment · Magnetosphere · Exosphere · BepiColombo ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors., Comment: 78 pages, 14 figures, published
- Published
- 2022
- Full Text
- View/download PDF
7. Segmentation of Coronal Features to Understand the Solar EUV and UV Irradiance Variability III. Inclusion and Analysis of Bright Points
- Author
-
Rangaiah Kariyappa, Joe Zender, Gabriel Giono, Rens van der Zwaard, Luc Damé, Matthias Bergmann, European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Delft University of Technology (TU Delft), Institut für Informatik [Würzburg], Julius-Maximilians-Universität Würzburg [Wurtzbourg, Allemagne] (JMU), Indian Institute of Astrophysics (IIA), Institute for Space-Earth Environmental Research [Nagoya] (ISEE), Nagoya University, Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), and Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,bright points ,Irradiance ,Coronal hole ,Astrophysics ,Space weather ,Solar irradiance ,7. Clean energy ,01 natural sciences ,UV radiation ,Atmosphere ,Sun: activity ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Chromosphere ,0105 earth and related environmental sciences ,Physics ,Solar terrestrial relations ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astronomy and Astrophysics ,Corona ,Atmosphere of Earth ,13. Climate action ,Space and Planetary Science ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,corona - Abstract
The study of solar irradiance variability is of great importance in heliophysics, Earth’s climate, and space weather applications. These studies require careful identifying, tracking and monitoring of features in the solar photosphere, chromosphere, and corona. Do coronal bright points contribute to the solar irradiance or its variability as input to the Earth atmosphere? We studied the variability of solar irradiance for a period of 10 years (May 2010 – June 2020) using the Large Yield Radiometer (LYRA), the Sun Watcher using APS and image Processing (SWAP) on board PROBA2, and the Atmospheric Imaging Assembly (AIA), and applied a linear model between the segmented features identified in the EUV images and the solar irradiance measured by LYRA. Based on EUV images from AIA, a spatial possibilistic clustering algorithm (SPoCA) is applied to identify coronal holes (CHs), and a morphological feature detection algorithm is applied to identify active regions (ARs), coronal bright points (BPs), and the quiet Sun (QS). The resulting segmentation maps were then applied on SWAP images, images of all AIA wavelengths, and parameters such as the intensity, fractional area, and contribution of ARs/CHs/BPs/QS features were computed and compared with LYRA irradiance measurements as a proxy for ultraviolet irradiation incident to the Earth atmosphere. We modeled the relation between the solar disk features (ARs, CHs, BPs, and QS) applied to EUV images against the solar irradiance as measured by LYRA and the F10.7 radio flux. A straightforward linear model was used and corresponding coefficients computed using a Bayesian method, indicating a strong influence of active regions to the EUV irradiance as measured at Earth’s atmosphere. It is concluded that the long- and short-term fluctuations of the active regions drive the EUV signal as measured at Earth’s atmosphere. A significant contribution from the bright points to the LYRA irradiance could not be found.
- Published
- 2021
- Full Text
- View/download PDF
8. Navigating to the Best Policy in Markov Decision Processes
- Author
-
Al Marjani, Aymen, Garivier, Aurélien, Proutiere, Alexandre, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), Al Marjani, Aymen, and Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Statistics - Machine Learning ,Machine Learning (stat.ML) ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] ,Machine Learning (cs.LG) - Abstract
We investigate the classical active pure exploration problem in Markov Decision Processes, where the agent sequentially selects actions and, from the resulting system trajectory, aims at identifying the best policy as fast as possible. We propose a problem-dependent lower bound on the average number of steps required before a correct answer can be given with probability at least $1-\delta$. We further provide the first algorithm with an instance-specific sample complexity in this setting. This algorithm addresses the general case of communicating MDPs; we also propose a variant with a reduced exploration rate (and hence faster convergence) under an additional ergodicity assumption. This work extends previous results relative to the \emph{generative setting}~\cite{pmlr-v139-marjani21a}, where the agent could at each step query the random outcome of any (state, action) pair. In contrast, we show here how to deal with the \emph{navigation constraints}, induced by the \emph{online setting}. Our analysis relies on an ergodic theorem for non-homogeneous Markov chains which we consider of wide interest in the analysis of Markov Decision Processes.
- Published
- 2021
9. Solar Soft X-ray Irradiance Variability, I: Segmentation of Hinode/XRT Full-Disk Images and Comparison with GOES (1 – 8 Å) X-Ray Flux
- Author
-
Giono Gabriel, Rangaiah Kariyappa, Luc Damé, Imada Shinsuke, Mark Weber, Joe Zender, H. N. Adithya, Edward E. DeLuca, Kusano Kanya, Young Innovators Educational Services Pvt. Ltd (YIESPL), Institute for Space-Earth Environmental Research [Nagoya] (ISEE), Nagoya University, Indian Institute of Astrophysics (IIA), European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Harvard-Smithsonian Center for Astrophysics (CfA), and Smithsonian Institution-Harvard University [Cambridge]
- Subjects
Physics ,Sunspot ,010504 meteorology & atmospheric sciences ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Irradiance ,Flux ,Coronal hole ,Astronomy and Astrophysics ,Astrophysics ,Space weather ,Solar cycle 24 ,7. Clean energy ,01 natural sciences ,law.invention ,Telescope ,13. Climate action ,Space and Planetary Science ,law ,0103 physical sciences ,010303 astronomy & astrophysics ,Intensity (heat transfer) ,0105 earth and related environmental sciences - Abstract
It is of great interest and importance to study the variabilities of solar EUV, UV and X-ray irradiance in heliophysics, in Earth’s climate, and space weather applications. A careful study is required to identify, track, monitor and segment the different coronal features such as active regions (ARs), coronal holes (CHs), the background regions (BGs) and the X-ray bright points (XBPs) from spatially resolved full-disk images of the Sun. Variability of solar soft X-ray irradiance is studied for a period of 13 years (February 2007–March 2020, covers Solar Cycle 24), using the X-Ray Telescope on board the Hinode (Hinode/XRT) and GOES (1 – 8 A). The full-disk X-ray images observed in Al_mesh filter from XRT are used, for the first time, to understand the solar X-ray irradiance variability measured, Sun as a star, by GOES instrument. An algorithm in Python has been developed and applied to identify and segment coronal X-ray features (ARs, CHs, BGs, and XBPs) from the full-disk soft X-ray observations of Hinode/XRT. The segmentation process has been carried out automatically based on the intensity level, morphology and sizes of the X-ray features. The total intensity, area, and contribution of ARs/CHs/BGs/XBPs features were estimated and compared with the full-disk integrated intensity (FDI) and GOES (1 – 8 A) X-ray irradiance measurements. The XBPs have been identified and counted automatically over the full disk to investigate their relation to solar magnetic cycle. The total intensity of ARs/CHs/BGs/XBPs/FD regions are compared with the GOES (1 – 8 A) X-ray irradiance variations. We present the results obtained from Hinode/XRT full-disk images (in Al_mesh filter) and compare the resulting integrated full-disk intensity (FDI) with GOES X-ray irradiance. The X-ray intensity measured over ARs/CHs/BGs/XBPs/FD is well correlated with GOES X-ray flux. The contributions of the segmented X-ray features to FDI and X-ray irradiance variations are determined. It is found that the background and active regions have a greater impact on the X-ray irradiance fluctuations. The mean contribution estimated for the whole observed period of the background regions (BGs) will be around $65\pm10.97\%$ , whereas the ARs, XBPs and CHs are $30\pm11.82\%$ , $4\pm1.18\%$ and $1\pm0.52\%$ , respectively, to total solar X-ray flux. We observed that the area and contribution of ARs and CHs varies with the phase of the solar cycle, whereas the BGs and XBPs show an anti-correlation. We find that the area of the coronal features is highly variable suggesting that their area has to be taken into account in irradiance models, in addition to their intensity variations. The time series results of XBPs suggest for an existence of anti-correlation between the number of XBPs and the sunspot numbers. It is also important to consider both the number variation and the contribution of XBPs in the reconstruction of total solar X-ray irradiance variability.
- Published
- 2021
- Full Text
- View/download PDF
10. On the electron energy distribution function in the high power impulse magnetron sputtering discharge
- Author
-
Adrien Revel, André Anders, Hamidreza Hajihoseini, Martin Rudolph, Jon Tomas Gudmundsson, Michael A. Raadu, Tiberiu Minea, Daniel Lundin, Nils Brenning, XUV Optics, MESA+ Institute, Leibniz Institute of Surface Engineering [Leipzig] (IOM), Laboratoire de physique des gaz et des plasmas (LPGP), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), The Plasma & Coatings Physics group, Linköping University (LIU), Science Institute, University of Iceland, University of Iceland [Reykjavik], Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Alfven Laboratory, Royal Institute of Technology [Stockholm] (KTH ), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, and Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH )
- Subjects
Materials science ,FOS: Physical sciences ,Applied Physics (physics.app-ph) ,Electron ,Impulse (physics) ,01 natural sciences ,Secondary electrons ,010305 fluids & plasmas ,Collisional-radiative model ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Ionization ,0103 physical sciences ,Electron energy distribution function ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,22/2 OA procedure ,High power impulse magnetron sputtering ,Physics - Applied Physics ,Sputter deposition ,Condensed Matter Physics ,Boltzmann equation ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,Excited state ,High-power impulse magnetron sputtering ,Atomic physics - Abstract
We apply the ionization region model (IRM) and the Orsay Boltzmann equation for electrons coupled with ionization and excited states kinetics (OBELIX) model to study the electron kinetics of a high power impulse magnetron sputtering (HiPIMS) discharge. In the IRM the bulk (cold) electrons are assumed to exhibit a Maxwellian energy distribution and the secondary (hot) electrons, emitted from the target surface upon ion bombardment, are treated as a high energy tail, while in the OBELIX the electron energy distribution is calculated self-consistently using an isotropic Boltzmann equation. The two models are merged in the sense that the output from the IRM is used as an input for OBELIX. The temporal evolutions of the particle densities are found to agree very well between the two models. Furthermore, a very good agreement is demonstrated between the bi-Maxwellian electron energy distribution assumed by the IRM and the electron energy distribution calculated by the OBELIX model. It can therefore be concluded that assuming a bi-Maxwellian electron energy distribution, constituting a cold bulk electron group and a hot secondary electron group, is a good approximation for modeling the HiPIMS discharge.
- Published
- 2021
- Full Text
- View/download PDF
11. On how to measure the probabilities of target atom ionization and target ion back-attraction in high-power impulse magnetron sputtering
- Author
-
Tiberiu Minea, Nils Brenning, Daniel Lundin, André Anders, Michael A. Raadu, Hamidreza Hajihoseini, Martin Rudolph, Jon Tomas Gudmundsson, XUV Optics, MESA+ Institute, Leibniz Institute of Surface Engineering [Leipzig] (IOM), Science Institute, University of Iceland, University of Iceland [Reykjavik], Alfven Laboratory, Royal Institute of Technology [Stockholm] (KTH ), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Laboratoire de physique des gaz et des plasmas (LPGP), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), The Plasma & Coatings Physics group, and Linköping University (LIU)
- Subjects
010302 applied physics ,Materials science ,General Physics and Astronomy ,02 engineering and technology ,Impulse (physics) ,Sputter deposition ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Ion ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physical vapor deposition ,Ionization ,0103 physical sciences ,Deposition (phase transition) ,High-power impulse magnetron sputtering ,Atomic physics ,Thin film ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
High-power impulse magnetron sputtering (HiPIMS) is an ionized physical vapor deposition technique that provides a high flux of ionized target species for thin film growth. Optimization of HiPIMS processes is, however, often difficult, since the influence of external process parameters, such as working gas pressure, magnetic field strength, and pulse configuration, on the deposition process characteristics is not well understood. The reason is that these external parameters are only indirectly connected to the two key flux parameters, the deposition rate and ionized flux fraction, via two internal discharge parameters: the target atom ionization probability αt and the target ion back-attraction probability βt. Until now, it has been difficult to assess αt and βt without resorting to computational modeling, which has hampered knowledge-based optimization. Here, we present a simple method to deduce αt and βt based on measured deposition rates of neutrals and ions. The core of the method is a refined analytical model, which is described in detail. This approach is furthermore validated by independent calculations of αt and βt using the considerably more complex ionization region model, which is a plasma-chemical global discharge model.
- Published
- 2021
- Full Text
- View/download PDF
12. Joint Europa Mission (JEM): A Multiscale, Multi-Platform Mission to Characterize Europa's Habitability and Search for Extant Life. A White Paper prepared for the NAS 2023-2032 Decadal Survey for Planetary Science and Astrobiology August 15th, 2020
- Author
-
Blanc, Michel, Prieto-Ballesteros, Olga, André, Nicolas, Gomez-Elvira, Javier, Jones, Geraint, Sterken, Veerle, Desprats, William, Gurvits, Leonid I., Khurana, Krishan, Balmino, Georges, Blöcker, Aljona, Broquet, Renaud, Bunce, Emma, Cavel, Cyril, Choblet, Gaël, Colins, Geoffrey, Coradini, Marcello, Cooper, John, Dirkx, Dominic, Fontaine, D., Garnier, Philippe, Gaudin, David, Hartogh, Paul, Hussmann, Hauke, Genova, Antonio, Iess, Luciano, Jäggi, Adrian, Kempf, Sascha, Krupp, Norbert, Lara, Luisa, Lasue, Jérémie, Lainey, Valéry, Leblanc, François, Lebreton, Jean-Pierre, Longobardo, Andrea, Lorenz, Ralph, Martins, Philippe, Martins, Zita, Marty, Jean-Charles, Masters, Adam, Mimoun, David, Palumba, Ernesto, Parro, Victor, Regnier, Pascal, Saur, Joachim, Schutte, Adriaan, Sittler, Edward C., Spohn, Tilman, Srama, Ralf, Stephan, Katrin, Szegő, Károly, Tosi, Federico, Vance, Steve, Wagner, Roland, Hoolst, Tim Van, Volwerk, Martin, Wahlund, Jan-Erik, Westall, Frances, Wurz, Peter, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), University of Bern, Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Joint Institute for VLBI in Europe (JIVE ERIC), Delft University of Technology (TU Delft), CSIRO Astronomy and Space Science, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Institute of Geophysics and Planetary Physics [Los Angeles] (IGPP), University of California [Los Angeles] (UCLA), University of California (UC)-University of California (UC), Géosciences Environnement Toulouse (GET), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Airbus Defence and Space [Les Mureaux], ASTRIUM, University of Leicester, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Wheaton College [Norton], Cyprus Space Exploration Organisation (CSEO), NASA Goddard Space Flight Center (GSFC), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Institut Polytechnique de Paris (IP Paris), Département Informatique et Réseaux (INFRES), Télécom ParisTech, Réseaux, Mobilité et Services (RMS), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Centro de Quimica Estrutural (CQE), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), Groupement de Recherche en Géodésie Spatiale (GRGS), Centre National d'Études Spatiales [Toulouse] (CNES), Imperial College London, Airbus Defence and Space [Taufkirchen], Universität zu Köln = University of Cologne, Square Kilometre Array Organisation (SKA), Universität Stuttgart [Stuttgart], Wigner Research Centre for Physics [Budapest], Hungarian Academy of Sciences (MTA), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Royal Observatory of Belgium [Brussels] (ROB), Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Cardon, Catherine, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Max-Planck-Institut für Sonnensystemforschung (MPS)
- Subjects
[SDU] Sciences of the Universe [physics] ,[SDU]Sciences of the Universe [physics] - Abstract
International audience; In this White Paper we propose that NASA works with ESA and other potentially interested international partners to design and fly jointly an ambitious and exciting planetary mission to characterize Europa's habitability and search for bio-signatures in the environment of Europa (surface, subsurface and exosphere). A White Paper prepared for the NAS 2023-2032 Decadal Survey for Planetary Science and Astrobiology August 15th, 2020
- Published
- 2021
- Full Text
- View/download PDF
13. Ge(Sn) growth on Si(001) by magnetron sputtering
- Author
-
Dominique Mangelinck, Anders Hallén, Loïc Patout, Marion Descoins, Khalid Hoummada, H. Khelidj, Alain Portavoce, M. Bertoglio, Ahmed Charaï, M.C. Benoudia, Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), Ecole Nationale Supérieure des Mines et de la Métallurgie, L3M, Annaba, Algeria, and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Analytical chemistry ,Crystal growth ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Sputter deposition ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,law.invention ,Amorphous solid ,Monocrystalline silicon ,Crystallinity ,Mechanics of Materials ,Impurity ,law ,Materials Chemistry ,General Materials Science ,Crystallite ,Crystallization ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
The semi-conductor Ge1―xSnx exhibits interesting properties for optoelectronic applications. In particular, Ge1―xSnx alloys with x ≥ 0.1 exhibit a direct band-gap, and integrated in complementary-metal-oxide-semiconductor (CMOS) technology, should allow the development of Si photonics. CMOS-compatible magnetron sputtering deposition was shown to produce monocrystalline Ge1―xSnx films with good electrical properties at low cost. However, these layers were grown at low temperature ( 600 K) on Si(001) by magnetron sputtering in order to produce low-cost and CMOS-compatible relaxed pseudo-coherent layers with x ≥ 0.1 exhibiting a better crystallinity. Ge1―xSnx crystallization and Ge1―xSnx crystal growth were investigated. Crystallization of an amorphous Ge1―xSnx layer deposited on Si(001) or Ge(001) grown on Si(001) leads to the growth of polycrystalline films. Furthermore, the competition between Ge/Sn phase separation and Ge1―xSnx growth prevents the formation of large-grain Sn-rich Ge1―xSnx layers without the formation of β-Sn islands on the layer surface, due to significant atomic redistribution kinetics at the crystallization temperature (T = 733 K for x = 0.17). However, the growth at T = 633 K of a highly-relaxed pseudo-coherent Ge0.9Sn0.1 film with low impurity concentrations (
- Published
- 2020
- Full Text
- View/download PDF
14. An attempt to detect transient changes in Io's SO 2 and NaCl atmosphere
- Author
-
Roth, Lorenz, Boissier, Jeremie, Moullet, Arielle, Sánchez-Monge, Álvaro, De Kleer, Katherine, Yoneda, Mizuki, Hikida, Reina, Kita, Hajime, Tsuchiya, Fuminori, Blöcker, Aljona, Randall Gladstone, G, Grodent, Denis, Ivchenko, Nickolay, Lellouch, Emmanuel, Retherford, Kurt, Saur, Joachim, Schilke, Peter, Strobel, Darrell, Thorwirth, Sven, Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), NASA Ames Research Center (ARC), Universität zu Köln, California Institute of Technology (CALTECH), Tadano Ltd, Department of Earth and Planetary Sciences [TITECH Tokyo], Tokyo Institute of Technology [Tokyo] (TITECH), Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), Tohoku University [Sendai], Southwest Research Institute [San Antonio] (SwRI), Laboratoire de Physique Atmosphérique et Planétaire (LPAP), Université de Liège, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Johns Hopkins University (JHU)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Volcanic activity ,Magnetospheric variability ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Io’s atmospher - Abstract
International audience; Io’s atmosphere is predominately SO that is sustained by a combination of volcanic outgassing and sublimation. The loss from the atmosphere is the main mass source for Jupiter’s large magnetosphere. Numerous previous studies attributed various transient phenomena in Io’s environment and Jupiter’s magnetosphere to a sudden change in the mass loss from the atmosphere supposedly triggered by a change in volcanic activity. Since the gas in volcanic plumes does not escape directly, such causal correlation would require a transient volcano-induced change in atmospheric abundance, which has never been observed so far. Here we report four observations of atmospheric SOand NaCl from the same hemisphere of Io, obtained with the IRAM NOEMA interferometer on 11 December 2016, 14 March, 6 and 29 April 2017. These observations are compared to measurements of volcanic hot spots and Io’s neutral and plasma environment. We find a stable NaCl column density in Io’s atmosphere on the four dates. The SO column density derived for December 2016 is about 30% lower compared to the SO column density found in the period of March to April 2017. This increase in SO from December 2016 to March 2017 might be related to increasing volcanic activity observed at several sites in spring 2017, but the stability of the volcanic trace gas NaCl and resulting decrease in NaCl/SO ratio do not support this interpretation. Observed dimmings in both the sulfur ion torus and Na neutral cloud suggest rather a decrease in mass loading in the period of increasing SO abundance. The dimming Na brightness and stable atmospheric NaCl furthermore dispute an earlier suggested positive correlation of the sodium cloud and the hot spot activity at Loki Patara, which considerably increased in this period. The environment of Io overall appears to be in a rather quiescent state, preventing further conclusions. Only Jupiter’s aurora morphology underwent several short-term changes, which are apparently unrelated to Io’s quiescent environment or the relatively stable atmosphere.
- Published
- 2020
- Full Text
- View/download PDF
15. The Solar Orbiter Radio and Plasma Waves (RPW) instrument
- Author
-
L. R. Malac-Allain, T. Dudok de Wit, E. Lorfèvre, C. Collin, J. Sanisidro, Mihailo M. Martinović, X. Bonnin, E. Guilhem, Milan Maksimovic, P. Leroy, A. Vecchio, Eduard P. Kontar, L. Uhlíř, N. Quéruel, H. Ottacher, K. Boughedada, Christopher Cully, G. Barbary, Pierre Astier, Anders Eriksson, L. Åhlén, O. Krupařová, B. Pontet, T. Chust, G. Jannet, J. Parisot, Mats André, Paul Turin, P. Plasson, F. Chapron, M. Steller, W. Recart, W. Puccio, Vladimir Krasnoselskikh, Robert F. Wimmer-Schweingruber, V. Bouzid, Laurent Lamy, V. Cripps, R. Lán, Keith Goetz, B. Katra, S. Chaintreuil, Gregory T. Delory, I. Fratter, Dirk Plettemeier, C. Fiachetti, V. Krupař, M. Chariet, Sonny Lion, M. Dekkali, Lars Bylander, F. Gonzalez, Jan Soucek, Christopher J. Owen, Mykhaylo Panchenko, P. Danto, David Pisa, T. Vincent, Y. de Conchy, Säm Krucker, G. Cassam-Chenai, S. Julien, Baptiste Cecconi, Olga Alexandrova, A. Retino, V. Leray, Karine Issautier, S. Thijs, E. P. G. Johansson, Filippo Pantellini, D. Bérard, J. Baše, L. Guéguen, R. Piberne, P. Fergeau, Matthieu Berthomier, Tomas Karlsson, Arnaud Zaslavsky, Quynh Nhu Nguyen, J.-Y. Brochot, E. Bellouard, Yu. V. Khotyaintsev, Lorenzo Matteini, Štěpán Štverák, Javier Rodriguez-Pacheco, Fouad Sahraoui, S.-E. Jansson, O. Le Contel, Timothy S. Horbury, J.-C. Pellion, Pavel M. Trávníček, A. Jeandet, C. Agrapart, Petr Hellinger, Ondrej Santolik, I. Zouganelis, C. Laffaye, M. Timofeeva, D. Dias, Philippe Louarn, Helmut O. Rucker, Stuart D. Bale, Ivana Kolmasova, J. Břínek, Matthieu Kretzschmar, Andris Vaivads, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Swedish Institute of Space Physics [Uppsala] (IRF), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Technische Universität Dresden = Dresden University of Technology (TU Dresden), Institute of Computing [Campinas] (IC), Universidade Estadual de Campinas = University of Campinas (UNICAMP), Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Centre d'Investigation Clinique [CHU Clermont-Ferrand] (CIC 1405), Institut National de la Santé et de la Recherche Médicale (INSERM)-Direction de la recherche clinique et de l’innovation [CHU Clermont-Ferrand] (DRCI), CHU Clermont-Ferrand-CHU Clermont-Ferrand, Department of Physics [Imperial College London], Imperial College London, Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Hasselt University (UHasselt), Centre National d'Études Spatiales [Toulouse] (CNES), Centre National d’Etudes Spatiales, Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de physique et chimie de l'environnement (LPCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), DIREN RHONE ALPES LYON FRA, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), International Agency for Research on Cancer (IARC), Institute of Genetics and Molecular Medicine, University of Edinburgh, Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Space Sciences Laboratory [Berkeley] (SSL), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Institute of Atmospheric Physics [Prague] (IAP), Czech Academy of Sciences [Prague] (CAS), NASA Goddard Space Flight Center (GSFC), Universities Space Research Association (USRA), Jiangsu University of Science and Technology (JUST), Universidade Estadual Paulista Júlio de Mesquita Filho = São Paulo State University (UNESP), Alfven Laboratory, Royal Institute of Technology [Stockholm] (KTH ), Department of Plant Physiology, Umeå University, Umea Plant Science Centre, Umeå University-Umeå University, Swedish University of Agricultural Sciences (SLU), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Swedish Institute of Space Physics [Kiruna] (IRF), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Agence Spatiale Européenne = European Space Agency (ESA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institute of Computing [Campinas] (UNICAMP), Universidade Estadual de Campinas (UNICAMP), Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley], University of California-University of California, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), and European Space Agency (European Space Agency) (ESA)
- Subjects
010504 meteorology & atmospheric sciences ,Astronomy ,Astrophysics ,Plasma oscillation ,01 natural sciences ,law.invention ,Orbiter ,Astronomi, astrofysik och kosmologi ,law ,0103 physical sciences ,Astronomy, Astrophysics and Cosmology ,Aerospace engineering ,010303 astronomy & astrophysics ,miscellaneous [instrumentation] ,0105 earth and related environmental sciences ,Physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Plasma ,Solar radio ,instrumentation: miscellaneous ,Solar wind ,solar wind ,Space and Planetary Science ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,Interplanetary spaceflight ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections. Correction in: Astronomy & Astrophysics, Volume 654, Article Number C2, DOI 10.1051/0004-6361/201936214e
- Published
- 2020
- Full Text
- View/download PDF
16. Experimental Assessment of Q-factor Bounds for Miniature Embedded Antenna
- Author
-
Ferrero, Fabien, Jonsson, B. L. G., Ratajczak, Philippe, Laboratoire d'Electronique, Antennes et Télécommunications (LEAT), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), Orange Labs [Sophia Antipolis], and Orange Labs
- Subjects
[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Antenna limit ,Measurements ,Small antenna ,Embedded Antenna - Abstract
International audience; This work present the experimental assessment of frequency bandwidth limits on 2x2 cm antenna embedded in a 5x5cm terminal at 900MHz. A meander Inverted F antenna is synthesized, prototyped and measured. The operating frequencybandwidth and radiation efficiency are extracted from radiation measurement. Comparison with optimal bounds on the Q-factor show that this structure can reach close to the bandwidth fundamental limit.
- Published
- 2020
17. From Optimal to Industrial Antenna : The Designer Dilemma for Compact NB-IoT Terminal
- Author
-
B. L. G. Jonsson, Fabien Ferrero, Leonardo Lizzi, Laboratoire d'Electronique, Antennes et Télécommunications (LEAT), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), and IEEE
- Subjects
Computer science ,business.industry ,020208 electrical & electronic engineering ,Electrical engineering ,Antenna limit ,Q-factor ,020206 networking & telecommunications ,02 engineering and technology ,Dilemma ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Terminal (electronics) ,small antennas ,Q factor ,NB-IoT ,0202 electrical engineering, electronic engineering, information engineering ,Integrated antenna ,Antenna (radio) ,Internet of Things ,business - Abstract
International audience; This work presents the design of a NB-IoT integrated antenna for LTE band 20 on a compact 50x30 mm terminal. The study will start from the Q factor limitation analysis and finish with a simulated prototype considering the different techniques to enlarge frequency bandwidth.
- Published
- 2020
- Full Text
- View/download PDF
18. Sustained W-melting experiments on actively cooled ITER-like plasma facing unit in WEST
- Author
-
Panagiotis Tolias, M. Richou, L. Dubus, V. Bruno, Eric Nardon, E. Delmas, Fabrice Rigollet, Lena Delpech, K. Krieger, Patrick Maget, X. Regal-Mezin, J. W. Coenen, P. Mandelbaum, C. Desgranges, T. Loarer, J-L Schwob, Clarisse Bourdelle, Marc Missirlian, C. Pocheau, E. Tsitrone, C. Reux, R. Mitteau, A. Durif, J. L. Gardarein, A. Ekedahl, Jonathan Gaspar, A. Grosjean, A. Podolnik, E. Thoren, Nicolas Fedorczak, S. Brezinsek, X. Courtois, R. Dejarnac, Svetlana V. Ratynskaia, J. Gerardin, C. Guillemaut, M. Firdaouss, Yann Corre, N. Chanet, M. Diez, O. Skalli-Fettachi, Rémy Nouailletas, M. Houry, P. Moreau, J. P. Gunn, P Reilhac, WEST Team, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Royal Institute of Technology [Stockholm] (KTH ), Institut fur Energie und Klimaforschung - Plasmaphysik (IEK-4), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, University of Wisconsin-Madison, Czech Academy of Sciences [Prague] (CAS), Institut FRESNEL (FRESNEL), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut universitaire des systèmes thermiques industriels (IUSTI), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Azrieli College of Engineering, Jerusalem, Israel, The Hebrew University of Jerusalem (HUJ), European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Helmholtz-Gemeinschaft = Helmholtz Association, Institute of Plasma Physics [Praha], Rigollet, Fabrice, and Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium - EUROfusion - - H20202014-01-01 - 2018-12-31 - 633053 - VALID
- Subjects
[PHYS]Physics [physics] ,Materials science ,[SPI] Engineering Sciences [physics] ,Nuclear engineering ,Heat flux calculation ,Plasma ,Condensed Matter Physics ,01 natural sciences ,IR thermography ,Atomic and Molecular Physics, and Optics ,010305 fluids & plasmas ,Unit (housing) ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,Plasma Facing Unit ,[SPI]Engineering Sciences [physics] ,[PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,Tungsten melting ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,[PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,010306 general physics ,Mathematical Physics ,[SPI.MECA.THER] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] - Abstract
The consequences of tungsten (W) melting on divertor lifetime and plasma operation are high priority issues for ITER. Sustained and controlled W-melting experiment has been achieved for the first time in WEST on a poloidal sharp leading edge of an actively cooled ITER-like plasma facing unit (PFU). A series of dedicated high power steady state plasma discharges were performed to reach the melting point of tungsten. The leading edge was exposed to a parallel heat flux of about 100 MW.m−2 for up to 5 s providing a melt phase of about 2 s without noticeable impact of melting on plasma operation (radiated power and tungsten impurity content remained stable at constant input power) and no melt ejection were observed. The surface temperature of the MB was monitored by a high spatial resolution (0.1 mm/pixel) infrared camera viewing the melt zone from the top of the machine. The melting discharge was repeated three times resulting in about 6 s accumulated melting duration leading to material displacement from three similar pools. Cumulated on the overall sustained melting periods, this leads to excavation depth of about 230 μm followed by a re-solidified tungsten bump of 200 μm in the JxB direction.
- Published
- 2021
- Full Text
- View/download PDF
19. Application-Oriented Input Design in System Identification: Optimal Input Design for Control [Applications of Control]
- Author
-
Mariette Annergren, Håkan Hjalmarsson, Christian A. Larsson, Xavier Bombois, Bo Wahlberg, Department of Automatic Control, Royal Institute of Technology [Stockholm] (KTH ), KTH School of Electrical Engineering, Ampère, Département Méthodes pour l'Ingénierie des Systèmes (MIS), Ampère (AMPERE), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Centre of Autonomous Systems (KTH)
- Subjects
0209 industrial biotechnology ,Engineering ,business.industry ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Control (management) ,System identification ,Control engineering ,02 engineering and technology ,model-based control design ,020901 industrial engineering & automation ,Input design ,Control and Systems Engineering ,Real-time Control System ,Robustness (computer science) ,Modeling and Simulation ,optimal input design ,0202 electrical engineering, electronic engineering, information engineering ,Key (cryptography) ,020201 artificial intelligence & image processing ,application-oriented input design ,Electrical and Electronic Engineering ,Robust control ,business ,system identification - Abstract
International audience; Model-based control design plays a key role in today's industrial practice, and industry demands cuttingedge methods for identifying the necessary models. However, additional tools are needed to handle the increasingly stringent conditions on cost and performance related to identifying the models.
- Published
- 2017
- Full Text
- View/download PDF
20. On Q-factor Bounds for Lossy Embedded Antennas in Electrically Small Devices
- Author
-
Jonsson, B.L.G, Ferrero, Fabien, KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), Laboratoire d'Electronique, Antennes et Télécommunications (LEAT), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), and IEEE
- Subjects
Optimization ,Energy storage ,nonconvex optimization problem ,surface resistances ,lossy embedded antennas ,Q-factor ,concave programming ,Surface impedance ,electrically small devices ,antenna ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Bandwidth ,efficiency ,IoT terminal ,Antennas ,constrained optimization ,Q-factor bounds ,ohmic losses - Abstract
International audience; In this paper we investigate a method to determine the best available bandwidth for small embedded antennas. The available bandwidth depend both on the size and the position within a device, but also on the ohmic losses in the structure. Here we show a non-convex optimization problem, utilizing stored energies, and phrased as a current optimization problem we can determine theavailable bandwidth in a given region for a range of surface resistances. We illustrate the method by comparing the results with embedded antennas in a small IoT terminal. We show that an optimized embedded come rather close to the bounds.
- Published
- 2019
21. Properties of the singing comet waves in the 67P/Churyumov-Gerasimenko plasma environment as observed by the Rosetta mission
- Author
-
Ingo Richter, Pierre Henri, Xavier Vallières, F. L. Johansson, Hugo Breuillard, Anders Eriksson, Charlotte Goetz, Elias Odelstad, Rajkumar Hajra, L. Bucciantini, Martin Volwerk, Tomas Karlsson, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-École polytechnique (X)-Sorbonne Universités-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Swedish Institute of Space Physics [Uppsala] (IRF), Technische Universität Braunschweig [Braunschweig], Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig]
- Subjects
010504 meteorology & atmospheric sciences ,Comet ,observational [methods] ,Astrophysics ,01 natural sciences ,general [comets] ,Fusion, plasma och rymdfysik ,comets: individual: 67P ,Astronomi, astrofysik och kosmologi ,Physics::Plasma Physics ,0103 physical sciences ,data analysis [methods] ,Astronomy, Astrophysics and Cosmology ,waves ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Churyumov-Gerasimenko ,Physics ,Spacecraft ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,business.industry ,comets: general ,Astronomy ,Astronomy and Astrophysics ,Plasma ,plasmas ,Methods observational ,methods: data analysis ,Fusion, Plasma and Space Physics ,On board ,13. Climate action ,Space and Planetary Science ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,methods: observational ,business ,individual: 67P/Churyumov-Gerasimenko [comets] - Abstract
Using in situ measurements from different instruments on board the Rosetta spacecraft, we investigate the properties of the newly discovered low-frequency oscillations, known as singing comet waves, that sometimes dominate the close plasma environment of comet 67P/Churyumov-Gerasimenko. These waves are thought to be generated by a modified ion-Weibel instability that grows due to a beam of water ions created by water molecules that outgass from the comet. We take advantage of a cometary outburst event that occurred on 2016 February 19 to probe this generation mechanism. We analyze the 3D magnetic field waveforms to infer the properties of the magnetic oscillations of the cometary ion waves. They are observed in the typical frequency range (similar to 50 mHz) before the cometary outburst, but at similar to 20 mHz during the outburst. They are also observed to be elliptically right-hand polarized and to propagate rather closely (similar to 0-50 degrees) to the background magnetic field. We also construct a density dataset with a high enough time resolution that allows us to study the plasma contribution to the ion cometary waves. The correlation between plasma and magnetic field variations associated with the waves indicates that they are mostly in phase before and during the outburst, which means that they are compressional waves. We therefore show that the measurements from multiple instruments are consistent with the modified ion-Weibel instability as the source of the singing comet wave activity. We also argue that the observed frequency of the singing comet waves could be a way to indirectly probe the strength of neutral plasma coupling in the 67P environment.
- Published
- 2019
- Full Text
- View/download PDF
22. Distributed control of compact formations for multi-robot swarms
- Author
-
Alexandre Seuret, Dimos V. Dimarogonas, Gabriel Rodrigues de Campos, Karl Henrik Johansson, Politecnico di Milano [Milan] (POLIMI), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), and Université de Toulouse (UT)
- Subjects
0209 industrial biotechnology ,Engineering ,Control and Optimization ,Compact formations ,business.industry ,Applied Mathematics ,Distributed computing ,02 engineering and technology ,Dispersion ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,020901 industrial engineering & automation ,Compact space ,Control and Systems Engineering ,Software deployment ,Control theory ,Distributed algorithm ,0202 electrical engineering, electronic engineering, information engineering ,Graph (abstract data type) ,Robot ,020201 artificial intelligence & image processing ,business ,Multi-agent systems (MAS) ,Formation shape control - Abstract
International audience; This paper proposes a distributed algorithm for the compact deployment of robots, using both distance-and angular-based arguments in the controllers' design. Our objective is to achieve a configuration maximizing the coverage of the environment while increasing the graph's connectivity. First, we provide: (i) a dispersion protocol guaranteeing connectivity maintenance; and (ii) a compactness controller with static and variable control gains that minimizes the inter-agent angles. Second, we present a sequential, multi-stage strategy and analyse its stability. Finally, we validate our theoretical results with simulations, where a group of robots are deployed to carry out sensing or communication tasks.
- Published
- 2018
- Full Text
- View/download PDF
23. Variance-Aware Regret Bounds for Undiscounted Reinforcement Learning in MDPs
- Author
-
Talebi , Mohammad, Maillard , Odalric-Ambrym, KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), Sequential Learning (SEQUEL), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE40-0002,BADASS,BANDITS MANCHOTS POUR SIGNAUX NON-STATIONNAIRES ET STRUCTURES(2016), Royal Institute of Technology [Stockholm] ( KTH ), Sequential Learning ( SEQUEL ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189 ( CRIStAL ), Ecole Centrale de Lille-Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut Mines-Télécom [Paris]-Université de Lille-Centre National de la Recherche Scientifique ( CNRS ) -Ecole Centrale de Lille-Institut Mines-Télécom [Paris]-Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), and ANR-16-CE40-0002,BADASS,Bandits Against Non-Stationarity and Structure ( 2016 )
- Subjects
Computer Science::Machine Learning ,Undiscounted Reinforcement Learning ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Markov Decision Processes ,Concentration Inequalities ,[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST] ,[ STAT.ML ] Statistics [stat]/Machine Learning [stat.ML] ,Bellman Optimality ,Regret Minimization - Abstract
International audience; The problem of reinforcement learning in an unknown and discrete Markov Decision Process (MDP) under the average-reward criterion is considered, when the learner interacts with the system in a single stream of observations, starting from an initial state without any reset. We revisit the minimax lower bound for that problem by making appear the local variance of the bias function in place of the diameter of the MDP. Furthermore, we provide a novel analysis of the KL-Ucrl algorithm establishing a high-probability regret bound scaling as O S s,a V s,a T for this algorithm for ergodic MDPs, where S denotes the number of states and where V s,a is the variance of the bias function with respect to the next-state distribution following action a in state s. The resulting bound improves upon the best previously known regret bound O(DS √ AT) for that algorithm, where A and D respectively denote the maximum number of actions (per state) and the diameter of MDP. We finally compare the leading terms of the two bounds in some benchmark MDPs indicating that the derived bound can provide an order of magnitude improvement in some cases. Our analysis leverages novel variations of the transportation lemma combined with Kullback-Leibler concentration inequalities, that we believe to be of independent interest.
- Published
- 2018
24. Size of a plasma cloud matters The polarisation electric field of a small-scale comet ionosphere
- Author
-
Xavier Vallières, Hans Nilsson, Nils Brenning, Herbert Gunell, Tomas Karlsson, Charlotte Goetz, Anders Eriksson, Pierre Henri, G. Stenberg Wieser, Etienne Behar, Swedish Institute of Space Physics [Uppsala] (IRF), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), School of Electrical Engineering [Stockholm], Royal Institute of Technology [Stockholm] (KTH ), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut für Geophysik und Extraterrestrische Physik [Braunschweig] (IGEP), Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig], Swedish Institute of Space Physics [Kiruna] (IRF), and ANR-15-CE31-0009,SPECTRA,Sonder le Plasma dans l'Environnement d'une ComètE avec RosettA(2015)
- Subjects
Acceleration of particles ,010504 meteorology & atmospheric sciences ,Gyroradius ,Comet ,Context (language use) ,Astrophysics ,Electron ,01 natural sciences ,Fusion, plasma och rymdfysik ,Astronomi, astrofysik och kosmologi ,Electric field ,0103 physical sciences ,Astronomy, Astrophysics and Cosmology ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,acceleration of particles ,Physics ,Comets: individual: 67P/Churyumov-Gerasimenko ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astronomy and Astrophysics ,Plasma ,plasmas ,Fusion, Plasma and Space Physics ,[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph] ,Computational physics ,Solar wind ,13. Climate action ,Space and Planetary Science ,Plasmas ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,Ionosphere ,individual: 67P/Churyumov-Gerasimenko [comets] - Abstract
Context. The cometary ionosphere is immersed in fast flowing solar wind. A polarisation electric field may arise for comets much smaller than the gyroradius of pickup ions because ions and electrons respond differently to the solar wind electric field.Aims. A situation similar to that found at a low activity comet has been modelled for barium releases in the Earth’s ionosphere. We aim to use such a model and apply it to the case of comet 67P Churyumov-Gerasimenko, the target of the Rosetta mission. We aim to explain the significant tailward acceleration of cometary ions through the modelled electric field.Methods. We obtained analytical solutions for the polarisation electric field of the comet ionosphere using a simplified geometry. This geometry is applicable to the comet in the inner part of the coma as the plasma density integrated along the magnetic field line remains rather constant. We studied the range of parameters for which a significant tailward electric field is obtained and compare this with the parameter range observed.Results. Observations of the local plasma density and magnetic field strength show that the parameter range of the observations agree very well with a significant polarisation electric field shielding the inner part of the coma from the solar wind electric field.Conclusions. The same process gives rise to a tailward directed electric field with a strength of the order of 10% of the solar wind electric field. Using a simple cloud model we have shown that the polarisation electric field, which arises because of the small size of the comet ionosphere as compared to the pick up ion gyroradius, can explain the observed significant tailward acceleration of cometary ions and is consistent with the observed lack of influence of the solar wind electric field in the inner coma.
- Published
- 2018
- Full Text
- View/download PDF
25. Extremely Low-Frequency Waves Inside the Diamagnetic Cavity of Comet 67P/Churyumov-Gerasimenko
- Author
-
B. Madsen, X. Vallières, Charlotte Goetz, Wojciech Jacek Miloch, Herbert Gunell, C. Simon Wedlund, Anders Eriksson, Tomas Karlsson, Andres Spicher, P. Henri, Technical University of Denmark [Lyngby] (DTU), University of Oslo (UiO), Swedish Institute of Space Physics [Kiruna] (IRF), Institut für Geophysik und Extraterrestrische Physik [Braunschweig] (IGEP), Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig], Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), and ANR-15-CE31-0009,SPECTRA,Sonder le Plasma dans l'Environnement d'une ComètE avec RosettA(2015)
- Subjects
Physics ,Plasma measurements ,010504 meteorology & atmospheric sciences ,ESA/Rosetta ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Diamagnetic cavity ,Comet ,Comet 67P ,Astronomy ,Langmuir probe ,Low-frequency waves ,Space (mathematics) ,01 natural sciences ,symbols.namesake ,Geophysics ,0103 physical sciences ,Physics::Space Physics ,symbols ,General Earth and Planetary Sciences ,Diamagnetism ,Extremely low frequency ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
International audience; The European Space Agency/Rosetta mission to comet 67P/Churyumov-Gerasimenko has provided several hundred observations of the cometary diamagnetic cavity induced by the interaction between outgassed cometary particles, cometary ions, and the solar wind magnetic field. Here we present the first electric field measurements of four preperihelion and postperihelion cavity crossings on 28 May 2015 and 17 February 2016, using the dual-probe electric field mode of the Langmuir probe (LAP) instrument of the Rosetta Plasma Consortium. We find that on large scales, variations in the electric field fluctuations capture the cavity and boundary regions observed in the already well-studied magnetic field, suggesting the electric field mode of the LAP instrument as a reliable tool to image cavity crossings. In addition, the LAP electric field mode unravels for the first time extremely low-frequency waves within two cavities. These low-frequency electrostatic waves are likely triggered by lower-hybrid waves observed in the surrounding magnetized plasma.
- Published
- 2018
- Full Text
- View/download PDF
26. Segmentation of photospheric magnetic elements corresponding to coronal features to understand the EUV and UV irradiance variability
- Author
-
Véronique Delouille, Luc Damé, S. T. Kumara, Joe Zender, Gabriel Giono, Jean-François Hochedez, Matthias Bergmann, Rangaiah Kariyappa, European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Vemana Institute of Technology, Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Julius-Maximilians-Universität Würzburg [Wurtzbourg, Allemagne] (JMU), Royal Observatory of Belgium [Brussels] (ROB), HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), APS College of Engineering, Agence Spatiale Européenne = European Space Agency (ESA), and Julius-Maximilians-Universität Würzburg (JMU)
- Subjects
010504 meteorology & atmospheric sciences ,Irradiance ,Coronal hole ,Astrophysics ,Solar irradiance ,01 natural sciences ,Coronal radiative losses ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,Radiometer ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Sun ,Astronomy ,Astronomy and Astrophysics ,Corona ,Nanoflares ,13. Climate action ,Space and Planetary Science ,Extreme ultraviolet ,Magnetic fields ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Context. The magnetic field plays a dominant role in the solar irradiance variability. Determining the contribution of various magnetic features to this variability is important in the context of heliospheric studies and Sun-Earth connection. Aims. We studied the solar irradiance variability and its association with the underlying magnetic field for a period of five years (January 2011–January 2016). We used observations from the Large Yield Radiometer (LYRA), the Sun Watcher with Active Pixel System detector and Image Processing (SWAP) on board PROBA2, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Methods. The Spatial Possibilistic Clustering Algorithm (SPoCA) is applied to the extreme ultraviolet (EUV) observations obtained from the AIA to segregate coronal features by creating segmentation maps of active regions (ARs), coronal holes (CHs) and the quiet sun (QS). Further, these maps are applied to the full-disk SWAP intensity images and the full-disk (FD) HMI line-of-sight (LOS) magnetograms to isolate the SWAP coronal features and photospheric magnetic counterparts, respectively. We then computed full-disk and feature-wise averages of EUV intensity and line of sight (LOS) magnetic flux density over ARs/CHs/QS/FD. The variability in these quantities is compared with that of LYRA irradiance values. Results. Variations in the quantities resulting from the segmentation, namely the integrated intensity and the total magnetic flux density of ARs/CHs/QS/FD regions, are compared with the LYRA irradiance variations. We find that the EUV intensity over ARs/CHs/QS/FD is well correlated with the underlying magnetic field. In addition, variations in the full-disk integrated intensity and magnetic flux density values are correlated with the LYRA irradiance variations. Conclusions. Using the segmented coronal features observed in the EUV wavelengths as proxies to isolate the underlying magnetic structures is demonstrated in this study. Sophisticated feature identification and segmentation tools are important in providing more insights into the role of various magnetic features in both the short- and long-term changes in the solar irradiance.
- Published
- 2017
- Full Text
- View/download PDF
27. Lower hybrid waves at comet 67P/Churyumov–Gerasimenko
- Author
-
Erik Vigren, F. L. Johansson, C. Norgren, G. Stenberg Wieser, Anders Eriksson, Ingo Richter, Tomas Karlsson, Daniel B. Graham, Mats André, Martin Rubin, Elias Odelstad, P. Henri, Swedish Institute of Space Physics [Uppsala] (IRF), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Physikalisches Institut [Bern], Universität Bern [Bern], Institut für Geophysik und Extraterrestrische Physik [Braunschweig] (IGEP), and Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig]
- Subjects
010504 meteorology & atmospheric sciences ,Energy transfer ,Comet ,Electron ,01 natural sciences ,Ion ,Physics::Plasma Physics ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,Range (particle radiation) ,520 Astronomy ,Astronomy ,Astronomy and Astrophysics ,Plasma ,Ion acoustic wave ,Lower hybrid oscillation ,620 Engineering ,Computational physics ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,plasmas –waves – comets: general - Abstract
International audience; We investigate the generation of waves in the lower hybrid frequency range by density gradients in the near plasma environment of comet 67P/Churyumov–Gerasimenko. When the plasma is dominated by water ions from the comet, a situation with magnetized electrons and unmagnetized ions is favourable for the generation of lower hybrid waves. These waves can transfer energy between ions and electrons and reshape the plasma environment of the comet. We consider cometocentric distances out to a few hundred km. We find that when the electron motion is not significantly interrupted by collisions with neutrals, large average gradients within tens of km of the comet, as well as often observed local large density gradients at larger distances, are often likely to be favourable for the generation of lower hybrid waves. Overall, we find that waves in the lower hybrid frequency range are likely to be common in the near plasma environment.
- Published
- 2017
- Full Text
- View/download PDF
28. Delays and Networked Control Systems
- Author
-
Karl Henrik Johansson, Alexandre Seuret, Jamal Daafouz, Laurentiu Hetel, Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Systèmes Non Linéaires et à Retards (SyNeR), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
System of systems ,0209 industrial biotechnology ,Computer science ,Scale (chemistry) ,Multi-agent system ,Control (management) ,Target audience ,Control engineering ,0102 computer and information sciences ,02 engineering and technology ,01 natural sciences ,Industrial engineering ,Field (computer science) ,Multi-Agent Systems ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,020901 industrial engineering & automation ,010201 computation theory & mathematics ,Control theory ,Control system ,Time-Delay Systems ,Sampled-Data Systems ,Networked Control Systems - Abstract
International audience; Delay systems are largely encountered in modeling propagation and transportation phenomena, population dynamics, and representing interactions between interconnected dynamics through material, energy, and communication flows. Thought as an open library on delays and dynamics, this series is devoted to publish basic and advanced textbooks, explorative research monographs as well as proceedings volumes focusing on delays from modeling to analysis, optimization, control with a particular emphasis on applications spanning biology, ecology, economy, and engineering. Topics covering interactions between delays and modeling (from engineering to biology and economic sciences), control strategies (including also control structure and robustness issues), optimization, and computation (including also numerical approaches and related algorithms) by creating links and bridgesbetween fields and areas in a delay setting are particularly encouraged.
- Published
- 2016
29. Distributed actuator reconfiguration in networked control systems*
- Author
-
Jose Araujo, Henrik Sandberg, Karl Henrik Johansson, André Teixeira, KTH School of Electrical Engineering, and Royal Institute of Technology [Stockholm] (KTH )
- Subjects
Scheme (programming language) ,0209 industrial biotechnology ,Engineering ,business.industry ,020208 electrical & electronic engineering ,Control reconfiguration ,Control engineering ,02 engineering and technology ,Computer Science::Other ,Computer Science::Robotics ,Computer Science::Hardware Architecture ,020901 industrial engineering & automation ,Hardware_GENERAL ,Computer Science::Systems and Control ,Control theory ,Control system ,0202 electrical engineering, electronic engineering, information engineering ,Trajectory ,State (computer science) ,Actuator ,business ,computer ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,ComputingMilieux_MISCELLANEOUS ,computer.programming_language - Abstract
In this paper, we address the problem of distributed reconfiguration of first-order networked control systems under actuator faults. In particular, we consider the scenario where a network of actuators cooperates in order to recover from actuator faults. Such recovery is performed through a reconfiguration which minimizes the performance loss due to actuator faults, while guaranteing that the same state trajectory is obtained. The design of the distributed reconfiguration scheme is proposed and evaluated in numerical examples.
- Published
- 2013
- Full Text
- View/download PDF
30. Localized density enhancements in the magnetosheath: Three-dimensional morphology and possible importance for impulsive penetration
- Author
-
Karlsson, T, Brenning, N, Nilsson, H, Trotignon, Jean-Gabriel, Vallières, Xavier, Facsko, G, Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Swedish Institute of Space Physics [Kiruna] (IRF), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Earth Observation Unit [Helsinki], Finnish Meteorological Institute (FMI), Geodetic and Geophysical Research Institute (GGRI), Research Centre for Astronomy and Earth Sciences [Budapest], Hungarian Academy of Sciences (MTA)-Hungarian Academy of Sciences (MTA), and Swedish Research Council, grant 2008–3717
- Subjects
[SDU]Sciences of the Universe [physics] ,Physics::Space Physics - Abstract
International audience; [1] We use Cluster multipoint density measurements, using the spacecraft potential, to identify localized density enhancements (>50%) in the magnetosheath, and estimate their three-dimensional morphology and orientation. Typically one dimension of the density enhancements is shorter than others, is directed perpendicular to the background magnetic field, and varies from $0.1 R E to 10 R E , with the other two dimensions a factor 3–10 greater. The density structures are oriented with the longest sides in the general direction of the bow shock and magnetopause. Examples of density structures both convecting with the same velocity as the background magnetosheath flow (" embedded plasmoids "), and convecting with an excess x GSE velocity component (" fast plasmoids ") are found. Possible importance for the impulsive penetration mechanism for plasma entry in the magnetosphere is analyzed by comparing the results to laboratory results, via a parameter scaling. The estimation of the three-dimensional topology of the density enhancements will enable a comparison with localized magnetosheath populations inside the magnetosphere, observed earlier, to determine if these originate from penetrated magnetosheath density enhancements.
- Published
- 2012
- Full Text
- View/download PDF
31. Small and meso-scale properties of a substorm onset auroral arc
- Author
-
Frey, H. U., Amm, O., Chaston, C. C., Fu, S., Haerendel, G., Juusola, L., Karlsson, T., Lanchester, B., Nakamura, R., Ostgaard, N., Sakanoi, T., Seran, Elena, Whiter, D., Weygand, J., Asamura, K., Hirahara, M., Space Sciences Laboratory [Berkeley] (SSL), University of California [Berkeley], University of California-University of California, Finnish Meteorological Institute (FMI), School of Earth and Space Sciences [Hefei], University of Science and Technology of China [Hefei] (USTC), Max-Planck-Institut für Extraterrestrische Physik (MPE), Department of Physics and Technology [Bergen] (UiB), University of Bergen (UiB), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), School of Physics and Astronomy [Southampton], University of Southampton, Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Planetary Plasma and Atmospheric Research Center [Sendai] (PPARC), Tohoku University [Sendai], HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute of Geophysics and Planetary Physics [Los Angeles] (IGPP), University of California [Los Angeles] (UCLA), Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), Department of Earth and Planetary Science [Tokyo], Graduate School of Science [Tokyo], The University of Tokyo (UTokyo)-The University of Tokyo (UTokyo), The University of Tokyo (UTokyo), University of California [Berkeley] (UC Berkeley), and University of California (UC)-University of California (UC)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Aurora ,Physics::Space Physics ,Small-scale - Abstract
International audience; We present small and meso-scale properties of a substorm onset arc observed simultaneously by the Reimei and THEMIS satellites together with ground-based observations by the THEMIS GBO system. The optical observations revealed the slow equatorward motion of the growth-phase arc and the development of a much brighter onset arc poleward of it. Both arcs showed the typical particle signature of electrostatic acceleration in an inverted-V structure together with a strong Alfvén wave acceleration signature at the poleward edge of the onset arc. Two THEMIS spacecraft encountered earthward flow bursts around the times the expanding optical aurora reached their magnetic footprints in the ionosphere. The particle and field measurements allowed for the reconstruction of the field-aligned current system and the determination of plasma properties in the auroral source region. Auroral arc properties were extracted from the optical and particle measurements and were used to compare measured values to theoretical predictions of the electrodynamic model for the generation of auroral arcs. Good agreement could be reached for the meso-scale arc properties. A qualitative analysis of the internal structuring of the bright onset arc suggests the operation of the tearing instability which provides a 'rope-like' appearance due to advection of the current in the sheared flow across the arc. We also note that for the observed parameters ionospheric conductivity gradients due to electron precipitation will be unstable to the feedback instability in the ionospheric Alfvén resonator that can drive structuring in luminosity over the range of scales observed.
- Published
- 2010
- Full Text
- View/download PDF
32. Binary weight distribution of non-binary LDPC codes
- Author
-
Iryna Andriyanova, Jean-Pierre Tillich, Vishwambhar Rathi, Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051), Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), Security, Cryptology and Transmissions (SECRET), Inria Paris-Rocquencourt, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Discrete mathematics ,Binary number ,[MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT] ,020206 networking & telecommunications ,0102 computer and information sciences ,02 engineering and technology ,01 natural sciences ,Upper and lower bounds ,Combinatorics ,Finite field ,010201 computation theory & mathematics ,[INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] ,Weight distribution ,0202 electrical engineering, electronic engineering, information engineering ,Fraction (mathematics) ,Limit (mathematics) ,Low-density parity-check code ,Decoding methods ,Mathematics ,Computer Science::Information Theory - Abstract
International audience; This paper is the first part of an investigation if the capacity of a binary-input memoryless symmetric channel under ML decoding can be achieved asymptotically by using non-binary LDPC codes. We consider (l, r)-regular LDPC codes both over finite fields and over the general linear group and compute their asymptotic binary weight distributions in the limit of large blocklength and of large alphabet size. A surprising fact, the average binary weight distributions that we obtain do not tend to the binomial one for values of normalized binary weights ¿ smaller than 1-2-l/r. However, it does not mean that non-binary codes do not achieve the capacity asymptotically, but rather that there exists some exponentially small fraction of codes in the ensemble, which contains an exponentially large number of codewords of poor weight. The justification of this fact is beyond the scope of this paper and will be given in.
- Published
- 2009
- Full Text
- View/download PDF
33. A Bibliometric Analysis of Scientific Publications on Eating Disorder Prevention in the Past Three Decades.
- Author
-
Liao Z, Scaltritti M, Xu Z, Dinh TNX, Chen J, and Ghaderi A
- Subjects
- Humans, Publications statistics & numerical data, Publications trends, Bibliometrics, Feeding and Eating Disorders prevention & control
- Abstract
Background: Eating disorders (EDs) present a growing concern due to their widespread occurrence and chronic course, the low access to evidence-based treatment, and the significant burden they place on the patients and society. This picture justifies intensive focus on the prevention of EDs. The current study provides the first bibliometric analysis of research on the prevention of EDs, focusing on trends and contributions, to prompt further prevention research., Methods: We conducted a bibliometric analysis of publications on the prevention of EDs using the Web of Science database, from 1993 to 2023. Focusing on universal and selective prevention strategies, our study involved a rigorous selection process, narrowing down from 10,546 to 383 relevant papers through manual screening. The analysis utilized the "bibliometrix" R package (version 4.2.2) and Python (version 3.9.6) for data processing, with VOSviewer employed for mapping collaboration networks., Results: Our analysis revealed a consistent annual growth rate of 10.85% in ED prevention research publications, with significant contributions from the "International Journal of Eating Disorders" and some notable authors. The United States emerged as the dominant contributor. The analysis also highlighted key trends, including a surge in publications between 2010 and 2017, and the role of major institutions in advancing research in this field., Discussion: The increasing rate of publications on the prevention of EDs is encouraging. However, the actual number of studies on the prevention of EDs are limited, and the majority of this work is performed by a few research groups. Given the high concentration of publications within a few countries and research groups, increased funding, facilitation of prevention research on a wider scale, and engagement of more researchers and further collaboration are called for.
- Published
- 2024
- Full Text
- View/download PDF
34. Neuromorphic computing hardware and neural architectures for robotics.
- Author
-
Sandamirskaya Y, Kaboli M, Conradt J, and Celikel T
- Subjects
- Algorithms, Computers, Neural Networks, Computer, Artificial Intelligence, Robotics
- Abstract
Neuromorphic hardware enables fast and power-efficient neural network-based artificial intelligence that is well suited to solving robotic tasks. Neuromorphic algorithms can be further developed following neural computing principles and neural network architectures inspired by biological neural systems. In this Viewpoint, we provide an overview of recent insights from neuroscience that could enhance signal processing in artificial neural networks on chip and unlock innovative applications in robotics and autonomous intelligent systems. These insights uncover computing principles, primitives, and algorithms on different levels of abstraction and call for more research into the basis of neural computation and neuronally inspired computing hardware.
- Published
- 2022
- Full Text
- View/download PDF
35. The Psychosocial Reality of Digital Travel: Being in Virtual Places.
- Author
-
Hedman A
- Subjects
- Humans, Virtual Reality
- Published
- 2022
- Full Text
- View/download PDF
36. Response from the authors of the original article. Comment to: Månsson C, Nilsson A, Karlson B-M. Severe complications with irreversible electroporation of the pancreas in the presence of a metallic stent: a warning of a procedure that never should be performed: Regarding Scheffer, Voge, van den Bos et al.'s comments.
- Author
-
Månsson C, Nilsson A, Månsson D, and Karlson BM
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.