1. CirrMRI600+: Large Scale MRI Collection and Segmentation of Cirrhotic Liver
- Author
-
Jha, Debesh, Susladkar, Onkar Kishor, Gorade, Vandan, Keles, Elif, Antalek, Matthew, Seyithanoglu, Deniz, Cebeci, Timurhan, Aktas, Halil Ertugrul, Kartal, Gulbiz Dagoglu, Kaymakoglu, Sabahattin, Erturk, Sukru Mehmet, Velichko, Yuri, Ladner, Daniela, Borhani, Amir A., Medetalibeyoglu, Alpay, Durak, Gorkem, and Bagci, Ulas
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Liver cirrhosis, the end stage of chronic liver disease, is characterized by extensive bridging fibrosis and nodular regeneration, leading to an increased risk of liver failure, complications of portal hypertension, malignancy and death. Early diagnosis and management of end-stage cirrhosis are significant clinical challenges. Magnetic resonance imaging (MRI) is a widely available, non-invasive imaging technique for cirrhosis assessment. However, the stage of liver fibrosis cannot be easily differentiated. Moreover, the fibrotic liver tissue (cirrhotic liver) causes significant change in liver enhancement, morphology and signal characteristics, which poses substantial challenges for the development of computer-aided diagnostic applications. Deep learning (DL) offers a promising solution for automatically segmenting and recognizing cirrhotic livers in MRI scans, potentially enabling fibrosis stage classification. However, the lack of datasets specifically focused on cirrhotic livers has hindered progress. CirrMRI600+ addresses this critical gap. This extensive dataset, the first of its kind, comprises 628 high-resolution abdominal MRI scans (310 T1-weighted and 318 T2-weighted, totaling nearly 40,000 slices) with annotated segmentation labels for cirrhotic livers. Unlike previous datasets, CirrMRI600+ specifically focuses on cirrhotic livers, capturing the complexities of this disease state. The link to the dataset is made publicly available at: https://osf.io/cuk24/. We also share 11 baseline deep learning segmentation methods used in our rigorous benchmarking experiments: https://github.com/NUBagciLab/CirrMRI600Plus.
- Published
- 2024