37 results on '"KAMLAND"'
Search Results
2. Geoneutrinos and geoscience: an intriguing joint-venture.
- Author
-
Bellini, G., Inoue, K., Mantovani, F., Serafini, A., Strati, V., and Watanabe, H.
- Abstract
The review is conceived to provide a useful toolbox to understand present geoneutrino results with a view to shed light on Earth's energetics and composition. The status of the geoneutrino field is presented starting from the comprehension of their production, propagation, and detection, and going on with the experimental and technological features of the Borexino and KamLAND ongoing experiments. The current understanding of the energetical, geophysical and geochemical traits of our planet is examined in a critical analysis of the currently available models. By combining theoretical models and experimental results, the mantle geoneutrino signal extracted from the results of the two experiments demonstrates the effectiveness in investigating deep earth radioactivity through geoneutrinos from different sites. The obtained results are discussed and framed in the puzzle of the diverse classes of formulated Bulk Silicate Earth models, analyzing their implications on planetary heat budget and composition. As final remarks, we turn our gaze to the prospects in the field of geoneutrinos presenting the expectations of experiments envisaged for the next decade and the engaging technological challenges foreseen. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator
- Author
-
Yoshida, S. [Tohoku Univ., Sendai (Japan)]
- Published
- 2014
- Full Text
- View/download PDF
4. Neutron yield and energy spectrum of 13C(alpha,n)16O reaction in liquid scintillator of KamLAND: A Nedis-2m simulation
- Author
-
Hector Rene Vega-Carrillo, Nima Ghal-Eh, Gennady N. Vlaskin, and Sergey V. Bedenko
- Subjects
Physics ,Range (particle radiation) ,Detector ,13C(α,n)16O reaction cross section ,TK9001-9401 ,chemistry.chemical_element ,Neutron energy spectrum ,Alpha particle ,Scintillator ,Nuclear physics ,Nuclear Energy and Engineering ,chemistry ,KamLAND ,Nuclear engineering. Atomic power ,Neutron ,Neutrino ,Nuclear Experiment ,Carbon ,Energy (signal processing) ,Nedis-2m program Code - Abstract
The 13C (α,n)16O reaction cross-section is important data for nuclear physics, astrophysical, and neutrino physics experiments, however, they exhibit uncertainties due to the discrepancies in the experimental data. In this study, using the Nedis-2m program code, the energy spectrum of α-induced neutrons in a thin carbon target was calculated and the corresponding reaction cross-section was refined in the alpha particle energy range of 5–8 MeV. The results were used to calculate the intensity and energy spectrum of background neutrons produced in the liquid scintillator of KamLAND. The results will be useful in a variety of astrophysical and neutrino experiments especially those based on LS or Gd-LS detectors.
- Published
- 2021
5. Experimental Study of Geoneutrinos with KamLAND
- Author
-
Enomoto, Sanshiro and Dye, Stephen T., editor
- Published
- 2007
- Full Text
- View/download PDF
6. On the Possibility of Directional Analysis for Geo-neutrinos
- Author
-
Batygov, Mikhail and Dye, Stephen T., editor
- Published
- 2007
- Full Text
- View/download PDF
7. Limits on Astrophysical Antineutrinos with the KamLAND Experiment
- Author
-
Abe, S, Asami, S, Gando, A, Gando, Y, Gima, T, Goto, A, Hachiya, T, Hata, K, Hayashida, S, Hosokawa, K, Ichimura, K, Ieki, S, Ikeda, H, Inoue, K, Ishidoshiro, K, Kamei, Y, Kawada, N, Kishimoto, Y, Kinoshita, T, Koga, M, Maemura, N, Mitsui, T, Miyake, H, Nakamura, K, Nakamura, R, Ozaki, H, Sakai, T, Sambonsugi, H, Shimizu, I, Shirahata, Y, Shirai, J, Shiraishi, K, Suzuki, A, Suzuki, Y, Takeuchi, A, Tamae, K, Ueshima, K, Wada, Y, Watanabe, H, Yoshida, Y, Obara, S, Ichikawa, A, Kozlov, A, Chernyak, D, Takemoto, Y, Yoshida, S, Umehara, S, Fushimi, K, Hirata, S, Yoshida, M, Berger, B, Fujikawa, B, Learned, J, Maricic, J, Axani, S, Winslow, L, Fu, Z, Ouellet, J, Efremenko, Y, Karwowski, H, Markoff, D, Tornow, W, Li, A, Detwiler, J, Enomoto, S, Decowski, M, Grant, C, O'Donnell, T, Dell'Oro, S, Abe S., Asami S., Gando A., Gando Y., Gima T., Goto A., Hachiya T., Hata K., Hayashida S., Hosokawa K., Ichimura K., Ieki S., Ikeda H., Inoue K., Ishidoshiro K., Kamei Y., Kawada N., Kishimoto Y., Kinoshita T., Koga M., Maemura N., Mitsui T., Miyake H., Nakamura K., Nakamura R., Ozaki H., Sakai T., Sambonsugi H., Shimizu I., Shirahata Y., Shirai J., Shiraishi K., Suzuki A., Suzuki Y., Takeuchi A., Tamae K., Ueshima K., Wada Y., Watanabe H., Yoshida Y., Obara S., Ichikawa A. K., Kozlov A., Chernyak D., Takemoto Y., Yoshida S., Umehara S., Fushimi K., Hirata S., Nakamura K. Z., Yoshida M., Berger B. E., Fujikawa B. K., Learned J. G., Maricic J., Axani S. N., Winslow L. A., Fu Z., Ouellet J., Efremenko Y., Karwowski H. J., Markoff D. M., Tornow W., Li A., Detwiler J. A., Enomoto S., Decowski M. P., Grant C., O'Donnell T., Dell'Oro S., Abe, S, Asami, S, Gando, A, Gando, Y, Gima, T, Goto, A, Hachiya, T, Hata, K, Hayashida, S, Hosokawa, K, Ichimura, K, Ieki, S, Ikeda, H, Inoue, K, Ishidoshiro, K, Kamei, Y, Kawada, N, Kishimoto, Y, Kinoshita, T, Koga, M, Maemura, N, Mitsui, T, Miyake, H, Nakamura, K, Nakamura, R, Ozaki, H, Sakai, T, Sambonsugi, H, Shimizu, I, Shirahata, Y, Shirai, J, Shiraishi, K, Suzuki, A, Suzuki, Y, Takeuchi, A, Tamae, K, Ueshima, K, Wada, Y, Watanabe, H, Yoshida, Y, Obara, S, Ichikawa, A, Kozlov, A, Chernyak, D, Takemoto, Y, Yoshida, S, Umehara, S, Fushimi, K, Hirata, S, Yoshida, M, Berger, B, Fujikawa, B, Learned, J, Maricic, J, Axani, S, Winslow, L, Fu, Z, Ouellet, J, Efremenko, Y, Karwowski, H, Markoff, D, Tornow, W, Li, A, Detwiler, J, Enomoto, S, Decowski, M, Grant, C, O'Donnell, T, Dell'Oro, S, Abe S., Asami S., Gando A., Gando Y., Gima T., Goto A., Hachiya T., Hata K., Hayashida S., Hosokawa K., Ichimura K., Ieki S., Ikeda H., Inoue K., Ishidoshiro K., Kamei Y., Kawada N., Kishimoto Y., Kinoshita T., Koga M., Maemura N., Mitsui T., Miyake H., Nakamura K., Nakamura R., Ozaki H., Sakai T., Sambonsugi H., Shimizu I., Shirahata Y., Shirai J., Shiraishi K., Suzuki A., Suzuki Y., Takeuchi A., Tamae K., Ueshima K., Wada Y., Watanabe H., Yoshida Y., Obara S., Ichikawa A. K., Kozlov A., Chernyak D., Takemoto Y., Yoshida S., Umehara S., Fushimi K., Hirata S., Nakamura K. Z., Yoshida M., Berger B. E., Fujikawa B. K., Learned J. G., Maricic J., Axani S. N., Winslow L. A., Fu Z., Ouellet J., Efremenko Y., Karwowski H. J., Markoff D. M., Tornow W., Li A., Detwiler J. A., Enomoto S., Decowski M. P., Grant C., O'Donnell T., and Dell'Oro S.
- Abstract
We report on a search for electron antineutrinos ( ) from astrophysical sources in the neutrino energy range 8.3-30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we find no significant excess over background model predictions. Assuming several supernova relic neutrino spectra, we give upper flux limits of 60-110 cm-2 s-1 (90% confidence level, CL) in the analysis range and present a model-independent flux. We also set limits on the annihilation rates for light dark matter pairs to neutrino pairs. These data improve on the upper probability limit of 8B solar neutrinos converting into , (90% CL) assuming an undistorted shape. This corresponds to a solar flux of 60 cm-2 s-1 (90% CL) in the analysis energy range.
- Published
- 2022
8. Geoneutrinos and Heat Production in the Earth: Constraints and Implications
- Author
-
McDonough, Bill
- Published
- 2008
9. Search for Low-energy Electron Antineutrinos in KamLAND Associated with Gravitational Wave Events
- Author
-
Abe, S, Asami, S, Gando, A, Gando, Y, Gima, T, Goto, A, Hachiya, T, Hata, K, Hayashida, S, Hosokawa, K, Ichimura, K, Ieki, S, Ikeda, H, Inoue, K, Ishidoshiro, K, Kamei, Y, Kawada, N, Kishimoto, Y, Kinoshita, T, Koga, M, Maemura, N, Mitsui, T, Miyake, H, Nakamura, K, Nakamura, R, Ozaki, H, Sakai, T, Sambonsugi, H, Shimizu, I, Shirai, J, Shiraishi, K, Suzuki, A, Suzuki, Y, Takeuchi, A, Tamae, K, Ueshima, K, Wada, Y, Watanabe, H, Yoshida, Y, Obara, S, Kozlov, A, Chernyak, D, Takemoto, Y, Yoshida, S, Umehara, S, Fushimi, K, Ichikawa, A, Yoshida, M, Berger, B, Fujikawa, B, Learned, J, Maricic, J, Axani, S, Winslow, L, Fu, Z, Ouellet, J, Efremenko, Y, Karwowski, H, Markoff, D, Tornow, W, Li, A, Detwiler, J, Enomoto, S, Decowski, M, Grant, C, O'Donnell, T, Dell'Oro, S, Abe S., Asami S., Gando A., Gando Y., Gima T., Goto A., Hachiya T., Hata K., Hayashida S., Hosokawa K., Ichimura K., Ieki S., Ikeda H., Inoue K., Ishidoshiro K., Kamei Y., Kawada N., Kishimoto Y., Kinoshita T., Koga M., Maemura N., Mitsui T., Miyake H., Nakamura K., Nakamura R., Ozaki H., Sakai T., Sambonsugi H., Shimizu I., Shirai J., Shiraishi K., Suzuki A., Suzuki Y., Takeuchi A., Tamae K., Ueshima K., Wada Y., Watanabe H., Yoshida Y., Obara S., Kozlov A., Chernyak D., Takemoto Y., Yoshida S., Umehara S., Fushimi K., Ichikawa A. K., Nakamura K. Z., Yoshida M., Berger B. E., Fujikawa B. K., Learned J. G., Maricic J., Axani S. N., Winslow L. A., Fu Z., Ouellet J., Efremenko Y., Karwowski H. J., Markoff D. M., Tornow W., Li A., Detwiler J. A., Enomoto S., Decowski M. P., Grant C., O'Donnell T., Dell'Oro S., Abe, S, Asami, S, Gando, A, Gando, Y, Gima, T, Goto, A, Hachiya, T, Hata, K, Hayashida, S, Hosokawa, K, Ichimura, K, Ieki, S, Ikeda, H, Inoue, K, Ishidoshiro, K, Kamei, Y, Kawada, N, Kishimoto, Y, Kinoshita, T, Koga, M, Maemura, N, Mitsui, T, Miyake, H, Nakamura, K, Nakamura, R, Ozaki, H, Sakai, T, Sambonsugi, H, Shimizu, I, Shirai, J, Shiraishi, K, Suzuki, A, Suzuki, Y, Takeuchi, A, Tamae, K, Ueshima, K, Wada, Y, Watanabe, H, Yoshida, Y, Obara, S, Kozlov, A, Chernyak, D, Takemoto, Y, Yoshida, S, Umehara, S, Fushimi, K, Ichikawa, A, Yoshida, M, Berger, B, Fujikawa, B, Learned, J, Maricic, J, Axani, S, Winslow, L, Fu, Z, Ouellet, J, Efremenko, Y, Karwowski, H, Markoff, D, Tornow, W, Li, A, Detwiler, J, Enomoto, S, Decowski, M, Grant, C, O'Donnell, T, Dell'Oro, S, Abe S., Asami S., Gando A., Gando Y., Gima T., Goto A., Hachiya T., Hata K., Hayashida S., Hosokawa K., Ichimura K., Ieki S., Ikeda H., Inoue K., Ishidoshiro K., Kamei Y., Kawada N., Kishimoto Y., Kinoshita T., Koga M., Maemura N., Mitsui T., Miyake H., Nakamura K., Nakamura R., Ozaki H., Sakai T., Sambonsugi H., Shimizu I., Shirai J., Shiraishi K., Suzuki A., Suzuki Y., Takeuchi A., Tamae K., Ueshima K., Wada Y., Watanabe H., Yoshida Y., Obara S., Kozlov A., Chernyak D., Takemoto Y., Yoshida S., Umehara S., Fushimi K., Ichikawa A. K., Nakamura K. Z., Yoshida M., Berger B. E., Fujikawa B. K., Learned J. G., Maricic J., Axani S. N., Winslow L. A., Fu Z., Ouellet J., Efremenko Y., Karwowski H. J., Markoff D. M., Tornow W., Li A., Detwiler J. A., Enomoto S., Decowski M. P., Grant C., O'Donnell T., and Dell'Oro S.
- Abstract
We present the results of a search for MeV-scale electron antineutrino events in KamLAND coincident with the 60 gravitational wave events/candidates reported by the LIGO/Virgo collaboration during their second and third observing runs. We find no significant coincident signals within a 500 s timing window from each gravitational wave and present 90% C.L. upper limits on the electron antineutrino fluence between 108 and 1013 cm-2 for neutrino energies in the energy range of 1.8-111 MeV.
- Published
- 2021
10. Results from KamLAND.
- Author
-
Inoue, Kunio
- Subjects
- *
NEUTRINOS , *NEUTRONS , *NUCLEAR reactors , *SPHERICAL astronomy , *ASTRONOMY , *STARS - Abstract
Earth is our most familiar astronomical object. However, its properties are not very well known, because its interior is optically invisible. One of the most important parameters in understanding Earth is heat generation. A large part of this heat is generated by the decay of radioactive elements, accompanying neutrino emissions, in the earth. KamLAND has provided precise determination of neutrino oscillation parameters and revealed how neutrinos travel observing neutrinos from distant nuclear power reactors. Consequently, KamLAND has made neutrinos new tool to see through astronomical objects that are opaque. Success in the first observation of geologically-produced neutrinos with KamLAND is a break-through for observational geophysics and is the start of “Neutrino Geophysics”. © 2006 American Institute of Physics [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
11. Geoneutrinos and geoscience: an intriguing joint-venture
- Author
-
Bellini, G., Inoue, K., Mantovani, F., Serafini, A., Strati, V., and Watanabe, H.
- Subjects
Heat producing elements ,Antineutrinos detection, Borexino, Bulk silicate Earth, Heat producing elements, KamLAND, Radiogenic heat ,General Physics and Astronomy ,FOS: Physical sciences ,Antineutrinos detection ,Radiogenic heat ,NO ,High Energy Physics - Experiment ,Geophysics (physics.geo-ph) ,Physics - Geophysics ,High Energy Physics - Experiment (hep-ex) ,Borexino ,Bulk silicate Earth ,KamLAND - Abstract
The review is conceived to help the reader to interpret present geoneutrino results in the framework of Earth's energetics and composition. Starting from the comprehension of antineutrino production, propagation, and detection, the status of the geoneutrino field is presented through the description of the experimental and technological features of the Borexino and KamLAND ongoing experiments. The current understanding of the energetical, geophysical and geochemical traits of our planet is examined in a critical analysis of the currently available models. By combining theoretical models and experimental results, the mantle geoneutrino signal extracted from the results of the two experiments demonstrates the effectiveness in investigating deep earth radioactivity through geoneutrinos from different sites. The obtained results are discussed and framed in the puzzle of the diverse classes of formulated Bulk Silicate Earth models, analyzing their implications on planetary heat budget and composition. As a final remark, we present the engaging technological challenges and the future experiments envisaged for the next decade in the geoneutrino field., Comment: Submitted to "La Rivista del Nuovo Cimento"
- Published
- 2021
- Full Text
- View/download PDF
12. Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO
- Author
-
Zhao, J., Abusleme, A., Adam, T., Ahmad, S., Ahmed, R., Aiello, S., Akram, M., An, F., An, Q., Andronico, G., Anfimov, N., Antonelli, V., Antoshkina, T., Asavapibhop, B., André, J. P. A. M., Auguste, D., Babic, A., Balashov, N., Baldini, W., Barresi, A., Basilico, D., Baussan, E., Bellato, M., Bergnoli, A., Birkenfeld, T., Blin, S., Blum, D., Blyth, S., Bolshakova, A., Bongrand, M., Bordereau, C., Breton, D., Brigatti, A., Brugnera, R., Bruno, R., Budano, A., Buscemi, M., Busto, J., Butorov, I., Cabrera, A., Cai, H., Cai, X., Cai, Y., Cai, Z., Callegari, R., Cammi, A., Campeny, A., Cao, C., Cao, G., Cao, J., Caruso, R., Cerna, C., Chang, J., Chang, Y., Chen, P., Chen, P. -A, Chen, S., Chen, X., Chen, Y. -W, Chen, Y., Chen, Z., Cheng, J., Cheng, Y., Chetverikov, A., Chiesa, D., Chimenti, P., Chukanov, A., Claverie, G., Clementi, C., Clerbaux, B., Di Lorenzo, S. C., Corti, D., Dal Corso, F., Dalager, O., La Taille, C., Deng, J., Deng, Z., Depnering, W., Diaz, M., Ding, X., Ding, Y., Dirgantara, B., Dmitrievsky, S., Dohnal, T., Dolzhikov, D., Donchenko, G., Dong, J., Doroshkevich, E., Dracos, M., Druillole, F., Du, R., Du, S., Dusini, S., Dvorak, M., Enqvist, T., Enzmann, H., Fabbri, A., Fajt, L., Fan, D., Fan, L., Fang, J., Fang, W., Fargetta, M., Fedoseev, D., Fekete, V., Feng, L. -C, Feng, Q., Ford, R., Fournier, A., Gan, H., Gao, F., Garfagnini, A., Gavrikov, A., Giammarchi, M., Giaz, A., Giudice, N., Gonchar, M., Gong, G., Gong, H., Gornushkin, Y., Göttel, A., Grassi, M., Grewing, C., Gromov, V., Gu, M., Gu, X., Gu, Y., Guan, M., Guardone, N., Gul, M., Guo, C., Guo, J., Guo, W., Guo, X., Guo, Y., Hackspacher, P., Hagner, C., Han, R., Han, Y., Hassan, M. S., He, M., He, W., Heinz, T., Hellmuth, P., Heng, Y., Herrera, R., Hor, Y., Hou, S., Hsiung, Y., Hu, B. -Z, Hu, H., Hu, J., Hu, S., Hu, T., Hu, Z., Huang, C., Huang, G., Huang, H., Huang, W., Huang, X., Huang, Y., Hui, J., Huo, L., Huo, W., Huss, C., Hussain, S., Ioannisian, A., Isocrate, R., Jelmini, B., Jen, K. -L, Jeria, I., Ji, X., Jia, H., Jia, J., Jian, S., Jiang, D., Jiang, W., Jiang, X., Jin, R., Jing, X., Jollet, C., Joutsenvaara, J., Jungthawan, S., Kalousis, L., Kampmann, P., Kang, L., Karaparambil, R., Kazarian, N., Khosonthongkee, K., Korablev, D., Kouzakov, K., Krasnoperov, A., Kruth, A., Kutovskiy, N., Kuusiniemi, P., Lachenmaier, T., Landini, C., Leblanc, S., Lebrin, V., Lefevre, F., Lei, R., Leitner, R., Leung, J., Li, D., Li, F., Li, H., Li, J., Li, M., Li, N., Zhu, Z., Li, Q., Li, R., Li, S., Li, T., Li, W., Li, X., Li, Y., Li, Z., Liang, H., Zhuang, B., Liao, J., Liebau, D., Limphirat, A., Limpijumnong, S., Lin, G. -L, Lin, S., Lin, T., Ling, J., Lippi, I., Liu, F., Liu, H., Liu, J., Liu, M., Liu, Q., Liu, R., Liu, S., Liu, X., Liu, Y., Lokhov, A., Lombardi, P., Lombardo, C., Loo, K., Lu, C., Lu, H., Lu, J., Lu, S., Lu, X., Lubsandorzhiev, B., Lubsandorzhiev, S., Ludhova, L., Lukanov, A., Luo, F., Luo, G., Luo, P., Luo, S., Luo, W., Lyashuk, V., Ma, B., Ma, Q., Ma, S., Ma, X., Maalmi, J., Malyshkin, Y., Mandujano, R. C., Mantovani, F., Manzali, F., Mao, X., Mao, Y., Mari, S. M., Marini, F., Marium, S., Martellini, C., Martin-Chassard, G., Martini, A., Mayer, M., Mayilyan, D., Mednieks, I., Meng, Y., Meregaglia, A., Meroni, E., Meyhöfer, D., Mezzetto, M., Miller, J., Miramonti, L., Montini, P., Montuschi, M., Müller, A., Nastasi, M., Naumov, D. V., Naumova, E., Navas-Nicolas, D., Nemchenok, I., Thi, M. T. N., Ning, F., Ning, Z., Nunokawa, H., Oberauer, L., Ochoa-Ricoux, J. P., Olshevskiy, A., Orestano, D., Ortica, F., Othegraven, R., Pan, H. -R, Paoloni, A., Parmeggiano, S., Pei, Y., Pelliccia, N., Peng, A., Peng, H., Perrot, F., Petitjean, P. -A, Petrucci, F., Pilarczyk, O., Rico, L. F. P., Popov, A., Poussot, P., Pratumwan, W., Previtali, E., Qi, F., Qi, M., Qian, S., Qian, X., Qian, Z., Qiao, H., Qin, Z., Qiu, S., Rajput, M. U., Ranucci, G., Raper, N., Re, A., Rebber, H., Rebii, A., Ren, B., Ren, J., Ricci, B., Robens, M., Roche, M., Rodphai, N., Romani, A., Roskovec, B., Roth, C., Ruan, X., Rujirawat, S., Rybnikov, A., Andrei Sadovskiy, Saggese, P., Sanfilippo, S., Sangka, A., Sanguansak, N., Sawangwit, U., Sawatzki, J., Sawy, F., Schever, M., Schwab, C., Schweizer, K., Selyunin, A., Serafini, A., Settanta, G., Settimo, M., Shao, Z., Sharov, V., Shaydurova, A., Shi, J., Shi, Y., Shutov, V., Sidorenkov, A., Šimkovic, F., Sirignano, C., Siripak, J., Sisti, M., Slupecki, M., Smirnov, M., Smirnov, O., Sogo-Bezerra, T., Sokolov, S., Songwadhana, J., Soonthornthum, B., Sotnikov, A., Šrámek, O., Sreethawong, W., Stahl, A., Stanco, L., Stankevich, K., Štefánik, D., Steiger, H., Steinmann, J., Sterr, T., Stock, M. R., Strati, V., Studenikin, A., Sun, S., Sun, X., Sun, Y., Suwonjandee, N., Szelezniak, M., Tang, J., Tang, Q., Tang, X., Tietzsch, A., Tkachev, I., Tmej, T., Torri, M. D. C., Treskov, K., Triossi, A., Troni, G., Trzaska, W., Tuve, C., Ushakov, N., Den Boom, J., Waasen, S., Vanroyen, G., Vedin, V., Verde, G., Vialkov, M., Viaud, B., Vollbrecht, M., Volpe, C., Vorobel, V., Voronin, D., Votano, L., Walker, P., Wang, C., Wang, C. -H, Wang, E., Wang, G., Wang, J., Wang, K., Wang, L., Wang, M., Zong, L., Wang, R., Wang, S., Wang, W., Zou, J., Wang, X., Wang, Y., Zhuang, H., Wang, Z., Waqas, M., Watcharangkool, A., Wei, L., Wei, W., Wei, Y., Wen, K., Wen, L., Wiebusch, C., Wong, S. C. -F, Wonsak, B., Wu, D., Wu, Q., Wu, Z., Wurm, M., Wurtz, J., Wysotzki, C., Xi, Y., Xia, D., Xie, X., Xie, Y., Xie, Z., Xing, Z., Xu, B., Xu, C., Xu, D., Xu, F., Xu, H., Xu, J., Xu, M., Xu, Y., Yan, B., Yan, T., Yan, W., Yan, X., Yan, Y., Yang, A., Yang, C., Yang, H., Yang, J., Yang, L., Yang, X., Yang, Y., Zhu, K., Yao, H., Yasin, Z., Ye, J., Ye, M., Ye, Z., Yegin, U., Yermia, F., Yi, P., Yin, N., Yin, X., You, Z., Yu, B., Yu, C., Yu, H., Yu, M., Yu, X., Yu, Z., Yuan, C., Yuan, Y., Yuan, Z., Yue, B., Zafar, N., Zambanini, A., Zavadskyi, V., Zeng, S., Zeng, T., Zeng, Y., Zhan, L., Zhang, A., Zhang, F., Zhang, G., Zhang, H., Zhang, J., Zhang, P., Zhang, Q., Zhang, S., Zhang, T., Zhang, X., Zhang, Y., Zhang, Z., Zhao, F., Zhao, R., Zhao, S., Zhao, T., Zheng, D., Zheng, H., Zheng, M., Zheng, Y., Zhong, W., Zhou, J., Zhou, L., Zhou, N., Zhou, S., Zhou, T., Zhou, X., Zhu, J., Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), JUNO, Abusleme A., Adam T., Ahmad S., Aiello S., Akram M., Ali N., An F., An G., An Q., Andronico G., Anfimov N., Antonelli V., Antoshkina T., Asavapibhop B., De Andre J.P.A.M., Auguste D., Babic A., Baldini W., Barresi A., Baussan E., Bellato M., Bergnoli A., Bernieri E., Biare D., Birkenfeld T., Blin S., Blum D., Blyth S., Bolshakova A., Bongrand M., Bordereau C., Breton D., Brigatti A., Brugnera R., Bruno R., Budano A., Buesken M., Buscemi M., Busto J., Butorov I., Cabrera A., Cai H., Cai X., Cai Y., Cai Z., Cammi A., Campeny A., Cao C., Cao G., Cao J., Caruso R., Cerna C., Chang J., Chang Y., Chen P., Chen P.-A., Chen S., Chen X., Chen Y.-W., Chen Y., Chen Z., Cheng J., Cheng Y., Chepurnov A., Chiesa D., Chimenti P., Chukanov A., Chuvashova A., Claverie G., Clementi C., Clerbaux B., Lorenzo S.C.D., Corti D., Costa S., Corso F.D., De La Taille C., Deng J., Deng Z., Depnering W., Diaz M., Ding X., Ding Y., Dirgantara B., Dmitrievsky S., Dohnal T., Donchenko G., Dong J., Dornic D., Doroshkevich E., Dracos M., Druillole F., Du S., Dusini S., Dvorak M., Enqvist T., Enzmann H., Fabbri A., Fajt L., Fan D., Fan L., Fang C., Fang J., Fargetta M., Fatkina A., Fedoseev D., Fekete V., Feng L.-C., Feng Q., Ford R., Formozov A., Fournier A., Gan H., Gao F., Garfagnini A., Gottel A., Genster C., Giammarchi M., Giaz A., Giudice N., Giuliani F., Gonchar M., Gong G., Gong H., Gorchakov O., Gornushkin Y., Grassi M., Grewing C., Gromov M., Gromov V., Gu M., Gu X., Gu Y., Guan M., Guardone N., Gul M., Guo C., Guo J., Guo W., Guo X., Guo Y., Hackspacher P., Hagner C., Han R., Han Y., He M., He W., Heinz T., Hellmuth P., Heng Y., Herrera R., Hong D., YuenKeung Hor, Hou S., Hsiung Y., Hu B.-Z., Hu H., Hu J., Hu S., Hu T., Hu Z., Huang C., Huang G., Huang H., Huang Q., Huang W., Huang X., Huang Y., Hui J., Huo W., Huss C., Hussain S., Insolia A., Ioannisian A., Ioannisyan D., Isocrate R., Jen K.-L., Ji X., Jia H., Jia J., Jian S., Jiang D., Jiang X., Jin R., Jing X., Jollet C., Joutsenvaara J., Jungthawan S., Kalousis L., Kampmann P., Kang L., Karagounis M., Kazarian N., Khan A., Khan W., Khosonthongkee K., Kinz P., Korablev D., Kouzakov K., Krasnoperov A., Krokhaleva S., Krumshteyn Z., Kruth A., Kutovskiy N., Kuusiniemi P., Lachenmaier T., Landini C., Leblanc S., Lefevre F., Lei L., Lei R., Leitner R., Leung J., Li D., Li F., Li H., Li J., Li K., Li M., Li N., Li Q., Li R., Li S., Li T., Li W., Li X., Li Y., Li Z., Liang H., Liang J., Liao J., Liebau D., Limphirat A., Limpijumnong S., Lin G.-L., Lin S., Lin T., Ling J., Lippi I., Liu F., Liu H., Liu J., Liu M., Liu Q., Liu R., Liu S., Liu X., Liu Y., Lokhov A., Lombardi P., Lombardo C., Loo K., Lu C., Lu H., Lu J., Lu S., Lu X., Lubsandorzhiev B., Lubsandorzhiev S., Ludhova L., Luo F., Luo G., Luo P., Luo S., Luo W., Lyashuk V., Ma Q., Ma S., Ma X., Maalmi J., Malyshkin Y., Mantovani F., Manzali F., Mao X., Mao Y., Mari S.M., Marini F., Marium S., Martellini C., Martin-Chassard G., Martini A., Mayilyan D., Muller A., Mednieks I., Meng Y., Meregaglia A., Meroni E., Meyhofer D., Mezzetto M., Miller J., Miramonti L., Monforte S., Montini P., Montuschi M., Morozov N., Muralidharan P., Nastasi M., Naumov D.V., Naumova E., Nemchenok I., Nikolaev A., Ning F., Ning Z., Nunokawa H., Oberauer L., Ochoa-Ricoux J.P., Olshevskiy A., Orestano D., Ortica F., Pan H.-R., Paoloni A., Parkalian N., Parmeggiano S., Payupol T., Pei Y., Pelliccia N., Peng A., Peng H., Perrot F., Petitjean P.-A., Petrucci F., Rico L.F.P., Pilarczyk O., Popov A., Poussot P., Pratumwan W., Previtali E., Qi F., Qi M., Qian S., Qian X., Qiao H., Qin Z., Qiu S., Rajput M., Ranucci G., Raper N., Re A., Rebber H., Rebii A., Ren B., Ren J., Rezinko T., Ricci B., Robens M., Roche M., Rodphai N., Romani A., Roskovec B., Roth C., Ruan X., Rujirawat S., Rybnikov A., Sadovsky A., Saggese P., Salamanna G., Sanfilippo S., Sangka A., Sanguansak N., Sawangwit U., Sawatzki J., Sawy F., Schever M., Schuler J., Schwab C., Schweizer K., Selivanov D., Selyunin A., Serafini A., Settanta G., Settimo M., Shahzad M., Sharov V., Shi G., Shi J., Shi Y., Shutov V., Sidorenkov A., Simkovic F., Sirignano C., Siripak J., Sisti M., Slupecki M., Smirnov M., Smirnov O., Sogo-Bezerra T., Songwadhana J., Soonthornthum B., Sotnikov A., Sramek O., Sreethawong W., Stahl A., Stanco L., Stankevich K., Stefanik D., Steiger H., Steinmann J., Sterr T., Stock M.R., Strati V., Studenikin A., Sun G., Sun S., Sun X., Sun Y., Suwonjandee N., Szelezniak M., Tang J., Tang Q., Tang X., Tietzsch A., Tkachev I., Tmej T., Treskov K., Triossi A., Troni G., Trzaska W., Tuve C., Van Waasen S., Van Den Boom J., Vanroyen G., Vassilopoulos N., Vedin V., Verde G., Vialkov M., Viaud B., Volpe C., Vorobel V., Votano L., Walker P., Wang C., Wang C.-H., Wang E., Wang G., Wang J., Wang K., Wang L., Wang M., Wang R., Wang S., Wang W., Wang X., Wang Y., Wang Z., Watcharangkool A., Wei L., Wei W., Wei Y., Wen L., Wiebusch C., Wong S.C.-F., Wonsak B., Wu D., Wu F., Wu Q., Wu W., Wu Z., Wurm M., Wurtz J., Wysotzki C., Xi Y., Xia D., Xie Y., Xie Z., Xing Z., Xu B., Xu D., Xu F., Xu J., Xu M., Xu Y., Yan B., Yan X., Yan Y., Yang A., Yang C., Yang H., Yang J., Yang L., Yang X., Yang Y., Yao H., Yasin Z., Ye J., Ye M., Yegin U., Yermia F., Yi P., Yin X., You Z., Yu B., Yu C., Yu H., Yu M., Yu X., Yu Z., Yuan C., Yuan Y., Yuan Z., Yue B., Zafar N., Zambanini A., Zeng P., Zeng S., Zeng T., Zeng Y., Zhan L., Zhang F., Zhang G., Zhang H., Zhang J., Zhang P., Zhang Q., Zhang S., Zhang T., Zhang X., Zhang Y., Zhang Z., Zhao F., Zhao J., Zhao R., Zhao S., Zhao T., Zheng D., Zheng H., Zheng M., Zheng Y., Zhong W., Zhou J., Zhou L., Zhou N., Zhou S., Zhou X., Zhu J., Zhu K., Zhuang H., Zong L., Zou J., Abusleme, A., Adam, T., Ahmad, S., Aiello, S., Akram, M., Ali, N., An, F., An, G., An, Q., Andronico, G., Anfimov, N., Antonelli, V., Antoshkina, T., Asavapibhop, B., De Andre, J. P. A. M., Auguste, D., Babic, A., Baldini, W., Barresi, A., Baussan, E., Bellato, M., Bergnoli, A., Bernieri, E., Biare, D., Birkenfeld, T., Blin, S., Blum, D., Blyth, S., Bolshakova, A., Bongrand, M., Bordereau, C., Breton, D., Brigatti, A., Brugnera, R., Bruno, R., Budano, A., Buesken, M., Buscemi, M., Busto, J., Butorov, I., Cabrera, A., Cai, H., Cai, X., Cai, Y., Cai, Z., Cammi, A., Campeny, A., Cao, C., Cao, G., Cao, J., Caruso, R., Cerna, C., Chang, J., Chang, Y., Chen, P., Chen, P. -A., Chen, S., Chen, X., Chen, Y. -W., Chen, Y., Chen, Z., Cheng, J., Cheng, Y., Chepurnov, A., Chiesa, D., Chimenti, P., Chukanov, A., Chuvashova, A., Claverie, G., Clementi, C., Clerbaux, B., Lorenzo, S. C. D., Corti, D., Costa, S., Corso, F. D., De La Taille, C., Deng, J., Deng, Z., Depnering, W., Diaz, M., Ding, X., Ding, Y., Dirgantara, B., Dmitrievsky, S., Dohnal, T., Donchenko, G., Dong, J., Dornic, D., Doroshkevich, E., Dracos, M., Druillole, F., Du, S., Dusini, S., Dvorak, M., Enqvist, T., Enzmann, H., Fabbri, A., Fajt, L., Fan, D., Fan, L., Fang, C., Fang, J., Fargetta, M., Fatkina, A., Fedoseev, D., Fekete, V., Feng, L. -C., Feng, Q., Ford, R., Formozov, A., Fournier, A., Gan, H., Gao, F., Garfagnini, A., Gottel, A., Genster, C., Giammarchi, M., Giaz, A., Giudice, N., Giuliani, F., Gonchar, M., Gong, G., Gong, H., Gorchakov, O., Gornushkin, Y., Grassi, M., Grewing, C., Gromov, M., Gromov, V., Gu, M., Gu, X., Gu, Y., Guan, M., Guardone, N., Gul, M., Guo, C., Guo, J., Guo, W., Guo, X., Guo, Y., Hackspacher, P., Hagner, C., Han, R., Han, Y., He, M., He, W., Heinz, T., Hellmuth, P., Heng, Y., Herrera, R., Hong, D., Yuenkeung, Hor, Hou, S., Hsiung, Y., Hu, B. -Z., Hu, H., Hu, J., Hu, S., Hu, T., Hu, Z., Huang, C., Huang, G., Huang, H., Huang, Q., Huang, W., Huang, X., Huang, Y., Hui, J., Huo, W., Huss, C., Hussain, S., Insolia, A., Ioannisian, A., Ioannisyan, D., Isocrate, R., Jen, K. -L., Ji, X., Jia, H., Jia, J., Jian, S., Jiang, D., Jiang, X., Jin, R., Jing, X., Jollet, C., Joutsenvaara, J., Jungthawan, S., Kalousis, L., Kampmann, P., Kang, L., Karagounis, M., Kazarian, N., Khan, A., Khan, W., Khosonthongkee, K., Kinz, P., Korablev, D., Kouzakov, K., Krasnoperov, A., Krokhaleva, S., Krumshteyn, Z., Kruth, A., Kutovskiy, N., Kuusiniemi, P., Lachenmaier, T., Landini, C., Leblanc, S., Lefevre, F., Lei, L., Lei, R., Leitner, R., Leung, J., Li, D., Li, F., Li, H., Li, J., Li, K., Li, M., Li, N., Li, Q., Li, R., Li, S., Li, T., Li, W., Li, X., Li, Y., Li, Z., Liang, H., Liang, J., Liao, J., Liebau, D., Limphirat, A., Limpijumnong, S., Lin, G. -L., Lin, S., Lin, T., Ling, J., Lippi, I., Liu, F., Liu, H., Liu, J., Liu, M., Liu, Q., Liu, R., Liu, S., Liu, X., Liu, Y., Lokhov, A., Lombardi, P., Lombardo, C., Loo, K., Lu, C., Lu, H., Lu, J., Lu, S., Lu, X., Lubsandorzhiev, B., Lubsandorzhiev, S., Ludhova, L., Luo, F., Luo, G., Luo, P., Luo, S., Luo, W., Lyashuk, V., Ma, Q., Ma, S., Ma, X., Maalmi, J., Malyshkin, Y., Mantovani, F., Manzali, F., Mao, X., Mao, Y., Mari, S. M., Marini, F., Marium, S., Martellini, C., Martin-Chassard, G., Martini, A., Mayilyan, D., Muller, A., Mednieks, I., Meng, Y., Meregaglia, A., Meroni, E., Meyhofer, D., Mezzetto, M., Miller, J., Miramonti, L., Monforte, S., Montini, P., Montuschi, M., Morozov, N., Muralidharan, P., Nastasi, M., Naumov, D. V., Naumova, E., Nemchenok, I., Nikolaev, A., Ning, F., Ning, Z., Nunokawa, H., Oberauer, L., Ochoa-Ricoux, J. P., Olshevskiy, A., Orestano, D., Ortica, F., Pan, H. -R., Paoloni, A., Parkalian, N., Parmeggiano, S., Payupol, T., Pei, Y., Pelliccia, N., Peng, A., Peng, H., Perrot, F., Petitjean, P. -A., Petrucci, F., Rico, L. F. P., Pilarczyk, O., Popov, A., Poussot, P., Pratumwan, W., Previtali, E., Qi, F., Qi, M., Qian, S., Qian, X., Qiao, H., Qin, Z., Qiu, S., Rajput, M., Ranucci, G., Raper, N., Re, A., Rebber, H., Rebii, A., Ren, B., Ren, J., Rezinko, T., Ricci, B., Robens, M., Roche, M., Rodphai, N., Romani, A., Roskovec, B., Roth, C., Ruan, X., Rujirawat, S., Rybnikov, A., Sadovsky, A., Saggese, P., Salamanna, G., Sanfilippo, S., Sangka, A., Sanguansak, N., Sawangwit, U., Sawatzki, J., Sawy, F., Schever, M., Schuler, J., Schwab, C., Schweizer, K., Selivanov, D., Selyunin, A., Serafini, A., Settanta, G., Settimo, M., Shahzad, M., Sharov, V., Shi, G., Shi, J., Shi, Y., Shutov, V., Sidorenkov, A., Simkovic, F., Sirignano, C., Siripak, J., Sisti, M., Slupecki, M., Smirnov, M., Smirnov, O., Sogo-Bezerra, T., Songwadhana, J., Soonthornthum, B., Sotnikov, A., Sramek, O., Sreethawong, W., Stahl, A., Stanco, L., Stankevich, K., Stefanik, D., Steiger, H., Steinmann, J., Sterr, T., Stock, M. R., Strati, V., Studenikin, A., Sun, G., Sun, S., Sun, X., Sun, Y., Suwonjandee, N., Szelezniak, M., Tang, J., Tang, Q., Tang, X., Tietzsch, A., Tkachev, I., Tmej, T., Treskov, K., Triossi, A., Troni, G., Trzaska, W., Tuve, C., Van Waasen, S., Van Den Boom, J., Vanroyen, G., Vassilopoulos, N., Vedin, V., Verde, G., Vialkov, M., Viaud, B., Volpe, C., Vorobel, V., Votano, L., Walker, P., Wang, C., Wang, C. -H., Wang, E., Wang, G., Wang, J., Wang, K., Wang, L., Wang, M., Wang, R., Wang, S., Wang, W., Wang, X., Wang, Y., Wang, Z., Watcharangkool, A., Wei, L., Wei, W., Wei, Y., Wen, L., Wiebusch, C., Wong, S. C. -F., Wonsak, B., Wu, D., Wu, F., Wu, Q., Wu, W., Wu, Z., Wurm, M., Wurtz, J., Wysotzki, C., Xi, Y., Xia, D., Xie, Y., Xie, Z., Xing, Z., Xu, B., Xu, D., Xu, F., Xu, J., Xu, M., Xu, Y., Yan, B., Yan, X., Yan, Y., Yang, A., Yang, C., Yang, H., Yang, J., Yang, L., Yang, X., Yang, Y., Yao, H., Yasin, Z., Ye, J., Ye, M., Yegin, U., Yermia, F., Yi, P., Yin, X., You, Z., Yu, B., Yu, C., Yu, H., Yu, M., Yu, X., Yu, Z., Yuan, C., Yuan, Y., Yuan, Z., Yue, B., Zafar, N., Zambanini, A., Zeng, P., Zeng, S., Zeng, T., Zeng, Y., Zhan, L., Zhang, F., Zhang, G., Zhang, H., Zhang, J., Zhang, P., Zhang, Q., Zhang, S., Zhang, T., Zhang, X., Zhang, Y., Zhang, Z., Zhao, F., Zhao, J., Zhao, R., Zhao, S., Zhao, T., Zheng, D., Zheng, H., Zheng, M., Zheng, Y., Zhong, W., Zhou, J., Zhou, L., Zhou, N., Zhou, S., Zhou, X., Zhu, J., Zhu, K., Zhuang, H., Zong, L., Zou, J., Abusleme, A, Adam, T, Ahmad, S, Aiello, S, Akram, M, Ali, N, An, F, An, G, An, Q, Andronico, G, Anfimov, N, Antonelli, V, Antoshkina, T, Asavapibhop, B, De Andre, J, Auguste, D, Babic, A, Baldini, W, Barresi, A, Baussan, E, Bellato, M, Bergnoli, A, Bernieri, E, Biare, D, Birkenfeld, T, Blin, S, Blum, D, Blyth, S, Bolshakova, A, Bongrand, M, Bordereau, C, Breton, D, Brigatti, A, Brugnera, R, Bruno, R, Budano, A, Buesken, M, Buscemi, M, Busto, J, Butorov, I, Cabrera, A, Cai, H, Cai, X, Cai, Y, Cai, Z, Cammi, A, Campeny, A, Cao, C, Cao, G, Cao, J, Caruso, R, Cerna, C, Chang, J, Chang, Y, Chen, P, Chen, S, Chen, X, Chen, Y, Chen, Z, Cheng, J, Cheng, Y, Chepurnov, A, Chiesa, D, Chimenti, P, Chukanov, A, Chuvashova, A, Claverie, G, Clementi, C, Clerbaux, B, Lorenzo, S, Corti, D, Costa, S, Corso, F, De La Taille, C, Deng, J, Deng, Z, Depnering, W, Diaz, M, Ding, X, Ding, Y, Dirgantara, B, Dmitrievsky, S, Dohnal, T, Donchenko, G, Dong, J, Dornic, D, Doroshkevich, E, Dracos, M, Druillole, F, Du, S, Dusini, S, Dvorak, M, Enqvist, T, Enzmann, H, Fabbri, A, Fajt, L, Fan, D, Fan, L, Fang, C, Fang, J, Fargetta, M, Fatkina, A, Fedoseev, D, Fekete, V, Feng, L, Feng, Q, Ford, R, Formozov, A, Fournier, A, Gan, H, Gao, F, Garfagnini, A, Gottel, A, Genster, C, Giammarchi, M, Giaz, A, Giudice, N, Giuliani, F, Gonchar, M, Gong, G, Gong, H, Gorchakov, O, Gornushkin, Y, Grassi, M, Grewing, C, Gromov, M, Gromov, V, Gu, M, Gu, X, Gu, Y, Guan, M, Guardone, N, Gul, M, Guo, C, Guo, J, Guo, W, Guo, X, Guo, Y, Hackspacher, P, Hagner, C, Han, R, Han, Y, He, M, He, W, Heinz, T, Hellmuth, P, Heng, Y, Herrera, R, Hong, D, Yuenkeung, H, Hou, S, Hsiung, Y, Hu, B, Hu, H, Hu, J, Hu, S, Hu, T, Hu, Z, Huang, C, Huang, G, Huang, H, Huang, Q, Huang, W, Huang, X, Huang, Y, Hui, J, Huo, W, Huss, C, Hussain, S, Insolia, A, Ioannisian, A, Ioannisyan, D, Isocrate, R, Jen, K, Ji, X, Jia, H, Jia, J, Jian, S, Jiang, D, Jiang, X, Jin, R, Jing, X, Jollet, C, Joutsenvaara, J, Jungthawan, S, Kalousis, L, Kampmann, P, Kang, L, Karagounis, M, Kazarian, N, Khan, A, Khan, W, Khosonthongkee, K, Kinz, P, Korablev, D, Kouzakov, K, Krasnoperov, A, Krokhaleva, S, Krumshteyn, Z, Kruth, A, Kutovskiy, N, Kuusiniemi, P, Lachenmaier, T, Landini, C, Leblanc, S, Lefevre, F, Lei, L, Lei, R, Leitner, R, Leung, J, Li, D, Li, F, Li, H, Li, J, Li, K, Li, M, Li, N, Li, Q, Li, R, Li, S, Li, T, Li, W, Li, X, Li, Y, Li, Z, Liang, H, Liang, J, Liao, J, Liebau, D, Limphirat, A, Limpijumnong, S, Lin, G, Lin, S, Lin, T, Ling, J, Lippi, I, Liu, F, Liu, H, Liu, J, Liu, M, Liu, Q, Liu, R, Liu, S, Liu, X, Liu, Y, Lokhov, A, Lombardi, P, Lombardo, C, Loo, K, Lu, C, Lu, H, Lu, J, Lu, S, Lu, X, Lubsandorzhiev, B, Lubsandorzhiev, S, Ludhova, L, Luo, F, Luo, G, Luo, P, Luo, S, Luo, W, Lyashuk, V, Ma, Q, Ma, S, Ma, X, Maalmi, J, Malyshkin, Y, Mantovani, F, Manzali, F, Mao, X, Mao, Y, Mari, S, Marini, F, Marium, S, Martellini, C, Martin-Chassard, G, Martini, A, Mayilyan, D, Muller, A, Mednieks, I, Meng, Y, Meregaglia, A, Meroni, E, Meyhofer, D, Mezzetto, M, Miller, J, Miramonti, L, Monforte, S, Montini, P, Montuschi, M, Morozov, N, Muralidharan, P, Nastasi, M, Naumov, D, Naumova, E, Nemchenok, I, Nikolaev, A, Ning, F, Ning, Z, Nunokawa, H, Oberauer, L, Ochoa-Ricoux, J, Olshevskiy, A, Orestano, D, Ortica, F, Pan, H, Paoloni, A, Parkalian, N, Parmeggiano, S, Payupol, T, Pei, Y, Pelliccia, N, Peng, A, Peng, H, Perrot, F, Petitjean, P, Petrucci, F, Rico, L, Pilarczyk, O, Popov, A, Poussot, P, Pratumwan, W, Previtali, E, Qi, F, Qi, M, Qian, S, Qian, X, Qiao, H, Qin, Z, Qiu, S, Rajput, M, Ranucci, G, Raper, N, Re, A, Rebber, H, Rebii, A, Ren, B, Ren, J, Rezinko, T, Ricci, B, Robens, M, Roche, M, Rodphai, N, Romani, A, Roskovec, B, Roth, C, Ruan, X, Rujirawat, S, Rybnikov, A, Sadovsky, A, Saggese, P, Salamanna, G, Sanfilippo, S, Sangka, A, Sanguansak, N, Sawangwit, U, Sawatzki, J, Sawy, F, Schever, M, Schuler, J, Schwab, C, Schweizer, K, Selivanov, D, Selyunin, A, Serafini, A, Settanta, G, Settimo, M, Shahzad, M, Sharov, V, Shi, G, Shi, J, Shi, Y, Shutov, V, Sidorenkov, A, Simkovic, F, Sirignano, C, Siripak, J, Sisti, M, Slupecki, M, Smirnov, M, Smirnov, O, Sogo-Bezerra, T, Songwadhana, J, Soonthornthum, B, Sotnikov, A, Sramek, O, Sreethawong, W, Stahl, A, Stanco, L, Stankevich, K, Stefanik, D, Steiger, H, Steinmann, J, Sterr, T, Stock, M, Strati, V, Studenikin, A, Sun, G, Sun, S, Sun, X, Sun, Y, Suwonjandee, N, Szelezniak, M, Tang, J, Tang, Q, Tang, X, Tietzsch, A, Tkachev, I, Tmej, T, Treskov, K, Triossi, A, Troni, G, Trzaska, W, Tuve, C, Van Waasen, S, Van Den Boom, J, Vanroyen, G, Vassilopoulos, N, Vedin, V, Verde, G, Vialkov, M, Viaud, B, Volpe, C, Vorobel, V, Votano, L, Walker, P, Wang, C, Wang, E, Wang, G, Wang, J, Wang, K, Wang, L, Wang, M, Wang, R, Wang, S, Wang, W, Wang, X, Wang, Y, Wang, Z, Watcharangkool, A, Wei, L, Wei, W, Wei, Y, Wen, L, Wiebusch, C, Wong, S, Wonsak, B, Wu, D, Wu, F, Wu, Q, Wu, W, Wu, Z, Wurm, M, Wurtz, J, Wysotzki, C, Xi, Y, Xia, D, Xie, Y, Xie, Z, Xing, Z, Xu, B, Xu, D, Xu, F, Xu, J, Xu, M, Xu, Y, Yan, B, Yan, X, Yan, Y, Yang, A, Yang, C, Yang, H, Yang, J, Yang, L, Yang, X, Yang, Y, Yao, H, Yasin, Z, Ye, J, Ye, M, Yegin, U, Yermia, F, Yi, P, Yin, X, You, Z, Yu, B, Yu, C, Yu, H, Yu, M, Yu, X, Yu, Z, Yuan, C, Yuan, Y, Yuan, Z, Yue, B, Zafar, N, Zambanini, A, Zeng, P, Zeng, S, Zeng, T, Zeng, Y, Zhan, L, Zhang, F, Zhang, G, Zhang, H, Zhang, J, Zhang, P, Zhang, Q, Zhang, S, Zhang, T, Zhang, X, Zhang, Y, Zhang, Z, Zhao, F, Zhao, J, Zhao, R, Zhao, S, Zhao, T, Zheng, D, Zheng, H, Zheng, M, Zheng, Y, Zhong, W, Zhou, J, Zhou, L, Zhou, N, Zhou, S, Zhou, X, Zhu, J, Zhu, K, Zhuang, H, Zong, L, Zou, J, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
- Subjects
Physics - Instrumentation and Detectors ,neutrino: solar ,Physics::Instrumentation and Detectors ,Solar neutrino ,scintillation counter: liquid ,high [energy resolution] ,01 natural sciences ,7. Clean energy ,mass [target] ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,JUNO ,Neutrino oscillation ,elastic scattering [neutrino electron] ,KamLAND ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,flavor [transformation] ,neutrino oscillation ,Instrumentation ,Jiangmen Underground Neutrino Observatory ,Physics ,Elastic scattering ,liquid [scintillation counter] ,neutrino oscillation, solar neutrino, JUNO ,Settore FIS/01 - Fisica Sperimentale ,oscillation [neutrino] ,Instrumentation and Detectors (physics.ins-det) ,Monte Carlo [numerical calculations] ,neutrino electron: elastic scattering ,tension ,mass difference [neutrino] ,ddc ,nuclear reactor [antineutrino] ,observatory ,High Energy Physics - Phenomenology ,Physics::Space Physics ,neutrino: flavor ,solar [neutrino] ,target: mass ,Neutrino ,numerical calculations: Monte Carlo ,Nuclear and High Energy Physics ,Particle physics ,matter: solar ,Cherenkov counter: water ,neutrino: mass difference ,FOS: Physical sciences ,NO ,transformation: flavor ,uranium ,PE2_2 ,0103 physical sciences ,electron: recoil: energy ,antineutrino: nuclear reactor ,solar [matter] ,ddc:530 ,ddc:610 ,Sensitivity (control systems) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,background: radioactivity ,Cherenkov radiation ,Astrophysique ,solar neutrino ,010308 nuclear & particles physics ,water [Cherenkov counter] ,radioactivity [background] ,flavor [neutrino] ,Astronomy and Astrophysics ,sensitivity ,neutrino: mixing angle ,recoil: energy [electron] ,energy spectrum [electron] ,electron: energy spectrum ,High Energy Physics::Experiment ,sphere ,neutrino: oscillation ,energy resolution: high ,Energy (signal processing) ,mixing angle [neutrino] - Abstract
The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive background 238U and 232Th in the liquid scintillator can be controlled to 10-17g/g. With ten years of data acquisition, approximately 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If Δm221= 4.8 × 10-5(7.5 × 10-5) eV, JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3σ (2σ) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moreover, JUNO can simultaneously measure Δm221using 8B solar neutrinos to a precision of 20% or better, depending on the central value, and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Δm221reported by solar neutrino experiments and the KamLAND experiment., 0, info:eu-repo/semantics/published
- Published
- 2021
- Full Text
- View/download PDF
13. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator.
- Author
-
Keefer, G., Grant, C., Piepke, A., Ebihara, T., Ikeda, H., Kishimoto, Y., Kibe, Y., Koseki, Y., Ogawa, M., Shirai, J., Takeuchi, S., Mauger, C., Zhang, C., Schweitzer, G., Berger, B.E., Dazeley, S., Decowski, M.P., Detwiler, J.A., Djurcic, Z., and Dwyer, D.A.
- Subjects
- *
LIQUID scintillators , *RADIOACTIVITY , *DISTILLATION , *SOLAR neutrinos , *PARTICLE physics , *RADIOISOTOPES - Abstract
The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon-born lead from liquid scintillator. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
14. Cosmological limits on the neutrino mass and lifetime
- Author
-
Abhish Dev, Vivian Poulin, Zackaria Chacko, Yuhsin Tsai, Peizhi Du, University of Maryland [College Park], University of Maryland System, Laboratoire Univers et Particules de Montpellier (LUPM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), and Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Particle physics ,matter: power spectrum ,Age of the universe ,Physics::Instrumentation and Detectors ,Physics beyond the Standard Model ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic microwave background ,Dark matter ,Cosmic background radiation ,FOS: Physical sciences ,cosmic background radiation ,KATRIN ,01 natural sciences ,dark matter ,Boltzmann equation ,High Energy Physics - Phenomenology (hep-ph) ,neutrino: decay ,KamLAND ,0103 physical sciences ,Neutrino Physics ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,neutrino: mass ,numerical calculations ,010306 general physics ,Monte Carlo ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,new physics ,010308 nuclear & particles physics ,Matter power spectrum ,High Energy Physics::Phenomenology ,Cosmology of Theories beyond the SM ,High Energy Physics - Phenomenology ,neutrino: lifetime ,density: perturbation ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Dark radiation ,lcsh:QC770-798 ,High Energy Physics::Experiment ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
At present, the strongest upper limit on $\sum m_{\nu}$, the sum of neutrino masses, is from cosmological measurements. However, this bound assumes that the neutrinos are stable on cosmological timescales, and is not valid if the neutrino lifetime is less than the age of the universe. In this paper, we explore the cosmological signals of theories in which the neutrinos decay into invisible dark radiation on timescales of order the age of the universe, and determine the bound on the sum of neutrino masses in this scenario. We focus on the case in which the neutrinos decay after becoming non-relativistic. We derive the Boltzmann equations that govern the cosmological evolution of density perturbations in the case of unstable neutrinos, and solve them numerically to determine the effects on the matter power spectrum and lensing of the cosmic microwave background. We find that the results admit a simple analytic understanding. We then use these results to perform a Monte Carlo analysis based on the current data to determine the limit on the sum of neutrino masses as a function of the neutrino lifetime. We show that in the case of decaying neutrinos, values of $\sum m_{\nu}$ as large as 0.9 eV are still allowed by the data. Our results have important implications for laboratory experiments that have been designed to detect neutrino masses, such as KATRIN and KamLAND-ZEN., Comment: 31 pages, 6 figures. v2 matches the published JHEP version
- Published
- 2020
- Full Text
- View/download PDF
15. Precision Measurement of Neutrino Oscillation Parameters with KamLAND
- Author
-
ODonnell, Thomas Michael
- Subjects
Physics ,KamLAND ,neutrino mass ,neutrinos ,particle physics ,underground detectors - Abstract
This dissertation describes a measurement of the neutrino oscillation parameters $Delta m^2_{21}$, $theta_{12}$ and constraints on $theta_{13}$ based on a study of reactor antineutrinos at a baseline of $sim 180,$km with the KamLAND detector. The data presented here was collected between April 2002 and November 2009, and amounts to a total exposure of $2.64 \pm 0.07 times 10^{32}$ proton-years. For this exposure we expect $2140 \pm 74 (syst)$ antineutrino candidates from reactors, assuming standard model neutrino behavior, and $350 pm 88 (syst)$ candidates from background. The number observed is 1614. The ratio of background-subtracted candidates observed to expected is $$frac{N_{Obs}-N_{Bkg}}{N_{Exp}} = 0.59 \pm 0.02 (stat)\pm 0.045 (syst)nonumber$$which confirms reactor neutrino disappearance at greater than 5$sigma$ significance. Interpreting this deficit as being due to neutrino oscillation, the best-fit oscillation parameters from a three-flavor analysis are $Delta m^{2}_{21} = 7.60 ^{+0.20}_{-0.19} times 10^{-5} rm{eV^2}$, mbox{$theta_{12} = 32.5 \pm 2.9$ degrees} and $sin^{2}theta_{13} = 0.025 ^{+0.035}_{-0.035}$, the 95% confidence-level upper limit on $sin^{2}theta_{13}$ is mbox{$sin^{2}theta_{13}
- Published
- 2011
16. Geo-neutrinos.
- Author
-
Bellini, G., Ianni, A., Ludhova, L., Mantovani, F., and McDonough, W.F.
- Subjects
- *
NEUTRINOS , *GEOPHYSICS , *OCEANIC crust , *ANALYTICAL geochemistry , *DETECTORS , *OCEAN - Abstract
Abstract: We review a new interdisciplinary field between Geology and Physics: the study of the Earth’s geo-neutrino flux. We describe competing models for the composition of the Earth, present geological insights into the make up of the continental and oceanic crust, those parts of the Earth that concentrate Th and U, the heat producing elements, and provide details of the regional settings in the continents and oceans where operating and planned detectors are sited. Details are presented for the only two operating detectors that are capable of measuring the Earth’s geo-neutrino flux: Borexino and KamLAND; results achieved to date are presented, along with their impacts on geophysical and geochemical models of the Earth. Finally, future planned experiments are highlighted. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
17. Light output response of KamLAND liquid scintillator for protons and 12C nuclei
- Author
-
Yoshida, S., Ebihara, T., Yano, T., Kozlov, A., Kishimoto, T., Ogawa, I., Hazama, R., Umehara, S., Mukaida, K., Ichihara, K., Hirano, Y., Murata, I., Datemichi, J., and Sugimoto, H.
- Subjects
- *
LIGHT sources , *LIQUID scintillators , *PROTONS , *CARBON isotopes , *NEUTRON beams , *RADIATIVE corrections , *ENERGY dissipation , *NUCLEAR reactions - Abstract
Abstract: The light output responses for protons and carbon nuclei in the KamLAND liquid scintillator were precisely measured using a monochromatic neutron beam. The observed response for proton recoils is well described by Birks formula with the higher-order correction, for the recoil energy from 424keV to 10.5MeV. The response for carbon recoils is also well described by modifying the Birks formula with the nuclear energy loss terms, for the measured recoil energy from 171keV to 2.2MeV. The obtained light output responses were used to estimate the background energy spectrum of the reaction in the KamLAND. The systematic uncertainty of the energy scale in the expected background spectrum was further improved with the measured light output responses. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
18. A 13C 16O calibration source for KamLAND
- Author
-
McKee, David W., Busenitz, Jerome K., and Ostrovskiy, Igor
- Subjects
- *
CALIBRATION , *PARTICLES (Nuclear physics) , *NEUTRONS , *PHYSICAL measurements - Abstract
Abstract: We report on the construction and performance of a calibration source for KamLAND using the reaction with 210Po as the alpha progenitor. The source provides a direct measurement of this background reaction in our detector, high energy calibration points for the detector energy scale, and data on quenching of the neutron visible energy in KamLAND scintillator. We also discuss the possibility of using the reaction as a source of tagged slow neutrons. [Copyright &y& Elsevier]
- Published
- 2008
- Full Text
- View/download PDF
19. Neutrino geophysics with KamLAND and future prospects
- Author
-
Enomoto, S., Ohtani, E., Inoue, K., and Suzuki, A.
- Subjects
- *
ENGINEERING instruments , *EARTH sciences , *GEOPHYSICS - Abstract
Abstract: The Kamioka liquid scintillator anti-neutrino detector (KamLAND) is a low-energy and low-background neutrino detector which could be a useful probe for determining the U and Th abundances of the Earth. We constructed a model of the Earth in order to evaluate the rate of geologically produced anti-neutrinos (geoneutrinos) detectable by KamLAND. We found that KamLAND can be used to determine the absolute abundances of U and Th in the Earth with accuracy sufficient for placing important constraints on Earth''s accretion and succeeding thermal history. Within the uncertainty of the measurement, the present observation of geoneutrinos with KamLAND is consistent with our model prediction based on the bulk silicate Earth (BSE) composition. If a neutrino detector were to be built in Hawaii, where effects of the continental crust would be negligible, it could be used to estimate the U and Th content in the lower mantle and the core. Our calculation of the geoneutrino event rate on the Earth''s surface indicates that geoneutrino observation can provide key information for testing the current models of the U and Th content and distribution in the Earth. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
20. A simple model of reactor cores for reactor neutrino flux calculations for the KamLAND experiment
- Author
-
Nakajima, K., Inoue, K., Owada, K., Suekane, F., Suzuki, A., Hirano, G., Kosaka, S., Ohta, T., and Tanaka, H.
- Subjects
- *
NEUTRINOS , *NUCLEAR fuels , *RADIOACTIVE substances , *SPECTRUM analysis - Abstract
Abstract: KamLAND is a reactor neutrino oscillation experiment with a very long baseline. This experiment successfully measured oscillation phenomena of reactor antineutrinos coming mainly from 53 reactors in Japan. In order to extract the results, it is necessary to accurately calculate time-dependent antineutrino spectra from all the reactors. A simple model of reactor cores and code implementing it were developed for this purpose. This paper describes the model of the reactor cores used in the KamLAND reactor analysis. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
21. On the Possibility of Directional Analysis for Geo-neutrinos.
- Author
-
Batygov, Mikhail
- Abstract
The possibility of terrestrial antineutrino directionality studies is considered for future unloaded liquid scintillator detectors. Monte-Carlo simulations suggest that the measurable displacement between prompt and delayed antineutrino signals makes such studies possible. However, it is estimated that on the order of 1000 terrestrial antineutrino events are required to test the simplest models, demanding detectors of 100 kt size to collect sufficient data in a reasonable period of time. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
22. Experimental Study of Geoneutrinos with KamLAND.
- Author
-
Enomoto, Sanshiro
- Abstract
The Kamioka liquid scintillator antineutrino detector (KamLAND), which consists of 1000 tones of ultra-pure liquid scintillator surrounded by 1879 photo-multiplier tubes (PMT), is the first detector sensitive enough to detect geoneutrinos. Earth models suggest that KamLAND observes geoneutrinos at a rate of 30 events/10
32 -protons/year from the238 U decay chain, and 8 events/1032 -protons/year from the232 Th decay chain. With 7.09×1031 proton-years of detector exposure and detection efficiency of 0.687 ± 0.007, the ‘rate-only’ analysis gives geoneutrino candidates. Assuming a Th/U mass concentration ratio of 3.9, the ‘rate + shape’ analysis gives the 90% confidence interval for the total number of geoneutrinos detected to be from 4.5 to 54.2. This result is consistent with predictions from the Earth models. The 99% C.L. upper limit is set at 1.45×10−31 events per target proton per year, which is 3.8 times higher than the central value of the model prediction that gives 16 TW of radiogenic heat production from238 U and232 Th. Although the present data have limited statistical power, they provide by direct means an upper limit for the Earth’s radiogenic heat of U and Th. [ABSTRACT FROM AUTHOR]- Published
- 2006
- Full Text
- View/download PDF
23. KamLAND
- Author
-
Suekane, F.
- Subjects
- *
ANTINEUTRINOS , *LIQUID scintillators , *DETECTORS , *OSCILLATIONS - Abstract
Abstract: KamLAND (the Kamioka Liquid Scintillator Antineutrin Detector) is a one kiloton homogeneous and low background liquid scintillator detector constructed in Kamioka mine. KamLAND has the best sensitivity for low-energy specific measurement and has been operating since 2002. This experiment discovered a reactor oscillation, has measured geo- for the first time, and is searching for unknown sources beyond the reactor energy range. In this proceedings for the Erice school of 2005, a general description of KamLAND, physics results, and future prospects of the project are described. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
24. Novel technique for ultra-sensitive determination of trace elements in organic scintillators
- Author
-
Djurcic, Z., Glasgow, D., Hu, L.-W., McKeown, R.D., Piepke, A., Swinney, R., and Tipton, B.
- Subjects
- *
LIQUID scintillators , *NEUTRON beams , *MARKET volatility - Abstract
A technique based on neutron activation has been developed for an extremely high sensitivity analysis of trace elements in organic materials. Organic materials are sealed in plastic or high-purity quartz and irradiated at the HFIR and MITR. The most volatile materials such as liquid scintillator (LS) are first preconcentrated by clean vacuum evaporation. Activities of interest are separated from side activities by acid digestion and ion exchange. The technique has been applied to study the liquid scintillator used in the KamLAND neutrino experiment. Detection limits of
<2.4×10−15 g40 K/g LS,<5.5×10−15 g Th/g LS, and<8×10−15 g U/g LS have been achieved. [Copyright &y& Elsevier]- Published
- 2003
- Full Text
- View/download PDF
25. Geo-neutrino review
- Author
-
Tolich, N.
- Subjects
- *
NEUTRINOS , *RADIOACTIVE decay , *NUCLEAR physics experiments , *PHYSICAL measurements , *CONSTRAINTS (Physics) , *ANTINEUTRINOS - Abstract
Abstract: The principal source of energy for dynamic processes of the earth, such as plate tectonics is thought to come from the radioactive decays of 238U, 232Th, and 40K within the earth. These decays produce electron-antineutrinos, so-called geo-neutrinos, the measurement of which near the earthʼs surface allows for a direct measure of the total radiogenic heat production in the earth. The KamLAND and Borexino experiments have both measured a geo-neutrino flux significantly greater than zero. As shown in these proceedings, more precise future measurements will significantly constrain earth composition models. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
26. Reactor Neutrinos after CHOOZ and KamLAND
- Author
-
Lasserre, Thierry, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Double Chooz ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,KamLAND ,mixing angle ,High Energy Physics::Experiment ,neutrino: oscillation ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,neutrino: nuclear reactor - Abstract
International audience; We review reactor neutrino physics that stayed at the cutting edge of neutrino fundamental research. We focus on middle baseline experiments that played a major role in neutrino oscillation physics from the years 1995 until now, providing, for instance, the world-best measurement of the last undetermined neutrino mixing angle θ13. We intend to provide historical insight, discussing successes, but also aborted projects and open questions.
- Published
- 2018
27. Yields and production rates of $^9$Li and $^8$He measured with the Double Chooz near and far detectors
- Author
-
Kerret, H., Abrahão, T., Almazan, H., Dos Anjos, J. C., Appel, S., Bekman, I., Bezerra, T. J. C., Bezrukov, L., Blucher, E., Brugière, T., Buck, C., Busenitz, J., Cabrera, A., Cerrada, M., Chauveau, E., Chimenti, P., Dawson, J. V., Djurcic, Z., Etenko, A., Franco, D., Furuta, H., Gil-Botella, I., Gonzalez, L. F. G., Goodman, M. C., Hara, T., Hellwig, D., Hourlier, A., Ishitsuka, M., Jochum, J., Jollet, C., Kale, K., Kaneda, M., Kawasaki, T., Kemp, E., Kryn, D., Kuze, M., Lachenmaier, T., Charles Lane, Lasserre, T., Lastoria, C., Lhuillier, D., Lima, H. P., Lindner, M., López-Castaño, J. M., Losecco, J. M., Lubsandorzhiev, B., Maeda, J., Mariani, C., Maricic, J., Martino, J., Matsubara, T., Mention, G., Meregaglia, A., Miletic, T., Milincic, R., Navas-Nicolás, D., Novella, P., Nunokawa, H., Oberauer, L., Obolensky, M., Onillon, A., Oralbaev, A., Palomares, C., Pepe, I. M., Pronost, G., Reichenbacher, J., Reinhold, B., Settimo, M., Schönert, S., Schoppmann, S., Sharankova, R., Sibille, V., Sinev, V., Skorokhvatov, M., Soldin, P., Stahl, A., Stancu, I., Stokes, L. F. F., Suekane, F., Sukhotin, S., Sumiyoshi, T., Sun, Y., Tonazzo, A., Viaud, B., Vivier, M., Wagner, S., Wiebusch, C., Wurm, M., Yang, G., Yermia, F., AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de physique subatomique et des technologies associées ( SUBATECH ), IMT Atlantique Bretagne-Pays de la Loire ( IMT Atlantique ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Nantes ( UN ), Institut Pluridisciplinaire Hubert Curien ( IPHC ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ), Centre d'Etudes Nucléaires de Bordeaux Gradignan ( CENBG ), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, and Double Chooz
- Subjects
muon: energy ,background ,scintillation counter: liquid ,far detector ,muon nucleus: nuclear reaction ,nuclide: yield ,Physics::Geophysics ,Double Chooz ,neutrino: detector ,near detector ,[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,KamLAND ,muon: cosmic radiation ,fission ,High Energy Physics::Experiment ,Borexino ,nuclear reactor ,numerical calculations: Monte Carlo ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,experimental results - Abstract
The yields and production rates of the radioisotopes $^9$Li and $^8$He created by cosmic muon spallation on $^{12}$C have been measured by the Double Chooz experiment. Comparing the data to a detailed simulation of the $^9$Li and $^8$He decays, the contribution of the $^8$He radioisotope is found to be compatible with zero. The observed $^9$Li yields in the near ($\sim$120 m.w.e overburden) and far ($\sim$300 m.w.e.) detectors are $4.37\pm0.49$ and $7.98\pm0.52$ respectively, in units of $10^{-8}\,\mathrm{\mu ^{-1}g^{-1}cm^{2} }$. The low overburdens of the near and far detectors gives a unique insight when combined with measurements by KamLAND and Borexino to give the first multi-experiment, data driven relationship between the $^9$Li yield and the mean muon energy according to the power law $Y = Y_0\left^{\overline{\alpha}}$, giving $\overline{\alpha}=0.79\pm0.06$ and $Y_0=(0.29\pm0.09)\times 10^{-8}\,\mathrm{\mu ^{-1}g^{-1}cm^{2} }$. This relationship gives future liquid scintillator based nuclear reactor experiments the ability to predict their cosmogenic $^9$Li background rates.
- Published
- 2018
28. Yields and production rates of cosmogenic 9Li and 8He measured with the Double Chooz near and far detectors
- Author
-
The Double Chooz collaboration, Kerret, H., Abrahão, T., Almazan, H., Dos Anjos, J. C., Appel, S., Barriere, J. C., Bekman, I., Bezerra, T. J. C., Bezrukov, L., Blucher, E., Brugière, T., Buck, C., Busenitz, J., Cabrera, A., Cerrada, M., Chauveau, E., Chimenti, P., Corpace, O., Dawson, J. V., Djurcic, Z., Etenko, A., Franco, D., Furuta, H., Gil-Botella, I., Givaudan, A., Gomez, H., Gonzalez, L. F. G., Goodman, M. C., Hara, T., Haser, J., Hellwig, D., Hourlier, A., Ishitsuka, M., Jochum, J., Jollet, C., Kale, K., Kaneda, M., Karakac, M., Kawasaki, T., Kemp, E., Kryn, D., Kuze, M., Lachenmaier, T., Lane, C. E., Lasserre, T., Lastoria, C., Lhuillier, D., Lima, H. P., Lindner, M., López-Castaño, J. M., Losecco, J. M., Lubsandorzhiev, B., Maeda, J., Mariani, C., Maricic, J., Martino, J., Matsubara, T., Mention, G., Meregaglia, A., Miletic, T., Milincic, R., Navas-Nicolás, D., Novella, P., Nunokawa, H., Oberauer, L., Obolensky, M., Onillon, A., Oralbaev, A., Palomares, C., Pepe, I. M., Pronost, G., Reichenbacher, J., Reinhold, B., Settimo, M., Schönert, S., Stefan Schoppmann, Scola, L., Sharankova, R., Sibille, V., Sinev, V., Skorokhvatov, M., Soldin, P., Stahl, A., Stancu, I., Stokes, L. F. F., Suekane, F., Sukhotin, S., Sumiyoshi, T., Sun, Y., Tonazzo, A., Veyssiere, C., Viaud, B., Vivier, M., Wagner, S., Wiebusch, C., Wurm, M., Yang, G., Yermia, F., AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Neutrino de Champagne Ardenne (LNCA - UMS 3263), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Double Chooz, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Center for Neutrino Physics
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,scintillation counter: liquid ,far detector ,muon nucleus: nuclear reaction ,FOS: Physical sciences ,nuclide: yield ,CHOOZ ,Scintillator ,7. Clean energy ,01 natural sciences ,Power law ,Spectral line ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,near detector ,0103 physical sciences ,KamLAND ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,fission ,ddc:530 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Borexino ,Physics ,muon: energy ,Muon ,010308 nuclear & particles physics ,background ,Instrumentation and Detectors (physics.ins-det) ,Neutrino Detectors and Telescopes (experiments) ,Double Chooz ,neutrino: detector ,muon: cosmic radiation ,lcsh:QC770-798 ,Production (computer science) ,High Energy Physics::Experiment ,nuclear reactor ,numerical calculations: Monte Carlo ,Energy (signal processing) ,experimental results - Abstract
The yields and production rates of the radioisotopes $^9$Li and $^8$He created by cosmic muon spallation on $^{12}$C, have been measured by the two detectors of the Double Chooz experiment. The identical detectors are located at separate sites and depths, which means they are subject to different muon spectra. The near (far) detector has an overburden of $\sim$120 m.w.e. ($\sim$300 m.w.e.) corresponding to a mean muon energy of $32.1\pm2.0\,\mathrm{GeV}$ ($63.7\pm5.5\,\mathrm{GeV}$). Comparing the data to a detailed simulation of the $^9$Li and $^8$He decays, the contribution of the $^8$He radioisotope at both detectors is found to be compatible with zero. The observed $^9$Li yields in the near and far detectors are $5.51\pm0.51$ and $7.90\pm0.51$, respectively, in units of $10^{-8}\mu ^{-1} \mathrm{g^{-1} cm^{2} }$. The shallow overburdens of the near and far detectors give a unique insight when combined with measurements by KamLAND and Borexino to give the first multi--experiment, data driven relationship between the $^9$Li yield and the mean muon energy according to the power law $Y = Y_0( / 1\,\mathrm{GeV})^{\overline{\alpha}}$, giving $\overline{\alpha}=0.72\pm0.06$ and $Y_0=(0.43\pm0.11)\times 10^{-8}\mu ^{-1} \mathrm{g^{-1} cm^{2}}$. This relationship gives future liquid scintillator based experiments the ability to predict their cosmogenic $^9$Li background rates., Comment: 15 pages, 5 figures
- Published
- 2018
- Full Text
- View/download PDF
29. Global constraints on neutrino masses and their ordering
- Author
-
Eligio Lisi, Alessandro Melchiorri, Antonio Palazzo, Francesco Capozzi, Antonio Marrone, Eleonora Di Valentino, Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Planck ,Particle physics ,7. Clean energy ,01 natural sciences ,symbols.namesake ,double-beta decay: (0neutrino) ,neutrino: atmosphere ,0103 physical sciences ,KamLAND ,neutrino: massive ,neutrino: mass ,010306 general physics ,Neutrino oscillation ,numerical calculations ,Physics ,010308 nuclear & particles physics ,new physics ,Observable ,13. Climate action ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,symbols ,High Energy Physics::Experiment ,neutrino: oscillation ,Neutrino ,Phenomenology (particle physics) ,neutrino: mass: hierarchy - Abstract
International audience; In this work we focus on the absolute neutrino masses and their ordering, still not known in the standard phenomenology of three massive neutrinos. Interesting constraints on the sum of neutrino masses and on mass ordering (either normal, NO or inverted, IO) can be derived from the combination of neutrino oscillation data, neutrinoless double beta (0νββ) decay experiments, and cosmological data. We derive current bounds on absolute neutrino mass observables by combining in a global data analysis the latest results from oscillation experiments, 0νββ decay limits from the KamLAND-Zen experiment, and constraints from Planck measurements and other cosmological data sets. We found that NO appears to be favored with respect to IO at the level of ∼ 2σ, mainly by neutrino oscillation data (especially atmospheric), corroborated by cosmological data in some cases.
- Published
- 2017
- Full Text
- View/download PDF
30. Global constraints on absolute neutrino masses and their ordering
- Author
-
Antonio Marrone, Alessandro Melchiorri, Eligio Lisi, Antonio Palazzo, Francesco Capozzi, Eleonora Di Valentino, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Lagrange de Paris, Sorbonne Université (SU), Sorbonne Universités, Institut d'Astrophysique de Paris ( IAP ), and Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Planck ,Physics and Astronomy (miscellaneous) ,Physics beyond the Standard Model ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Parameter space ,KATRIN ,01 natural sciences ,High Energy Physics - Experiment ,Phenomenological aspects of field theory ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,neutrino: atmosphere ,KamLAND ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,neutrino: mass ,Nuclear Experiment (nucl-ex) ,[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear Experiment ,Physics ,Oscillation ,new physics ,phase: CP ,Observable ,High Energy Physics - Phenomenology ,symbols ,CP violation ,Neutrino ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Particle physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,neutrino: mass difference ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,symbols.namesake ,statistical analysis ,double-beta decay: (0neutrino) ,[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,0103 physical sciences ,CP: violation ,010306 general physics ,Neutrino oscillation ,numerical calculations ,010308 nuclear & particles physics ,sensitivity ,neutrino: mixing angle ,general methods ,13. Climate action ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,High Energy Physics::Experiment ,neutrino: oscillation ,neutrino: mixing ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,neutrino: mass: hierarchy - Abstract
Within the standard three-neutrino framework, the absolute neutrino masses and their ordering (either normal, NO, or inverted, IO) are currently unknown. However, the combination of current data coming from oscillation experiments, neutrinoless double beta decay searches, and cosmological surveys, can provide interesting constraints for such unknowns in the sub-eV mass range, down to O(0.1) eV in some cases. We discuss current limits on absolute neutrino mass observables by performing a global data analysis, that includes the latest results from oscillation experiments, neutrinoless double beta decay bounds from the KamLAND-Zen experiment, and constraints from representative combinations of Planck measurements and other cosmological data sets. In general, NO appears to be somewhat favored with respect to IO at the level of ~2 sigma, mainly by neutrino oscillation data (especially atmospheric), corroborated by cosmological data in some cases. Detailed constraints are obtained via the chi^2 method, by expanding the parameter space either around separate minima in NO and IO, or around the absolute minimum in any ordering. Implications for upcoming oscillation and non-oscillation neutrino experiments, including beta-decay searches, are also discussed., Comment: 17 pages, including 3 tables and 11 figures
- Published
- 2017
- Full Text
- View/download PDF
31. The Earthʼs mantle and geoneutrinos.
- Author
-
Fiorentini, Giovanni, Fogli, Gian Luigi, Lisi, Eligio, Mantovani, Fabio, Rotunno, Anna Maria, and Xhixha, Gerti
- Subjects
- *
NEUTRINOS , *NUCLEAR physics experiments , *ANTINEUTRINOS , *THORIUM , *URANIUM , *GEOCHEMISTRY , *EARTH'S mantle , *CRUST of the earth - Abstract
Abstract: The KamLAND and Borexino experiments have observed, each at level, signals of electron antineutrinos produced in the decay chains of thorium and uranium in the Earthʼs crust and mantle (Th and U geoneutrinos). Various pieces of geochemical and geophysical information allow an estimation of the crustal geoneutrino flux components with relatively small uncertainties. The mantle component may then be inferred by subtracting the estimated crustal flux from the measured total flux. We find that crust-subtracted signals show hints of a residual mantle component, emerging at level by combining the KamLAND and Borexino data. The inferred mantle flux, slightly favoring scenarios with relatively high Th and U abundances, within uncertainties is comparable to the predictions from recent mantle models. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
32. Precision Measurement of Neutrino Oscillation Parameters and Investigation of Nuclear Georeactor Hypothesis with KamLAND
- Author
-
Zhang, Chao
- Subjects
Physics::Instrumentation and Detectors ,Physics ,Physics::Space Physics ,KamLAND ,Neutrino Oscillation ,High Energy Physics::Experiment ,Georeactor ,Physics::Geophysics - Abstract
A combined analysis of examining the neutrino oscillation parameters and investigation of nuclear georeactor hypothesis with the KamLAND experiement is presented. With a total exposure of 2.75 kton-years, 930 anti-electron-neutrino candidate events above 3.4 MeV neutrino energy threshold were detected, with estimated 109±13 events from backgrounds. Assuming CPT invariance by combining with solar neutrino results, the best-fit value of georeactor fission power is 4.9+3.8-4.8 TW. The 90% upper limit on the georeactor power is determined to be 11.2 TW. This result has put a significant constraint on the contribution of a possible georeactor to the total heat from the Earth. The best-fit values of the neutrino oscillation parameters, including the georeactor power as a free parameter, is consistent with KamLAND's previously published results with null-georeactor assumption.
- Published
- 2011
- Full Text
- View/download PDF
33. Nuclear physics for geo-neutrino studies
- Author
-
George Korga, Lino Miramonti, Oleg Smirnov, Gianni Fiorentini, Lothar Oberauer, Fabio Mantovani, M. Obolensky, Y. Suvorov, Marcello Lissia, Aldo Ianni, Fiorentini, Gianni, Ianni, Aldo, Korga, George, Lissia, Marcello, Mantovani, Fabio, Miramonti, Lino, Oberauer, Lothar, Obolensky, Michel, Smirnov, Oleg, and Suvorov, Yury
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Antiparticle ,GRAN SASSO ,Nuclear Theory ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Elementary particle ,Physics::Geophysics ,Nuclear physics ,Physics - Geophysics ,Nuclear Theory (nucl-th) ,BOREXINO ,Nuclear Experiment (nucl-ex) ,DETECTOR ,Nuclear Experiment ,Physics ,KAMLAND ,Fermion ,Geophysics (physics.geo-ph) ,Massless particle ,Antimatter ,COUNTING TEST FACILITY ,High Energy Physics::Experiment ,Neutrino ,Radioactive decay ,Lepton - Abstract
Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results for the geo-neutrinos from Bi-214 decay, a process which accounts for about one half of the total geo-neutrino signal. The feeding probability of the lowest state of Bi-214 - the most important for geo-neutrino signal - is found to be p_0 = 0.177 \pm 0.004 (stat) ^{+0.003}_{-0.001} (sys), under the hypothesis of Universal Neutrino Spectrum Shape (UNSS). This value is consistent with the (indirect) estimate of the Table of Isotopes (ToI). We show that achievable larger statistics and reduction of systematics should allow to test possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed., Comment: 8 pages RevTex format, 8 figures and 2 tables. Submitted to PRC
- Published
- 2009
- Full Text
- View/download PDF
34. The Role of matter density uncertainties in the analysis of future neutrino factory experiments
- Author
-
Tommy Ohlsson and Walter Winter
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,spectroscopy ,long-base-line ,oscillation experiments ,superbeams ,FOS: Physical sciences ,earth ,Parameter space ,Nuclear physics ,Subatomär fysik ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,CP violation ,KamLAND ,Subatomic Physics ,Bibliography ,Range (statistics) ,Measurements of neutrino speed ,Neutrino Factory ,Sensitivity (control systems) ,Neutrino oscillation - Abstract
Matter density uncertainties can affect the measurements of the neutrino oscillation parameters at future neutrino factory experiments, such as the measurements of the mixing parameters $\theta_{13}$ and $\deltacp$. We compare different matter density uncertainty models and discuss the possibility to include the matter density uncertainties in a complete statistical analysis. Furthermore, we systematically study in which measurements and where in the parameter space matter density uncertainties are most relevant. We illustrate this discussion with examples that show the effects as functions of different magnitudes of the matter density uncertainties. We find that matter density uncertainties are especially relevant for large $\stheta \gtrsim 10^{-3}$. Within the KamLAND-allowed range, they are most relevant for the precision measurements of $\stheta$ and $\deltacp$, but less relevant for ``binary'' measurements, such as for the sign of $\ldm$, the sensitivity to $\stheta$, or the sensitivity to maximal CP violation. In addition, we demonstrate that knowing the matter density along a specific baseline better than to about 1% precision means that all measurements will become almost independent of the matter density uncertainties., Comment: 21 pages, 7 figures, LaTeX. Final version to be published in Phys. Rev. D
- Published
- 2003
35. The Role of matter density uncertainties in the analysis of future neutrino factory experiments
- Author
-
Ohlsson, Tommy, Winter, Walter, Ohlsson, Tommy, and Winter, Walter
- Abstract
Matter density uncertainties can affect the measurements of the neutrino oscillation parameters at future neutrino factory experiments, such as the measurements of the mixing parameters theta(13) and delta(CP). We compare different matter density uncertainty models and discuss the possibility to include the matter density uncertainties in a complete statistical analysis. Furthermore, we systematically study in which measurements and where in the parameter space matter density uncertainties are most relevant. We illustrate this discussion with examples that show the effects as functions of different magnitudes of the matter density uncertainties. We find that matter density uncertainties are especially relevant for large sin(2)2theta(13)greater than or similar to10(-3). Within the KamLAND-allowed range, they are most relevant for the precision measurements of sin(2)2theta(13) and delta(CP), but less relevant for binary measurements, such as for the sign of Deltam(31)(2), the sensitivity to sin(2)2theta(13), or the sensitivity to maximal CP violation. In addition, we demonstrate that knowing the matter density along a specific baseline better than to about 1% precision means that all measurements will become almost independent of the matter density uncertainties., QC 20100525
- Published
- 2003
- Full Text
- View/download PDF
36. The KamLAND Outer Detector
- Author
-
Messimore, Jason Adam
- Subjects
- neutron background, Outer Detector, KamLAND
- Abstract
The Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) consists of a one kiloton liquid scintillator Inner Detector (ID) and a three kiloton water u[C]erenkov Outer Detector (OD). The goal of KamLAND is to determine whether the flux and energy of electron anti-neutrinos generated by Japanese nuclear power reactors is consistent with the hypothesis that neutrinos have mass. The size and location of KamLAND allow for the first time a terrestrial test of the validity of the Large Mixing Angle solution to the Solar Neutrino Anomaly. The anti-neutrinos are detected in the ID by a coincidence signal associated with the inverse beta decay reaction on a proton, followed by the subsequent capture of the neutron by another proton. The function of the OD is to tag cosmic ray muons and to suppress muon-induced neutron events in the ID which could otherwise be confused with real anti-neutrino events. The Triangle Universities Nuclear Laboratory entered into the KamLAND collaboration to oversee the design, construction, testing, and operation of the OD. The OD consists of 225 twenty inch photomultiplier tubes (PMTs) arranged in four sections in a Tyvek lined cavity. The design of the detector is described, along with the testing procedures that were performed to determine the PMT operating characteristics. Simulations were performed to determine the muon-tagging efficiency of the OD as a function of the trigger conditions for an event. The neutron background caused by untagged muons was calculated for the current complement of PMTs. The efficiency of the OD was calculated to be 99.5\% and the untagged neutron background was calculated to be $1.3pm0.4$ for the 145.1 days of data-taking included in the first KamLAND result. The minimum value for the muon-tagging efficiency for the OD to be viable was determined to be 94.8\%.
- Published
- 2003
37. Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO
- Author
-
Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Aiello, Sebastiano, Akram, Muhammad, Ali, Nawab, An, Fengpeng, An, Guangpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, Athay De Marcondes De André, João Pedro, Auguste, Didier, Babic, Andrej, Baldini, Wander, Barresi, Andrea, Baussan, Eric, Bellato, Marco, Bergnoli, Antonio, Bernieri, Enrico, Biare, David, Birkenfeld, Thilo, Blin, Sylvie, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Buesken, Max, Buscemi, Mario, Busto, Jose, Butorov, Ilya, Cabrera, Anatael, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Chakaberia, Irakli, Chang, Jinfan, Chang, Yun, Chen, Pingping, Chen, Po-An, Chen, Shaomin, Chen, Shenjian, Chen, Xurong, Chen, Yi-Wen, Chen, Yixue, Chen, Yu, Chen, Zhang, Cheng, Jie, Cheng, Yaping, Chepurnov, Alexander, Chiesa, Davide, Chimenti, Pietro, Chukanov, Artem, Chuvashova, Anna, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Conforti Di Lorenzo, Selma, Corti, Daniele, Costa, Salvatore, Dal Corso, Flavio, De La Taille, Christophe, Deng, Jiawei, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Diaz, Marco, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dmitrievsky, Sergey, Dohnal, Tadeas, Donchenko, Georgy, Dong, Jianmeng, Dornic, Damien, Doroshkevich, Evgeny, Dracos, Marcos, Druillole, Frédéric, Du, Shuxian, Dusini, Stefano, Dvorak, Martin, Enqvist, Timo, Enzmann, Heike, Fabbri, Andrea, Fajt, Lukas, Fan, Donghua, Fan, Lei, Fang, Can, Fang, Jian, Fargetta, Marco, Fatkina, Anna, Fedoseev, Dmitry, Fekete, Vladko, Feng, Li-Cheng, Feng, Qichun, Ford, Richard, Formozov, Andrey, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Göttel, Alexandre, Genster, Christoph, Giammarchi, Marco, Giaz, Agnese, Giudice, Nunzio, Giuliani, Franco, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gorchakov, Oleg, Gornushkin, Yuri, Grassi, Marco, Grewing, Christian, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guardone, Nunzio, Gul, Maria, Guo, Cong, Guo, Jingyuan, Guo, Wanlei, Guo, Xinheng, Guo, Yuhang, Hackspacher, Paul, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hong, Daojin, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Zhuojun, Huang, Chunhao, Huang, Guihong, Huang, Hanxiong, Huang, Qinhua, Huang, Wenhao, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Insolia, Antonio, Ioannisian, Ara, Isocrate, Roberto, Jen, Kuo-Lun, Ji, Xiaolu, Ji, Xingzhao, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Di, Jiang, Xiaoshan, Jin, Ruyi, Jing, Xiaoping, Jollet, Cécile, Joutsenvaara, Jari, Jungthawan, Sirichok, Kalousis, Leonidas, Kampmann, Philipp René, Kang, Li, Karagounis, Michael, Kazarian, Narine, Khan, Amir, Khan, Waseem, Khosonthongkee, Khanchai, Kinz, Patrick, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Krokhaleva, Svetlana, Krumshteyn, Zinovy, Kruth, Andre, Kutovskiy, Nikolay, Kuusiniemi, Pasi, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lefevre, Frederic, Lei, Liping, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Chao, Li, Demin, Li, Fei, Li, Fule, Li, Haitao, Li, Huiling, Li, Jiaqi, Li, Jin, Li, Kaijie, Li, Mengzhao, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Shanfeng, Li, Shuaijie, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yufeng, Li, Zhibing, Li, Ziyuan, Liang, Hao, Liang, Jingjing, Liao, Jiajun, Liebau, Daniel, Limphirat, Ayut, Limpijumnong, Sukit, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Lippi, Ivano, Liu, Fang, Liu, Haidong, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hu, Liu, Hui, Liu, Jianglai, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shuangyu, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Yan, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Shuxiang, Lu, Xiaoxu, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhová, Livia, Luo, Fengjiao, Luo, Guang, Luo, Pengwei, Luo, Shu, Luo, Wuming, Lyashuk, Vladimir, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Malyshkin, Yury, Mantovani, Fabio, Manzali, Francesco, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Marium, Sadia, Martellini, Cristina, Martin-Chassard, Gisele, Martini, Agnese, Mayilyan, Davit, Müller, Axel, Meng, Yue, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Mezzetto, Mauro, Miller, Jonathan, Miramonti, Lino, Monforte, Salvatore, Montini, Paolo, Montuschi, Michele, Morozov, Nikolay, Muralidharan, Pavithra, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Nemchenok, Igor, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Pan, Hsiao-Ru, Paoloni, Alessandro, Parkalian, Nina, Parmeggiano, Sergio, Payupol, Teerapat, Pei, Yatian, Pelliccia, Nicomede, Peng, Anguo, Peng, Haiping, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Piñeres Rico, Luis Felipe, Pilarczyk, Oliver, Popov, Artyom, Poussot, Pascal, Pratumwan, Wathan, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qian, Sen, Qian, Xiaohui, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Rajput, Muhammad, Ranucci, Gioacchino, Raper, Neill, Re, Alessandra, Rebber, Henning, Rebii, Abdel, Ren, Bin, Ren, Jie, Rezinko, Taras, Ricci, Barbara, Robens, Markus, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Roth, Christian, Ruan, Xiangdong, Ruan, Xichao, Rujirawat, Saroj, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Salamanna, Giuseppe, Sanfilippo, Simone, Sangka, Anut, Sanguansak, Nuanwan, Sawangwit, Utane, Sawatzki, Julia, Sawy, Fatma, Schever, Michaela, Schuler, Jacky, Schwab, Cédric, Schweizer, Konstantin, Selivanov, Dmitry, Selyunin, Alexandr, Serafini, Andrea, Settanta, Giulio, Settimo, Mariangela, Shahzad, Muhammad, Sharov, Vladislav, Shi, Gang, Shi, Jingyan, Shi, Yongjiu, Shutov, Vitaly, Sidorenkov, Andrey, Simkovic, Fedor, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Slupecki, Maciej, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Sramek, Ondrej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Stefanik, Dus, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Sun, Gongxing, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Suwonjandee, Narumon, Szelezniak, Michal, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Treskov, Konstantin, Triossi, Andrea, Troni, Giancarlo, Trzaska, Wladyslaw, Tuve, Cristina, Van Waasen, Stefan, Boom, Johannes Vanden, Vanroyen, Guillaume, Vassilopoulos, Nikolaos, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Volpe, Cristina, Vorobel, Vit, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Kunyu, Wang, Lu, Wang, Meifen, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuman, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Wang, Zongyi, Watcharangkool, Apimook, Wei, Lianghong, Wei, Wei, Wei, Yadong, Wen, Liangjian, Wiebusch, Christopher, Wong, Steven Chan-Fai, Wonsak, Bjoern, Wu, Diru, Wu, Fangliang, Wu, Qun, Wu, Wenjie, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xie, Yuguang, Xie, Zhangquan, Xing, Zhizhong, Xu, Benda, Xu, Donglian, Xu, Fanrong, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Xiongbo, Yan, Yupeng, Yang, Anbo, Yang, Changgen, Yang, Huan, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Yasin, Zafar, Ye, Jiaxuan, Ye, Mei, Yegin, Ugur, Yermia, Frédéric, Yi, Peihuai, Yin, Xiangwei, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yuan, Ziyi, Yue, Baobiao, Zafar, Noman, Zambanini, Andre, Zeng, Pan, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Feiyang, Zhang, Guoqing, Zhang, Haiqiong, Zhang, Honghao, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Tao, Zhang, Xiaomei, Zhang, Xuantong, Zhang, Yan, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Fengyi, Zhao, Jie, Zhao, Rong, Zhao, Shujun, Zhao, Tianchi, Zheng, Dongqin, Zheng, Hua, Zheng, Minshan, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Xiang, Zhu, Jiang, Zhu, Kejun, Zhuang, Honglin, Zong, Liang, and Zou, Jiaheng
- Subjects
matter: solar ,neutrino: solar ,Cherenkov counter: water ,scintillation counter: liquid ,neutrino: mass difference ,7. Clean energy ,transformation: flavor ,uranium ,KamLAND ,electron: recoil: energy ,antineutrino: nuclear reactor ,background: radioactivity ,JUNO ,neutrino electron: elastic scattering ,tension ,sensitivity ,neutrino: mixing angle ,observatory ,neutrino: flavor ,electron: energy spectrum ,sphere ,neutrino: oscillation ,target: mass ,energy resolution: high ,numerical calculations: Monte Carlo - Abstract
Chinese physics / C 45(2), 023004 (2021). doi:10.1088/1674-1137/abd92a, Published by IOP Publ., Bristol [u.a.]
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.