98 results on '"K. Van Doorslaer"'
Search Results
2. PuMA: A papillomavirus genome annotation tool
- Author
-
Bonnie L. Hurwitz, K. Van Doorslaer, J. S. Pace, Ken Youens-Clark, and C. J. Freeman
- Subjects
Viral metagenomics ,Computer science ,viruses ,polyomavirus ,Computational biology ,papillomavirus ,Microbiology ,Genome ,DNA sequencing ,03 medical and health sciences ,Annotation ,hemic and lymphatic diseases ,Virology ,Puma ,AcademicSubjects/MED00860 ,Human virome ,Genomic organization ,030304 developmental biology ,metagenomics ,virome ,0303 health sciences ,biology ,030302 biochemistry & molecular biology ,AcademicSubjects/SCI01130 ,AcademicSubjects/SCI02285 ,high-throughput sequencing ,Genome project ,biology.organism_classification ,Resources ,annotation ,Viral genomes ,Metagenomics ,biological phenomena, cell phenomena, and immunity - Abstract
High-throughput sequencing technologies provide unprecedented power to identify novel viruses from a wide variety of (environmental) samples. The field of ‘viral metagenomics’ has dramatically expanded our understanding of viral diversity. Viral metagenomic approaches imply that many novel viruses will not be described by researchers who are experts on the genomic organization of that virus. There is a need to develop analytical approaches to reconstruct, annotate, and classify viral genomes. We have developed the papillomavirus annotation tool (PuMA) to provide researchers with a convenient and reproducible method to annotate novel papillomaviruses. PuMA provides an accessible method for automated papillomavirus genome annotation. PuMA currently has a 98% accuracy when benchmarked against the 481 reference genomes in the papillomavirus episteme (PaVE). Finally, PuMA was used to annotate 168 newly isolated papillomaviruses, and successfully annotated 1424 viral features. To demonstrate its general applicability, we developed a version of PuMA that can annotate polyomaviruses.PuMA is available on GitHub (https://github.com/KVD-lab/puma) and through the iMicrobe online environment (https://www.imicrobe.us/#/apps/puma)
- Published
- 2020
- Full Text
- View/download PDF
3. Attituden en zelf-gerapporteerde lawaaiblootstelling en gehoorbescherming bij 12-jarige jongeren in Vlaanderen
- Author
-
K. Van Leeuwen, K. Van Doorslaer, Annemie Desoete, Karel Hoppenbrouwers, Mathieu Roelants, and Cécile Guérin
- Subjects
03 medical and health sciences ,0302 clinical medicine ,Maternal and child health ,030225 pediatrics ,media_common.quotation_subject ,030212 general & internal medicine ,Art ,Humanities ,media_common - Abstract
In het Vlaams cohortonderzoek JOnG! werd bij 1.443 12-jarige jongeren de attitude ten opzichte van blootstelling aan lawaai en het gebruik van gehoorbescherming in kaart gebracht. Bijna de helft (45,4 %) van de jongeren gebruikt een of andere draagbare geluidsspeler met hoofdtelefoon of oortjes, en 67,3 % doet dit bij het luisteren naar muziek of het gamen op de computer. 10,6 % van deze jongeren luistert wekelijks 7 uren of meer, en 21,6 % zet de volumeknop van zijn muziekspeler gewoonlijk op 60 % of meer van het maximum. De proportie jongeren die op deze jonge leeftijd al hoog-risico luistergedrag vertoont (blootstelling ≥7 uur per week, aan een volume van ≥60 %) is nog beperkt tot 4,2 %. Het gerapporteerde risicogedrag wordt niet of onvoldoende gecompenseerd door een gepaste attitude tegenover de risico’s van lawaaischade of door het nemen van beschermende maatregelen. Slechts 15,2 % van de ondervraagde jongeren heeft ooit gehoorbescherming gedragen. Naar aanleiding van deze resultaten wordt gepleit voor een versterking van het preventief beleid, met specifieke aandacht voor de beginnende gebruikers van draagbare muziekspelers.
- Published
- 2018
- Full Text
- View/download PDF
4. Novel Betapapillomavirus Associated With Hand and Foot Papillomas in a Cynomolgus Macaque
- Author
-
Charles E. Wood, Zigui Chen, K. van Doorslaer, Robert D. Burk, D. R. Nelson, J. M. Cline, and Sarah H. Tannehill-Gregg
- Subjects
Male ,Pathology ,medicine.medical_specialty ,Article ,Pallor ,Complete sequence ,biology.animal ,medicine ,Animals ,Betapapillomavirus ,Primate ,ORFS ,Phylogeny ,Papilloma ,General Veterinary ,biology ,Foot ,Monkey Diseases ,Papillomavirus Infections ,Hand ,medicine.disease ,Virology ,Macaca fascicularis ,Skin Diseases, Viral ,Tissue tropism ,medicine.symptom ,Immunostaining - Abstract
Betapapillomavirus is a genus of papillomaviruses (PVs) commonly found in human skin and associated with both benign and malignant skin lesions. Only 2 previous beta-PVs have been fully characterized in nonhuman species. This report describes a novel beta-PV, named Macaca fascicularis PV type 2 (MfPV2), isolated from exophytic skin papillomas on the hands and feet of a 2-year-old male cynomolgus monkey ( M. fascicularis). On histology the papillomas were composed of diffusely thickened epidermis with superficial foci of cytomegaly, cytoplasmic pallor, marginalized chromatin, and rare eosinophilic intranuclear inclusion bodies. Positive immunostaining for p16 and the proliferation marker Ki67 was present multifocally within affected epidermis, most prominently within basal-type cells. Complete sequence identity (100%) was noted between PV genomes fully sequenced from hand and foot lesions. The MfPV2 genome was 7632 base pairs in length and included putative open reading frames (ORFs) for E1, E2, E4, E6, E7, L1, and L2 genes, similar to other PVs. The closest relatives to MfPV2 based on the L1 ORF sequence were all beta-PVs. These included human PV (HPV) 9, HPV115, HPV76, HPV75, and MfPV1 (60–70% pairwise identity for all), the latter of which was also isolated from hand and foot papillomas in a cynomolgus macaque. Phylogenetic analysis placed MfPV2 in a new species group (beta-6), distinct from HPVs (beta-1 to beta-5) and MfPV1 (beta-1). These findings characterize a new nonhuman beta-PV and provide additional support for the idea that tissue tropism among ancestral primate PVs developed prior to divergence of certain Old World primate lineages.
- Published
- 2010
- Full Text
- View/download PDF
5. 072 HPV genotypes in genital dysplasia and carcinoma in GATA2 deficiency
- Author
-
Edward W. Cowen, Dominique C. Pichard, K. van Doorslaer, S.M. Holland, Christa S. Zerbe, Alison A. McBride, Heidi H. Kong, and Pamela Stratton
- Subjects
Hpv genotypes ,Pathology ,medicine.medical_specialty ,GATA2 Deficiency ,business.industry ,Cell Biology ,Dermatology ,medicine.disease ,Biochemistry ,Dysplasia ,Carcinoma ,Medicine ,Sex organ ,business ,Molecular Biology - Published
- 2016
- Full Text
- View/download PDF
6. WAVE FORCES ON STORM WALLS, SMALL AND LARGE SCALE EXPERIMENTS
- Author
-
K Van Doorslaer, J De Rouck, K Trouw, J W Van Der Meer, and S Schimmels
- Published
- 2012
- Full Text
- View/download PDF
7. Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase
- Author
-
Finazzo, Cinzia; Mahlert, Felix; Goenrich, Meike; Thauer, Rdudolf K.; Van Doorslaer, Sabine; Schweiger, Arthur, Jeffrey, Harmer, Bauer, Carsten, Jaun, Bernhard, and Duin, Evert C.
- Subjects
Nickel -- Research ,Nickel -- Magnetic properties ,Nickel -- Chemical properties ,Organosulfur compounds -- Research ,Organosulfur compounds -- Chemical properties ,Methane -- Research ,Methane -- Chemical properties ,Chemistry - Abstract
Methane is formed in methanogenic archaea by the reduction of methyl-coenzyme M(CH3-S-COM) with coenzyme B (HS-CoB) to CH4 and the heterodisulfide CoM-S-S-CoB. The combination of EPR and HYSCORE data proves that, in the MCR(sub red2) state, HS-COM is directly coordinated to the Ni(I) ion.
- Published
- 2003
8. Two-year bronchodilator treatment in patients with mild airflow obstruction. Contradictory effects on lung function and quality of life
- Author
-
C P, van Schayck, M P, Rutten-van Mölken, E K, van Doorslaer, H, Folgering, and C, van Weel
- Subjects
Male ,Forced Expiratory Volume ,Ipratropium ,Vital Capacity ,Quality of Life ,Respiratory Mechanics ,Humans ,Albuterol ,Female ,Single-Blind Method ,Lung Diseases, Obstructive ,Middle Aged - Abstract
In a two-year randomized controlled study, we studied the effects of bronchodilator treatment on the lung function and the quality of life in patients with mild airflow obstruction. The patients were randomly divided to receive either continuous or symptomatic bronchodilator treatment. Within these treatment groups, they received salbutamol in the first year and ipratropium bromide in the second or vice versa. In addition, the quality of life of the patients was compared to that of the general population. One hundred and forty-four patients completed the study. When compared to the general population, these patients showed a serious impairment in quality of life. No differences between the two drugs were found, but the results indicated that FEV1 decline in the continuously treated group was significantly larger than in the symptomatically treated group. However, this was not reflected in a significant deterioration of the quality of life in the continuous group as measured by means of the Nottingham Health Profile and the Inventory of Subjective Health. Decline in FEV1 showed no correlation with changes in quality of life scores. This may be due to a relatively rapid adjustment of the patients to a decline in FEV1, as a result of which it has no direct effect on the experienced quality of life. Another reason may be that continuous bronchodilation masks the worsening of the disease. This lack of awareness might in turn be caused by the continuous symptom relief of bronchodilators.
- Published
- 1992
9. Serum, Cell-Free, HPV-Human DNA Junction Detection and HPV Typing for Predicting and Monitoring Cervical Cancer Recurrence.
- Author
-
Van Arsdale A, Mescheryakova O, Gallego S, Maggi EC, Harmon B, Kuo DYS, Van Doorslaer K, Einstein MH, Haas BJ, Montagna C, and Lenz J
- Abstract
Almost all cervical cancers are caused by human papillomaviruses (HPVs). In most cases, HPV DNA is integrated into the human genome. We found that tumor-specific, HPV-human DNA junctions are detectable in serum cell-free DNA of a fraction of cervical cancer patients at the time of initial treatment and/or at six months following treatment. Retrospective analysis revealed these junctions were more frequently detectable in women in whom the cancer later recurred. We also found that cervical cancers caused by HPV types outside of phylogenetic clade α9 had a higher recurrence frequency than those caused by α9 types in both our study and The Cancer Genome Atlas cervical cancer database, despite the higher prevalence of α9 types including HPV16 in cervical cancer. Thus, HPV-human DNA junction detection in serum cell-free DNA and HPV type determination in tumor tissue may help predict recurrence risk. Screening serum cell-free DNA for junctions may also offer an unambiguous, non-invasive means to monitor absence of recurrence following treatment.
- Published
- 2025
- Full Text
- View/download PDF
10. PaVE 2.0: Behind the Scenes of the Papillomavirus Episteme.
- Author
-
Dommer J, Van Doorslaer K, Afrasiabi C, Browne K, Ezeji S, Kim L, Dolan M, and McBride AA
- Abstract
The Papilloma Virus Episteme (PaVE) https://pave.niaid.nih.gov/ was initiated by NIAID in 2008 to provide a highly curated bioinformatic and knowledge resource for the papillomavirus scientific community. It rapidly became the fundamental and core resource for papillomavirus researchers and clinicians worldwide. Over time, the software infrastructure became severely outdated. In PaVE 2.0, the underlying libraries and hosting platform have been completely upgraded and rebuilt using Amazon Web Services (AWS) tools and automated CI/CD (continuous integration and deployment) pipelines for deployment of the application and data (now in AWS S3 cloud storage). PaVE 2.0 is hosted on three AWS ECS (elastic container service) using the NIAID Operations & Engineering Branch's Monarch tech stack and terraform. A new Celery queue supports longer running tasks. The framework is Python Flask with a JavaScript/JINJA template front end, and the database switched from MySQL to Neo4j. A Swagger API (Application Programming Interface) performs database queries, and executes jobs for BLAST, MAFFT, and the L1 typing tooland will allow future programmatic data access. All major tools such as BLAST, the L1 typing tool, genome locus viewer, phylogenetic tree generator, multiple sequence alignment, and protein structure viewer were modernized and enhanced to support more users. Multiple sequence alignment uses MAFFT instead of COBALT. The protein structure viewer was changed from Jmol to Mol*, the new embeddable viewer used by RCSB (Research Collaboratory for Structural Bioinformatics). In summary, PaVE 2.0 allows us to continue to provide this essential resource with an open-source framework that could be used as a template for molecular biology databases of other viruses., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
11. Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2024).
- Author
-
Simmonds P, Adriaenssens EM, Lefkowitz EJ, Oksanen HM, Siddell SG, Zerbini FM, Alfenas-Zerbini P, Aylward FO, Dempsey DM, Dutilh BE, Freitas-Astúa J, García ML, Hendrickson RC, Hughes HR, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Łobocka M, Mushegian AR, Penzes J, Muñoz AR, Robertson DL, Roux S, Rubino L, Sabanadzovic S, Smith DB, Suzuki N, Turner D, Van Doorslaer K, Vandamme AM, and Varsani A
- Subjects
- Classification methods, Phylogeny, Virology methods, Viruses classification, Viruses genetics, Viruses isolation & purification, Terminology as Topic
- Abstract
This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2024. The entire ICTV membership was invited to vote on 203 taxonomic proposals that had been approved by the ICTV Executive Committee (EC) in July 2023 at the 55th EC meeting in Jena, Germany, or in the second EC vote in November 2023. All proposals were ratified by online vote. Taxonomic additions include one new phylum (Ambiviricota), one new class, nine new orders, three new suborders, 51 new families, 18 new subfamilies, 820 new genera, and 3547 new species (excluding taxa that have been abolished). Proposals to complete the process of species name replacement to the binomial (genus + species epithet) format were ratified. Currently, a total of 14,690 virus species have been established., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
12. PRMT1 Modulates Alternative Splicing to Enhance HPV18 mRNA Stability and Promote the Establishment of Infection.
- Author
-
Williams DEJ, King K, Jackson R, Kuehner F, Arnoldy C, Marroquin JN, Tobey I, Banka A, Ragonese S, and Van Doorslaer K
- Abstract
Only persistent HPV infections lead to the development of cancer. Thus, understanding the virus-host interplay that influences the establishment of viral infection has important implications for HPV biology and human cancers. The ability of papillomaviruses to establish in cells requires the strict temporal regulation of viral gene expression in sync with cellular differentiation. This control primarily happens at the level of RNA splicing and polyadenylation. However, the details of how this spatio-temporal regulation is achieved still need to be fully understood. Until recently, it has been challenging to study the early events of the HPV lifecycle following infection. We used a single-cell genomics approach to identify cellular factors involved in viral infection and establishment. We identify protein arginine N-methyltransferase 1 (PRMT1) as an important factor in viral infection of primary human cervical cells. PRMT1 is the main cellular enzyme responsible for asymmetric dimethylation of cellular proteins. PRMT1 is an enzyme responsible for catalyzing the methylation of arginine residues on various proteins, which influences processes such as RNA processing, transcriptional regulation, and signal transduction. In this study, we show that HPV18 infection leads to increased PRMT1 levels across the viral lifecycle. PRMT1 is critical for the establishment of a persistent infection in primary cells. Mechanistically, PRMT1 inhibition leads to a highly dysregulated viral splicing pattern. Specifically, reduced PRMT1 activity leads to intron retention and a change in the E6 and E7 expression ratio. In the absence of PRMT1, viral transcripts are destabilized and subject to degradation via the nonsense-mediated decay (NMD) pathway. These findings highlight PRMT1 as a critical regulator of the HPV18 lifecycle, particularly in RNA processing, and position it as a potential therapeutic target for persistent HPV18 infections.
- Published
- 2024
- Full Text
- View/download PDF
13. The harms of promoting the lab leak hypothesis for SARS-CoV-2 origins without evidence.
- Author
-
Alwine J, Goodrum F, Banfield B, Bloom D, Britt WJ, Broadbent AJ, Campos SK, Casadevall A, Chan GC, Cliffe AR, Dermody T, Duprex P, Enquist LW, Frueh K, Geballe AP, Gaglia M, Goldstein S, Greninger AL, Gronvall GK, Jung JU, Kamil JP, Lakdawala S, Liu S-L, Luftig M, Moore JP, Moscona A, Neuman BW, Nikolich JŽ, O'Connor C, Pekosz A, Permar S, Pfeiffer J, Purdy J, Rasmussen A, Semler B, Smith GA, Stein DA, Van Doorslaer K, Weller SK, Whelan SPJ, and Yurochko A
- Subjects
- Humans, Pandemics, Animals, SARS-CoV-2, COVID-19 virology, COVID-19 transmission
- Abstract
Science is humanity's best insurance against threats from nature, but it is a fragile enterprise that must be nourished and protected. The preponderance of scientific evidence indicates a natural origin for SARS-CoV-2. Yet, the theory that SARS-CoV-2 was engineered in and escaped from a lab dominates media attention, even in the absence of strong evidence. We discuss how the resulting anti-science movement puts the research community, scientific research, and pandemic preparedness at risk., Competing Interests: T.D. is on the Board of Directors, Burroughs Wellcome Fund, and is an Editor for the Annual Review of Virology. P.D. receives funding from Moderna. K.F. has substantial financial interest in Vir Biotechnology, Inc., and is cofounder of the company and is coinventor of patents licensed to Vir and receives compensation for consulting. The potential conflict of interest has been reviewed and managed by OHSU. S.G. has done legal consulting on the origins of the pandemic. A.L.G. reports central testing contracts from Pfizer, Novavx, Sanofi, Abbott, Hologic, Cephid, and Quidel and has research support from Gilead. A.M. is scientific founder of Thylacine Biotherapeutics. G.A.S. is President of Thyreos, Inc. Most authors receive funding from the National Institutes of Health and other funding agencies.
- Published
- 2024
- Full Text
- View/download PDF
14. Human papillomavirus disease in GATA2 deficiency: a genetic predisposition to HPV-associated female anogenital malignancy.
- Author
-
Dancy E, Stratton P, Pichard DC, Marciano BE, Cowen EW, McBride AA, Van Doorslaer K, Merideth MA, Salmeri N, Hughes MS, Heller T, Parta M, Hickstein DD, Kong HH, Holland SM, and Zerbe CS
- Subjects
- Humans, Female, Adult, Male, Retrospective Studies, Adolescent, Young Adult, Genital Neoplasms, Female genetics, Genital Neoplasms, Female virology, Anus Neoplasms genetics, Anus Neoplasms etiology, Anus Neoplasms virology, Haploinsufficiency, Papillomaviridae genetics, Human Papillomavirus Viruses, Papillomavirus Infections genetics, Papillomavirus Infections complications, GATA2 Deficiency genetics, GATA2 Transcription Factor genetics, GATA2 Transcription Factor deficiency, Genetic Predisposition to Disease
- Abstract
Objective: Patients with pathogenic variants in the GATA Binding Protein 2 ( GATA2 ), a hematopoietic transcription factor, are at risk for human papillomavirus-related (HPV) anogenital cancer at younger than expected ages. A female cohort with GATA2 haploinsufficiency was systematically assessed by two gynecologists to characterize the extent and severity of anogenital HPV disease, which was also compared with affected males., Methods: A 17-year retrospective review of medical records, including laboratory, histopathology and cytopathology records was performed for patients diagnosed with GATA2 haploinsufficiency followed at the National Institutes of Health. Student's t -test and Mann-Whitney U test or Fisher's exact test were used to compare differences in continuous or categorical variables, respectively. Spearman's rho coefficient was employed for correlations., Results: Of 68 patients with GATA2 haploinsufficiency, HPV disease was the initial manifestation in 27 (40%). HPV occurred at median 18.9 (15.2-26.2) years in females, and 25.6 (23.4-26.9) years in males. Fifty-two (76%), 27 females and 25 males, developed HPV-related squamous intraepithelial lesions (SIL) including two males with oral cancer. Twenty-one patients developed anogenital high-grade SIL (HSIL) or carcinoma (16 females versus 5 males, (59% versus 20%, respectively, p=0.005) at median 27 (18.6-59.3) years for females and 33 (16.5-40.1) years for males. Females were more likely than males to require >2 surgeries to treat recurrent HSIL (p=0.0009). Of 30 patients undergoing hematopoietic stem cell transplant (HSCT) to manage disease arising from GATA2 haploinsufficiency, 12 (nine females, three males) had persistent HSIL/HPV disease. Of these nine females, eight underwent peri-transplant surgical treatment of HSIL. Five of seven who survived post-HSCT received HPV vaccination and had no or minimal evidence of HPV disease 2 years post-HSCT. HPV disease persisted in two receiving immunosuppression. HPV disease/low SIL (LSIL) resolved in all three males., Conclusion: Females with GATA2 haploinsufficiency exhibit a heightened risk of recurrent, multifocal anogenital HSIL requiring frequent surveillance and multiple treatments. GATA2 haploinsufficiency must be considered in a female with extensive, multifocal genital HSIL unresponsive to multiple surgeries. This population may benefit from early intervention like HSCT accompanied by continued, enhanced surveillance and treatment by gynecologic oncologists and gynecologists in those with anogenital HPV disease., Competing Interests: PS, also add participated in an Endometriosis Research Day at the Open Endoscopy Forum Cambridge, Massachusetts, and reviewed a book proposal on endometriosis for Elsevier. Outside of this work, PS has received royalties from UpToDate for a section about acute pelvic pain, from Frontiers in Reproductive Health as Specialty Chief Editor, Gynecology, and participated in an AbbVie advisory board. PS also participated in an Endometriosis Research Day at the Open Endoscopy Forum Cambridge, Massachusetts, and reviewed a book proposal on endometriosis for Elsevier. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision., (Copyright © 2024 Dancy, Stratton, Pichard, Marciano, Cowen, McBride, Van Doorslaer, Merideth, Salmeri, Hughes, Heller, Parta, Hickstein, Kong, Holland and Zerbe.)
- Published
- 2024
- Full Text
- View/download PDF
15. Structure and transcription of integrated HPV DNA in vulvar carcinomas.
- Author
-
Van Arsdale A, Turker L, Chang YC, Gould J, Harmon B, Maggi EC, Meshcheryakova O, Brown MP, Luong D, Van Doorslaer K, Einstein MH, Kuo DYS, Zheng D, Haas BJ, Lenz J, and Montagna C
- Abstract
HPV infections are associated with a fraction of vulvar cancers. Through hybridization capture and DNA sequencing, HPV DNA was detected in five of thirteen vulvar cancers. HPV16 DNA was integrated into human DNA in three of the five. The insertions were in introns of human NCKAP1, C5orf67, and LRP1B. Integrations in NCKAP1 and C5orf67 were flanked by short direct repeats in the human DNA, consistent with HPV DNA insertions at sites of abortive, staggered, endonucleolytic incisions. The insertion in C5orf67 was present as a 36 kbp, human-HPV-hetero-catemeric DNA as either an extrachromosomal circle or a tandem repeat within the human genome. The human circularization/repeat junction was defined at single nucleotide resolution. The integrated viral DNA segments all retained an intact upstream regulatory region and the adjacent viral E6 and E7 oncogenes. RNA sequencing revealed that the only HPV genes consistently transcribed from the integrated viral DNAs were E7 and E6*I. The other two HPV DNA+ tumors had coinfections, but no evidence for integration. HPV-positive and HPV-negative vulvar cancers exhibited contrasting human, global gene expression patterns partially overlapping with previously observed differences between HPV-positive and HPV-negative cervical and oropharyngeal cancers. A substantial fraction of the differentially expressed genes involved immune system function. Thus, transcription and HPV DNA integration in vulvar cancers resemble those in other HPV-positive cancers. This study emphasizes the power of hybridization capture coupled with DNA and RNA sequencing to identify a broad spectrum of HPV types, determine human genome integration status of viral DNAs, and elucidate their structures., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
16. Diverse papillomaviruses identified from Antarctic fur seals, leopard seals and Weddell seals from the Antarctic.
- Author
-
Regney M, Kraberger S, Custer JM, Crane AE, Shero MR, Beltran RS, Kirkham AL, Van Doorslaer K, Stone AC, Goebel ME, Burns JM, and Varsani A
- Subjects
- Animals, Female, Antarctic Regions, Birds, Papillomaviridae genetics, Fur Seals, Seals, Earless
- Abstract
Papillomaviruses (family Papillomaviridae) are non-enveloped, circular, double-stranded DNA viruses known to infect squamous and mucosal epithelial cells. In the family Papillomaviridae there are 53 genera and 133 viral species whose members infect a variety of mammalian, avian, reptilian, and fish species. Within the Antarctic context, papillomaviruses (PVs) have been identified in Adélie penguins (Pygoscelis adeliae, 2 PVs), Weddell seals (Leptonychotes weddellii, 7 PVs), and emerald notothen (Trematomus bernacchii, 1 PV) in McMurdo Sound and Ross Island in eastern Antarctica. Here we identified 13 diverse PVs from buccal swabs of Antarctic fur seals (Arctocephalus gazella, 2 PVs) and leopard seal (Hydrurga leptonyx, 3 PVs) in western Antarctica (Antarctic Peninsula), and vaginal and nasal swabs of Weddell seals (8 PVs) in McMurdo Sound. These PV genomes group into four genera representing 11 new papillomavirus types, of which five are from two Antarctic fur seals and a leopard seal and six from Weddell seals., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
17. The CD4 transmembrane GGXXG and juxtamembrane (C/F)CV+C motifs mediate pMHCII-specific signaling independently of CD4-LCK interactions.
- Author
-
Lee MS, Tuohy PJ, Kim CY, Yost PP, Lichauco K, Parrish HL, Van Doorslaer K, and Kuhns MS
- Subjects
- Pregnancy, Animals, Female, Signal Transduction genetics, Receptors, Antigen, T-Cell metabolism, Receptor-CD3 Complex, Antigen, T-Cell metabolism, Phosphorylation, CD4 Antigens, Mammals metabolism, Lymphocyte Specific Protein Tyrosine Kinase p56(lck) genetics, Lymphocyte Specific Protein Tyrosine Kinase p56(lck) metabolism, Placenta metabolism
- Abstract
CD4
+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors., Competing Interests: ML, PT, CK, PY, KL, HP, KV No competing interests declared, MK Has disclosed an outside interest in Module Therapeutics to the University of Arizona. Conflicts of interest resulting from this interest are being managed by the University of Arizona in accordance with their policies, (© 2023, Lee et al.)- Published
- 2024
- Full Text
- View/download PDF
18. Correction for Rasmussen et al., "Virology-the path forward".
- Author
-
Rasmussen AL, Gronvall GK, Lowen AC, Goodrum F, Alwine J, Andersen KG, Anthony SJ, Baines J, Banerjee A, Broadbent AJ, Brooke CB, Campos SK, Caposio P, Casadevall A, Chan GC, Cliffe AR, Collins-McMillen D, Connell N, Damania B, Daugherty MD, Debbink K, Dermody TS, DiMaio D, Duprex WP, Emerman M, Galloway DA, Garry RF, Goldstein SA, Greninger AL, Hartman AL, Hogue BG, Horner SM, Hotez PJ, Jung JU, Kamil JP, Karst SM, Laimins L, Lakdawala SS, Landais I, Letko M, Lindenbach B, Liu S-L, Luftig M, McFadden G, Mehle A, Morrison J, Moscona A, Mühlberger E, Munger J, Münger K, Murphy E, Neufeldt CJ, Nikolich JZ, O'Connor CM, Pekosz A, Permar SR, Pfeiffer JK, Popescu SV, Purdy JG, Racaniello VR, Rice CM, Runstadler JA, Sapp MJ, Scott RS, Smith GA, Sorrell EM, Speranza E, Streblow D, Tibbetts SA, Toth Z, Van Doorslaer K, Weiss SR, White EA, White TM, Wobus CE, Worobey M, Yamaoka S, and Yurochko A
- Published
- 2024
- Full Text
- View/download PDF
19. Virology-the path forward.
- Author
-
Rasmussen AL, Gronvall GK, Lowen AC, Goodrum F, Alwine J, Andersen KG, Anthony SJ, Baines J, Banerjee A, Broadbent AJ, Brooke CB, Campos SK, Caposio P, Casadevall A, Chan GC, Cliffe AR, Collins-McMillen D, Connell N, Damania B, Daugherty MD, Debbink K, Dermody TS, DiMaio D, Duprex WP, Emerman M, Galloway DA, Garry RF, Goldstein SA, Greninger AL, Hartman AL, Hogue BG, Horner SM, Hotez PJ, Jung JU, Kamil JP, Karst SM, Laimins L, Lakdawala SS, Landais I, Letko M, Lindenbach B, Liu S-L, Luftig M, McFadden G, Mehle A, Morrison J, Moscona A, Mühlberger E, Munger J, Münger K, Murphy E, Neufeldt CJ, Nikolich JZ, O'Connor CM, Pekosz A, Permar SR, Pfeiffer JK, Popescu SV, Purdy JG, Racaniello VR, Rice CM, Runstadler JA, Sapp MJ, Scott RS, Smith GA, Sorrell EM, Speranza E, Streblow D, Tibbetts SA, Toth Z, Van Doorslaer K, Weiss SR, White EA, White TM, Wobus CE, Worobey M, Yamaoka S, and Yurochko A
- Subjects
- Humans, COVID-19, United States, Viruses, Containment of Biohazards, Virology, Biomedical Research standards
- Abstract
In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.
- Published
- 2024
- Full Text
- View/download PDF
20. The CD4 transmembrane GGXXG and juxtamembrane (C/F)CV+C motifs mediate pMHCII-specific signaling independently of CD4-LCK interactions.
- Author
-
Lee MS, Tuohy PJ, Kim CY, Yost P, Lichauco K, Parrish HL, Van Doorslaer K, and Kuhns MS
- Abstract
CD4
+ T cell activation is driven by 5-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee, et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.- Published
- 2023
- Full Text
- View/download PDF
21. Correction to: Changes to virus taxonomy and the ICTV Statutes ratifed by the International Committee on Taxonomy of Viruses (2023).
- Author
-
Zerbini FM, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, Dempsey DM, Dutilh BE, García ML, Hendrickson RC, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Łobocka M, Oksanen HM, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Smith DB, Suzuki N, Van Doorslaer K, Vandamme AM, and Varsani A
- Published
- 2023
- Full Text
- View/download PDF
22. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling.
- Author
-
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, and Van Doorslaer K
- Subjects
- Female, Humans, Palatine Tonsil, Epithelium, Extracellular Matrix metabolism, Interferons metabolism, Epithelial Cells metabolism, Tonsillitis
- Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e., cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data (https://viz.datascience.arizona.edu/3DEpiEx/)., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 Jackson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
23. Using archived and biocollection samples towards deciphering the DNA virus diversity associated with rodent species in the families cricetidae and heteromyidae.
- Author
-
Lund MC, Larsen BB, Rowsey DM, Otto HW, Gryseels S, Kraberger S, Custer JM, Steger L, Yule KM, Harris RE, Worobey M, Van Doorslaer K, Upham NS, and Varsani A
- Subjects
- Animals, Phylogeny, DNA Viruses genetics, Mammals, Genome, Viral, Rodentia, Viruses genetics
- Abstract
Rodentia is the most speciose order of mammals, and they are known to harbor a wide range of viruses. Although there has been significant research on zoonotic viruses in rodents, research on the diversity of other viruses has been limited, especially for rodents in the families Cricetidae and Heteromyidae. In fecal and liver samples of nine species of rodents, we identify 346 distinct circular DNA viral genomes. Of these, a large portion are circular, single-stranded DNA viruses in the families Anelloviridae (n = 3), Circoviridae (n = 5), Genomoviridae (n = 7), Microviridae (n = 297), Naryaviridae (n = 4), Vilyaviridae (n = 15) and in the phylum Cressdnaviricota (n = 13) that cannot be assigned established families. We also identified two large bacteriophages of 36 and 50 kb that are part of the class Caudoviricetes. Some of these viruses are clearly those that infect rodents, however, most of these likely infect various organisms associated with rodents, their environment or their diet., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
24. Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2023).
- Author
-
Zerbini FM, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, Dempsey DM, Dutilh BE, García ML, Hendrickson RC, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Łobocka M, Oksanen HM, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Smith DB, Suzuki N, Van Doorslaer K, Vandamme AM, and Varsani A
- Subjects
- Humans, Committee Membership, Viruses genetics
- Abstract
This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2023. The entire ICTV membership was invited to vote on 174 taxonomic proposals that had been approved by the ICTV Executive Committee in July 2022, as well as a proposed revision of the ICTV Statutes. All proposals and the revised ICTV Statutes were approved by a majority of the voting membership. Of note, the ICTV continued the process of renaming existing species in accordance with the recently mandated binomial format and included gene transfer agents (GTAs) in the classification framework by classifying them as viriforms. In total, one class, seven orders, 31 families, 214 genera, and 858 species were created., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
25. Virus taxonomy and the role of the International Committee on Taxonomy of Viruses (ICTV).
- Author
-
Siddell SG, Smith DB, Adriaenssens E, Alfenas-Zerbini P, Dutilh BE, Garcia ML, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Lefkowitz EJ, Łobocka M, Mushegian AR, Oksanen HM, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Suzuki N, Van Doorslaer K, Vandamme AM, Varsani A, and Zerbini FM
- Subjects
- Classification, Viruses classification
- Abstract
The taxonomy of viruses is developed and overseen by the International Committee on Taxonomy of Viruses (ICTV), which scrutinizes, approves and ratifies taxonomic proposals, and maintains a list of virus taxa with approved names (https://ictv.global). The ICTV has approximately 180 members who vote by simple majority. Taxon-specific Study Groups established by the ICTV have a combined membership of over 600 scientists from the wider virology community; they provide comprehensive expertise across the range of known viruses and are major contributors to the creation and evaluation of taxonomic proposals. Proposals can be submitted by anyone and will be considered by the ICTV irrespective of Study Group support. Thus, virus taxonomy is developed from within the virology community and realized by a democratic decision-making process. The ICTV upholds the distinction between a virus or replicating genetic element as a physical entity and the taxon category to which it is assigned. This is reflected by the nomenclature of the virus species taxon, which is now mandated by the ICTV to be in a binomial format (genus + species epithet) and is typographically distinct from the names of viruses. Classification of viruses below the rank of species (such as, genotypes or strains) is not within the remit of the ICTV. This article, authored by the ICTV Executive Committee, explains the principles of virus taxonomy and the organization, function, processes and resources of the ICTV, with the aim of encouraging greater understanding and interaction among the wider virology community.
- Published
- 2023
- Full Text
- View/download PDF
26. Virology under the Microscope-a Call for Rational Discourse.
- Author
-
Goodrum F, Lowen AC, Lakdawala S, Alwine J, Casadevall A, Imperiale MJ, Atwood W, Avgousti D, Baines J, Banfield B, Banks L, Bhaduri-McIntosh S, Bhattacharya D, Blanco-Melo D, Bloom D, Boon A, Boulant S, Brandt C, Broadbent A, Brooke C, Cameron C, Campos S, Caposio P, Chan G, Cliffe A, Coffin J, Collins K, Damania B, Daugherty M, Debbink K, DeCaprio J, Dermody T, Dikeakos J, DiMaio D, Dinglasan R, Duprex WP, Dutch R, Elde N, Emerman M, Enquist L, Fane B, Fernandez-Sesma A, Flenniken M, Frappier L, Frieman M, Frueh K, Gack M, Gaglia M, Gallagher T, Galloway D, García-Sastre A, Geballe A, Glaunsinger B, Goff S, Greninger A, Hancock M, Harris E, Heaton N, Heise M, Heldwein E, Hogue B, Horner S, Hutchinson E, Hyser J, Jackson W, Kalejta R, Kamil J, Karst S, Kirchhoff F, Knipe D, Kowalik T, Lagunoff M, Laimins L, Langlois R, Lauring A, Lee B, Leib D, Liu SL, Longnecker R, Lopez C, Luftig M, Lund J, Manicassamy B, McFadden G, McIntosh M, Mehle A, Miller WA, Mohr I, Moody C, Moorman N, Moscona A, Mounce B, Munger J, Münger K, Murphy E, Naghavi M, Nelson J, Neufeldt C, Nikolich J, O'Connor C, Ono A, Orenstein W, Ornelles D, Ou JH, Parker J, Parrish C, Pekosz A, Pellett P, Pfeiffer J, Plemper R, Polyak S, Purdy J, Pyeon D, Quinones-Mateu M, Renne R, Rice C, Schoggins J, Roller R, Russell C, Sandri-Goldin R, Sapp M, Schang L, Schmid S, Schultz-Cherry S, Semler B, Shenk T, Silvestri G, Simon V, Smith G, Smith J, Spindler K, Stanifer M, Subbarao K, Sundquist W, Suthar M, Sutton T, Tai A, Tarakanova V, tenOever B, Tibbetts S, Tompkins S, Toth Z, van Doorslaer K, Vignuzzi M, Wallace N, Walsh D, Weekes M, Weinberg J, Weitzman M, Weller S, Whelan S, White E, Williams B, Wobus C, Wong S, and Yurochko A
- Subjects
- Humans, SARS-CoV-2, Pandemics prevention & control, Antiviral Agents, COVID-19 prevention & control, Viruses
- Abstract
Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.
- Published
- 2023
- Full Text
- View/download PDF
27. Single cell transcriptomic analysis of HPV16-infected epithelium identifies a keratinocyte subpopulation implicated in cancer.
- Author
-
Bedard MC, Chihanga T, Carlile A, Jackson R, Brusadelli MG, Lee D, VonHandorf A, Rochman M, Dexheimer PJ, Chalmers J, Nuovo G, Lehn M, Williams DEJ, Kulkarni A, Carey M, Jackson A, Billingsley C, Tang A, Zender C, Patil Y, Wise-Draper TM, Herzog TJ, Ferris RL, Kendler A, Aronow BJ, Kofron M, Rothenberg ME, Weirauch MT, Van Doorslaer K, Wikenheiser-Brokamp KA, Lambert PF, Adam M, Steven Potter S, and Wells SI
- Subjects
- Female, Humans, Human papillomavirus 16 genetics, Human papillomavirus 16 metabolism, Transcriptome, Epithelium metabolism, Keratinocytes metabolism, Carcinogenesis genetics, Papillomavirus Infections, Carcinoma, Squamous Cell genetics, Oncogene Proteins, Viral genetics
- Abstract
Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
28. Diverse DNA virus genomes identified in fecal samples of Mexican free-tailed bats (Tadarida brasiliensis) captured in Chiricahua Mountains of southeast Arizona (USA).
- Author
-
Harding C, Larsen BB, Otto HW, Potticary AL, Kraberger S, Custer JM, Suazo C, Upham NS, Worobey M, Van Doorslaer K, and Varsani A
- Subjects
- Animals, Humans, Arizona, DNA Viruses, Genome, Viral, Feces, DNA, Chiroptera
- Abstract
Bats (order Chiroptera) are some of the most abundant mammals on earth and their species ecology strongly influences zoonotic potential. While substantial research has been conducted on bat-associated viruses, particularly on those that can cause disease in humans and/or livestock, globally, limited research has focused on endemic bats in the USA. The southwest region of the US is of particular interest because of its high diversity of bat species. We identified 39 single-stranded DNA virus genomes in the feces of Mexican free-tailed bats (Tadarida brasiliensis) sampled in the Rucker Canyon (Chiricahua Mountains) of southeast Arizona (USA). Twenty-eight of these belong to the virus families Circoviridae (n = 6), Genomoviridae (n = 17), and Microviridae (n = 5). Eleven viruses cluster with other unclassified cressdnaviruses. Most of the viruses identified represent new species. Further research on identification of novel bat-associated cressdnaviruses and microviruses is needed to provide greater insights regarding their co-evolution and ecology relative to bats., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
29. Four principles to establish a universal virus taxonomy.
- Author
-
Simmonds P, Adriaenssens EM, Zerbini FM, Abrescia NGA, Aiewsakun P, Alfenas-Zerbini P, Bao Y, Barylski J, Drosten C, Duffy S, Duprex WP, Dutilh BE, Elena SF, García ML, Junglen S, Katzourakis A, Koonin EV, Krupovic M, Kuhn JH, Lambert AJ, Lefkowitz EJ, Łobocka M, Lood C, Mahony J, Meier-Kolthoff JP, Mushegian AR, Oksanen HM, Poranen MM, Reyes-Muñoz A, Robertson DL, Roux S, Rubino L, Sabanadzovic S, Siddell S, Skern T, Smith DB, Sullivan MB, Suzuki N, Turner D, Van Doorslaer K, Vandamme AM, Varsani A, and Vasilakis N
- Subjects
- Humans, Metagenomics, Phylogeny, Bacteriophages, Viruses genetics
- Abstract
A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent., Competing Interests: The authors have declared that no competing interests exist., (Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.)
- Published
- 2023
- Full Text
- View/download PDF
30. Master mitotic kinases regulate viral genome delivery during papillomavirus cell entry.
- Author
-
Rizzato M, Mao F, Chardon F, Lai KY, Villalonga-Planells R, Drexler HCA, Pesenti ME, Fiskin M, Roos N, King KM, Li S, Gamez ER, Greune L, Dersch P, Simon C, Masson M, Van Doorslaer K, Campos SK, and Schelhaas M
- Subjects
- Humans, DNA, Viral genetics, DNA, Viral metabolism, Virus Internalization, Mitosis, Phosphorylation, Genome, Viral, Cell Cycle Proteins metabolism, Capsid Proteins metabolism, Papillomavirus Infections
- Abstract
Mitosis induces cellular rearrangements like spindle formation, Golgi fragmentation, and nuclear envelope breakdown. Similar to certain retroviruses, nuclear delivery during entry of human papillomavirus (HPV) genomes is facilitated by mitosis, during which minor capsid protein L2 tethers viral DNA to mitotic chromosomes. However, the mechanism of viral genome delivery and tethering to condensed chromosomes is barely understood. It is unclear, which cellular proteins facilitate this process or how this process is regulated. This work identifies crucial phosphorylations on HPV minor capsid protein L2 occurring at mitosis onset. L2's chromosome binding region (CBR) is sequentially phosphorylated by the master mitotic kinases CDK1 and PLK1. L2 phosphorylation, thus, regulates timely delivery of HPV vDNA to mitotic chromatin during mitosis. In summary, our work demonstrates a crucial role of mitotic kinases for nuclear delivery of viral DNA and provides important insights into the molecular mechanism of pathogen import into the nucleus during mitosis., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
31. Identification of diverse papillomaviruses in captive black-and-white ruffed lemurs (Varecia variegata).
- Author
-
Paietta EN, Kraberger S, Custer JM, Vargas KL, Van Doorslaer K, Yoder AD, and Varsani A
- Subjects
- Animals, Humans, Primates, Lemur, Lemuridae genetics
- Abstract
Papillomaviruses (PVs) are host-species-specific and tissue-specific viruses that infect a diverse array of vertebrate hosts, including humans and non-human primates, with varying pathogenic outcomes. Although primate PVs have been studied extensively, no complete genome sequences of PVs from lemurs have been determined to date. Saliva samples from three critically endangered, captive black-and-white ruffed lemurs (Varecia variegata variegata) at the Duke Lemur Center (USA) were analyzed, using high-throughput sequencing, for the presence of oral papillomaviruses. We identified three PVs from two individuals, one of which had a coinfection with two different PVs. Two of the three PVs share 99.6% nucleotide sequence identity, and we have named these isolates "Varecia variegata papillomavirus 1" (VavPV1). The third PV shares ~63% nucleotide sequence identity with VavPV1, and thus, we have named it "Varecia variegata papillomavirus 2" (VavPV2). Based on their E1 + E2 + L1 protein sequence phylogeny, the VavPVs form a distinct clade. This clade likely represents a novel genus, with VavPV1 and VavPV2 belonging to two distinct species. Our findings represent the first complete genome sequences of PVs found in lemuriform primates, with their presence suggesting the potential existence of diverse PVs across the over 100 species of lemurs., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
32. Discovery of three cycloviruses in fecal samples from silver-haired bats (Lasionycteris noctivagans) in Arizona (USA).
- Author
-
Harding C, Larsen BB, Gryseels S, Otto HW, Suazo C, Kraberger S, Upham NS, Worobey M, Van Doorslaer K, and Varsani A
- Subjects
- Animals, Feces, Arizona, Circoviridae, Chiroptera
- Abstract
Bats harbour a diverse array of viruses, some of which are zoonotic, and are one of the most speciose groups of mammals on earth. As part of an ongoing bat-associated viral diversity research project, we identified three cycloviruses (family Circoviridae) in fecal samples of silver-haired bats (Lasionycteris noctivagans) caught in Cave Creek Canyon of Arizona (USA). Two of the three identified genomes represent two new species in the genus Cyclovirus. Cycloviruses have been found in a wide range of environments and hosts; however, little is known about their biology. These new genomes of cycloviruses are the first from silver-haired bats, adding to the broader knowledge of cyclovirus diversity. With continuing studies, it is likely that additional viruses of the family Circoviridae will be identified in Arizona bat populations., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
33. Synonymous nucleotide changes drive papillomavirus evolution.
- Author
-
King KM, Rajadhyaksha EV, Tobey IG, and Van Doorslaer K
- Subjects
- Codon, Nucleotides, Codon Usage, Papillomaviridae genetics, Genome, Viral genetics, Evolution, Molecular
- Abstract
Papillomaviruses have been evolving alongside their hosts for at least 450 million years. This review will discuss some of the insights gained into the evolution of this diverse family of viruses. Papillomavirus evolution is constrained by pervasive purifying selection to maximize viral fitness. Yet these viruses need to adapt to changes in their environment, e.g., the host immune system. It has long been known that these viruses evolved a codon usage that doesn't match the infected host. Here we discuss how papillomavirus genomes evolve by acquiring synonymous changes that allow the virus to avoid detection by the host innate immune system without changing the encoded proteins and associated fitness loss. We discuss the implications of studying viral evolution, lifecycle, and cancer progression., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
34. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022).
- Author
-
Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, Dempsey DM, Dutilh BE, García ML, Curtis Hendrickson R, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Łobocka M, Oksanen HM, Orton RJ, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Smith DB, Suzuki N, Van Doorslaer K, Vandamme AM, Varsani A, and Zerbini FM
- Subjects
- Committee Membership, Viruses genetics
- Abstract
This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2022. The entire ICTV was invited to vote on 174 taxonomic proposals approved by the ICTV Executive Committee at its annual meeting in July 2021. All proposals were ratified by an absolute majority of the ICTV members. Of note, the Study Groups have started to implement the new rule for uniform virus species naming that became effective in 2021 and mandates the binomial 'Genus_name species_epithet' format with or without Latinization. As a result of this ratification, the names of 6,481 virus species (more than 60 percent of all species names currently recognized by ICTV) now follow this format., (© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Published
- 2022
- Full Text
- View/download PDF
35. Revisiting Papillomavirus Taxonomy: A Proposal for Updating the Current Classification in Line with Evolutionary Evidence.
- Author
-
Van Doorslaer K
- Subjects
- Animals, Humans, Phylogeny, Papillomaviridae genetics, Viral Proteins genetics, DNA, Circular, Nucleotides, Genome, Viral, Viruses genetics, Papillomavirus Infections genetics
- Abstract
Papillomaviruses infect a wide array of animal hosts and are responsible for roughly 5% of all human cancers. Comparative genomics between different virus types belonging to specific taxonomic groupings (e.g., species, and genera) has the potential to illuminate physiological differences between viruses with different biological outcomes. Likewise, extrapolation of features between related viruses can be very powerful but requires a solid foundation supporting the evolutionary relationships between viruses. The current papillomavirus classification system is based on pairwise sequence identity. However, with the advent of metagenomics as facilitated by high-throughput sequencing and molecular tools of enriching circular DNA molecules using rolling circle amplification, there has been a dramatic increase in the described diversity of this viral family. Not surprisingly, this resulted in a dramatic increase in absolute number of viral types (i.e., sequences sharing <90% L1 gene pairwise identity). Many of these novel viruses are the sole member of a novel species within a novel genus (i.e., singletons), highlighting that we have only scratched the surface of papillomavirus diversity. I will discuss how this increase in observed sequence diversity complicates papillomavirus classification. I will propose a potential solution to these issues by explicitly basing the species and genera classification on the evolutionary history of these viruses based on the core viral proteins (E1, E2, and L1) of papillomaviruses. This strategy means that it is possible that a virus identified as the closest neighbor based on the E1, E2, L1 phylogenetic tree, is not the closest neighbor based on L1 nucleotide identity. In this case, I propose that a virus would be considered a novel type if it shares less than 90% identity with its closest neighbors in the E1, E2, L1 phylogenetic tree.
- Published
- 2022
- Full Text
- View/download PDF
36. Enhancing and inhibitory motifs regulate CD4 activity.
- Author
-
Lee MS, Tuohy PJ, Kim CY, Lichauco K, Parrish HL, Van Doorslaer K, and Kuhns MS
- Subjects
- Animals, CD3 Complex metabolism, Histocompatibility Antigens Class II genetics, Histocompatibility Antigens Class II metabolism, Lymphocyte Activation, Receptor-CD3 Complex, Antigen, T-Cell metabolism, Receptors, Antigen, T-Cell genetics, Receptors, Antigen, T-Cell metabolism, src-Family Kinases metabolism, CD4 Antigens genetics, CD4 Antigens metabolism, Lymphocyte Specific Protein Tyrosine Kinase p56(lck) genetics, Lymphocyte Specific Protein Tyrosine Kinase p56(lck) metabolism
- Abstract
CD4
+ T cells use T cell receptor (TCR)-CD3 complexes, and CD4, to respond to peptide antigens within MHCII molecules (pMHCII). We report here that, through ~435 million years of evolution in jawed vertebrates, purifying selection has shaped motifs in the extracellular, transmembrane, and intracellular domains of eutherian CD4 that enhance pMHCII responses, and covary with residues in an intracellular motif that inhibits responses. Importantly, while CD4 interactions with the Src kinase, Lck, are viewed as key to pMHCII responses, our data indicate that CD4-Lck interactions derive their importance from the counterbalancing activity of the inhibitory motif, as well as motifs that direct CD4-Lck pairs to specific membrane compartments. These results have implications for the evolution and function of complex transmembrane receptors and for biomimetic engineering., Competing Interests: ML, PT, CK, KL, HP, KV No competing interests declared, MK has disclosed an outside interest in Module Therapeutics to the University of Arizona. Conflicts of interest resulting from this interest are being managed by the University of Arizona in accordance with their policies, (© 2022, Lee et al.)- Published
- 2022
- Full Text
- View/download PDF
37. Coevolutionary Analysis Implicates Toll-Like Receptor 9 in Papillomavirus Restriction.
- Author
-
King K, Larsen BB, Gryseels S, Richet C, Kraberger S, Jackson R, Worobey M, Harrison JS, Varsani A, and Van Doorslaer K
- Subjects
- Humans, Nucleotides, Papillomaviridae genetics, Papillomaviridae metabolism, Receptors, Pattern Recognition, Toll-Like Receptor 9 genetics, Papillomavirus Infections, Virus Diseases, Viruses
- Abstract
Upon infection, DNA viruses can be sensed by pattern recognition receptors (PRRs), leading to the activation of type I and III interferons to block infection. Therefore, viruses must inhibit these signaling pathways, avoid being detected, or both. Papillomavirus virions are trafficked from early endosomes to the Golgi apparatus and wait for the onset of mitosis to complete nuclear entry. This unique subcellular trafficking strategy avoids detection by cytoplasmic PRRs, a property that may contribute to the establishment of infection. However, as the capsid uncoats within acidic endosomal compartments, the viral DNA may be exposed to detection by Toll-like receptor 9 (TLR9). In this study, we characterized two new papillomaviruses from bats and used molecular archeology to demonstrate that their genomes altered their nucleotide compositions to avoid detection by TLR9, providing evidence that TLR9 acts as a PRR during papillomavirus infection. Furthermore, we showed that TLR9, like other components of the innate immune system, is under evolutionary selection in bats, providing the first direct evidence for coevolution between papillomaviruses and their hosts. Finally, we demonstrated that the cancer-associated human papillomaviruses show a reduction in CpG dinucleotides within a TLR9 recognition complex. IMPORTANCE Viruses must avoid detection by the innate immune system. In this study, we characterized two new papillomaviruses from bats and used molecular archeology to demonstrate that their genomes altered their nucleotide compositions to avoid detection by TLR9, providing evidence that TLR9 acts as a PRR during papillomavirus infection. Furthermore, we demonstrated that TLR9, like other components of the innate immune system, is under evolutionary selection in bats, providing the first direct evidence for coevolution between papillomaviruses and their hosts.
- Published
- 2022
- Full Text
- View/download PDF
38. Differentiating between viruses and virus species by writing their names correctly.
- Author
-
Zerbini FM, Siddell SG, Mushegian AR, Walker PJ, Lefkowitz EJ, Adriaenssens EM, Alfenas-Zerbini P, Dutilh BE, García ML, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Łobocka M, Oksanen HM, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Suzuki N, Van Doorslaer K, Vandamme AM, and Varsani A
- Subjects
- DNA Viruses, Writing, Viruses genetics, Viruses, Unclassified
- Abstract
Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly., (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
39. Discovery of novel fish papillomaviruses: From the Antarctic to the commercial fish market.
- Author
-
Kraberger S, Austin C, Farkas K, Desvignes T, Postlethwait JH, Fontenele RS, Schmidlin K, Bradley RW, Warzybok P, Van Doorslaer K, Davison W, Buck CB, and Varsani A
- Subjects
- Animals, Antarctic Regions, Biological Evolution, Charadriiformes virology, DNA, Viral, Genome, Viral, High-Throughput Nucleotide Sequencing, Open Reading Frames, Papillomaviridae genetics, Papillomavirus E7 Proteins genetics, Papillomavirus Infections virology, Phylogeny, Sequence Analysis, DNA, Fishes virology, Papillomaviridae classification
- Abstract
Fish papillomaviruses form a newly discovered group broadly recognized as the Secondpapillomavirinae subfamily. This study expands the documented genomes of the fish papillomaviruses from six to 16, including one from the Antarctic emerald notothen, seven from commercial market fishes, one from data mining of sea bream sequence data, and one from a western gull cloacal swab that is likely diet derived. The genomes of secondpapillomaviruses are ∼6 kilobasepairs (kb), which is substantially smaller than the ∼8 kb of terrestrial vertebrate papillomaviruses. Each genome encodes a clear homolog of the four canonical papillomavirus genes, E1, E2, L1, and L2. In addition, we identified open reading frames (ORFs) with short linear peptide motifs reminiscent of E6/E7 oncoproteins. Fish papillomaviruses are extremely diverse and phylogenetically distant from other papillomaviruses suggesting a model in which terrestrial vertebrate-infecting papillomaviruses arose after an evolutionary bottleneck event, possibly during the water-to-land transition., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
40. A novel lineage of polyomaviruses identified in bark scorpions.
- Author
-
Schmidlin K, Kraberger S, Cook C, DeNardo DF, Fontenele RS, Van Doorslaer K, Martin DP, Buck CB, and Varsani A
- Subjects
- Animals, Genome, Viral, Polyomavirus classification, Recombination, Genetic, Phylogeny, Polyomavirus genetics, Scorpions virology
- Abstract
Polyomaviruses are non-enveloped viruses with circular double-stranded DNA genomes (~4-7 kb). Initially identified in mammals, polyomaviruses have now been identified in birds and a few fish species. Although fragmentary polyomavirus-like sequences have been detected as apparent 'hitchhikers' in shotgun genomics datasets of various arthropods, the possible diversity of these viruses in invertebrates remains unclear. Scorpions are predatory arachnids that are among the oldest terrestrial animals. Using high-throughput sequencing and traditional molecular techniques we determine the genome sequences of eight novel polyomaviruses in scorpions (Centruroides sculpturatus) from the greater Phoenix area, Arizona, USA. Analysis of Centruroides transcriptomic datasets elucidated the splicing of the viral late gene array, which is more complex than that of vertebrate polyomaviruses. Phylogenetic analysis provides further evidence of co-divergence of polyomaviruses with their hosts, suggesting that at least one ancestral species of polyomaviruses was circulating amongst the primitive common ancestors of arthropods and chordates., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
41. Complex evolutionary history of felid anelloviruses.
- Author
-
Kraberger S, Serieys LE, Richet C, Fountain-Jones NM, Baele G, Bishop JM, Nehring M, Ivan JS, Newkirk ES, Squires JR, Lund MC, Riley SP, Wilmers CC, van Helden PD, Van Doorslaer K, Culver M, VandeWoude S, Martin DP, and Varsani A
- Subjects
- Anelloviridae classification, Animals, Biological Coevolution, Coinfection veterinary, Coinfection virology, DNA, Viral genetics, Felidae classification, Genetic Variation, Genome, Viral genetics, Open Reading Frames, Phylogeny, Recombination, Genetic, Sequence Analysis, DNA, Anelloviridae genetics, Felidae virology
- Abstract
Anellovirus infections are highly prevalent in mammals, however, prior to this study only a handful of anellovirus genomes had been identified in members of the Felidae family. Here we characterise anelloviruses in pumas (Puma concolor), bobcats (Lynx rufus), Canada lynx (Lynx canadensis), caracals (Caracal caracal) and domestic cats (Felis catus). The complete anellovirus genomes (n = 220) recovered from 149 individuals were diverse. ORF1 protein sequence similarity network analysis coupled with phylogenetic analysis, revealed two distinct clusters that are populated by felid-derived anellovirus sequences, a pattern mirroring that observed for the porcine anelloviruses. Of the two-felid dominant anellovirus groups, one includes sequences from bobcats, pumas, domestic cats and an ocelot, and the other includes sequences from caracals, Canada lynx, domestic cats and pumas. Coinfections of diverse anelloviruses appear to be common among the felids. Evidence of recombination, both within and between felid-specific anellovirus groups, supports a long coevolution history between host and virus., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
42. Regulation of Human Papillomavirus 18 Genome Replication, Establishment, and Persistence by Sequences in the Viral Upstream Regulatory Region.
- Author
-
Coursey TL, Van Doorslaer K, and McBride AA
- Subjects
- Binding Sites, Chromatin physiology, DNA Replication, Enhancer Elements, Genetic, Human papillomavirus 16 genetics, Human papillomavirus 16 physiology, Human papillomavirus 31 genetics, Human papillomavirus 31 physiology, Keratinocytes physiology, Keratinocytes virology, Plasmids, Promoter Regions, Genetic, Replication Origin, Transcription Factor AP-1 metabolism, Transcription, Genetic, Genome, Viral, Human papillomavirus 18 genetics, Human papillomavirus 18 physiology, Regulatory Sequences, Nucleic Acid, Replicon physiology, Virus Replication
- Abstract
During persistent human papillomavirus infection, the viral genome replicates as an extrachromosomal plasmid that is efficiently partitioned to daughter cells during cell division. We have previously shown that an element which overlaps the human papillomavirus 18 (HPV18) transcriptional enhancer promotes stable DNA replication of replicons containing the viral replication origin. Here, we perform comprehensive analyses to elucidate the function of this maintenance element. We conclude that no unique element or binding site in this region is absolutely required for persistent replication and partitioning and instead propose that the overall chromatin architecture of this region is important to promote efficient use of the replication origin. These results have important implications for the genome partitioning mechanism of papillomaviruses. IMPORTANCE Persistent infection with oncogenic human papillomaviruses (HPVs) is responsible for ∼5% of human cancers. The viral DNA replicates as an extrachromosomal plasmid and is partitioned to daughter cells in dividing keratinocytes. Using a complementation assay that allows us to separate viral transcription and replication, we provide insight into viral sequences that are required for long-term replication and persistence in keratinocytes. Understanding how viral genomes replicate persistently for such long periods of time will guide the development of antiviral therapies.
- Published
- 2021
- Full Text
- View/download PDF
43. HPV32-related Heck's disease in a chronic graft-versus-host disease patient with long-term successful KTP laser treatment: A rare case report.
- Author
-
Nguyen JT, Allen CT, Dodge JT, Van Doorslaer K, McBride AA, Pavletic SZ, and Mays JW
- Abstract
We recently identified and treated a rare case of oral focal epithelial hyperplasia (FEH) in an adult patient with chronic graft-vs-host disease. This is the first report linking KTP laser therapy to successful long-term treatment HPV32 FEH., Competing Interests: The authors report no conflicts of interests., (© Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Clinical Case Reports published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
44. New World Cactaceae Plants Harbor Diverse Geminiviruses.
- Author
-
Fontenele RS, Salywon AM, Majure LC, Cobb IN, Bhaskara A, Avalos-Calleros JA, Argüello-Astorga GR, Schmidlin K, Khalifeh A, Smith K, Schreck J, Lund MC, Köhler M, Wojciechowski MF, Hodgson WC, Puente-Martinez R, Van Doorslaer K, Kumari S, Oyeniran KA, Vernière C, Filloux D, Roumagnac P, Lefeuvre P, Ribeiro SG, Kraberger SP, Martin DP, and Varsani A
- Subjects
- Animals, Genome, Viral, Cactaceae virology, Geminiviridae classification, Geminiviridae isolation & purification, Hemiptera virology, Plant Diseases virology
- Abstract
The family Cactaceae comprises a diverse group of typically succulent plants that are native to the American continent but have been introduced to nearly all other continents, predominantly for ornamental purposes. Despite their economic, cultural, and ecological importance, very little research has been conducted on the viral community that infects them. We previously identified a highly divergent geminivirus that is the first known to infect cacti. Recent research efforts in non-cultivated and asymptomatic plants have shown that the diversity of this viral family has been under-sampled. As a consequence, little is known about the effects and interactions of geminiviruses in many plants, such as cacti. With the objective to expand knowledge on the diversity of geminiviruses infecting cacti, we used previously acquired high-throughput sequencing results to search for viral sequences using BLASTx against a viral RefSeq protein database. We identified two additional sequences with similarity to geminiviruses, for which we designed abutting primers and recovered full-length genomes. From 42 cacti and five scale insects, we derived 42 complete genome sequences of a novel geminivirus species that we have tentatively named Opuntia virus 2 (OpV2) and 32 genomes of an Opuntia-infecting becurtovirus (which is a new strain of the spinach curly top Arizona virus species). Interspecies recombination analysis of the OpV2 group revealed several recombinant regions, in some cases spanning half of the genome. Phylogenetic analysis demonstrated that OpV2 is a novel geminivirus more closely related to viruses of the genus Curtovirus , which was further supported by the detection of three recombination events between curtoviruses and OpV2. Both OpV2 and Opuntia becurtoviruses were identified in mixed infections, which also included the previously characterized Opuntia virus 1. Viral quantification of the co-infected cactus plants compared with single infections did not show any clear trend in viral dynamics that might be associated with the mixed infections. Using experimental Rhizobium -mediated inoculations, we found that the initial accumulation of OpV2 is facilitated by co-infection with OpV1. This study shows that the diversity of geminiviruses that infect cacti is under-sampled and that cacti harbor diverse geminiviruses. The detection of the Opuntia becurtoviruses suggests spill-over events between viruses of cultivated species and native vegetation. The threat this poses to cacti needs to be further investigated.
- Published
- 2021
- Full Text
- View/download PDF
45. 3D Oral and Cervical Tissue Models for Studying Papillomavirus Host-Pathogen Interactions.
- Author
-
Jackson R, Maarsingh JD, Herbst-Kralovetz MM, and Van Doorslaer K
- Subjects
- Bioreactors, Cell Culture Techniques instrumentation, Collagen, Epithelium virology, Fibroblasts, Gene Expression, Humans, Keratinocytes pathology, Keratinocytes virology, Mouth pathology, Papillomaviridae genetics, Cell Culture Techniques methods, Host-Pathogen Interactions, Papillomavirus Infections pathology, Papillomavirus Infections virology
- Abstract
Human papillomavirus (HPV) infection occurs in differentiating epithelial tissues. Cancers caused by high-risk types (e.g., HPV16 and HPV18) typically occur at oropharyngeal and anogenital anatomical sites. The HPV life cycle is differentiation-dependent, requiring tissue culture methodology that is able to recapitulate the three-dimensional (3D) stratified epithelium. Here we report two distinct and complementary methods for growing differentiating epithelial tissues that mimic many critical morphological and biochemical aspects of in vivo tissue. The first approach involves growing primary human epithelial cells on top of a dermal equivalent consisting of collagen fibers and living fibroblast cells. When these cells are grown at the liquid-air interface, differentiation occurs and allows for epithelial stratification. The second approach uses a rotating wall vessel bioreactor. The low-fluid-shear microgravity environment inside the bioreactor allows the cells to use collagen-coated microbeads as a growth scaffold and self-assemble into 3D cellular aggregates. These approaches are applied to epithelial cells derived from HPV-positive and HPV-negative oral and cervical tissues. The second part of the article introduces potential downstream applications for these 3D tissue models. We describe methods that will allow readers to start successfully culturing 3D tissues from oral and cervical cells. These tissues have been used for microscopic visualization, scanning electron microscopy, and large omics-based studies to gain insights into epithelial biology, the HPV life cycle, and host-pathogen interactions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Establishing human primary cell-derived 3D organotypic raft cultures Support Protocol 1: Isolation of epithelial cells from patient-derived tissues Support Protocol 2: Growth and maintenance of primary human epithelial cells in monolayer culture Support Protocol 3: PCR-based HPV screening of primary cell cultures Basic Protocol 2: Establishing human 3D cervical tissues using the rotating wall vessel bioreactor Support Protocol 4: Growth and maintenance of human A2EN cells in monolayer culture Support Protocol 5: Preparation of the slow-turning lateral vessel bioreactor Support Protocol 6: Preparation of Cytodex-3 microcarrier beads Basic Protocol 3: Histological assessment of 3D organotypic raft tissues Basic Protocol 4: Spatial analysis of protein expression in 3D organotypic raft cultures Basic Protocol 5: Immunofluorescence imaging of RWV-derived 3D tissues Basic Protocol 6: Ultrastructural visualization and imaging of RWV-derived 3D tissues Basic Protocol 7: Characterization of gene expression by RT-qPCR., (© 2020 Wiley Periodicals LLC.)
- Published
- 2020
- Full Text
- View/download PDF
46. Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection.
- Author
-
Uhlorn BL, Jackson R, Li S, Bratton SM, Van Doorslaer K, and Campos SK
- Subjects
- Alphapapillomavirus genetics, Alphapapillomavirus immunology, Biological Transport, Capsid metabolism, Endosomes virology, Humans, Mutation, Virion, Virus Internalization, Alphapapillomavirus physiology, Genome, Viral genetics, Interferon Regulatory Factor-3 metabolism, Membrane Proteins metabolism, Nucleotidyltransferases metabolism, Papillomavirus Infections virology
- Abstract
Oncogenic human papillomaviruses (HPVs) replicate in differentiating epithelium, causing 5% of cancers worldwide. Like most other DNA viruses, HPV infection initiates after trafficking viral genome (vDNA) to host cell nuclei. Cells possess innate surveillance pathways to detect microbial components or physiological stresses often associated with microbial infections. One of these pathways, cGAS/STING, induces IRF3-dependent antiviral interferon (IFN) responses upon detection of cytosolic DNA. Virion-associated vDNA can activate cGAS/STING during initial viral entry and uncoating/trafficking, and thus cGAS/STING is an obstacle to many DNA viruses. HPV has a unique vesicular trafficking pathway compared to many other DNA viruses. As the capsid uncoats within acidic endosomal compartments, minor capsid protein L2 protrudes across vesicular membranes to facilitate transport of vDNA to the Golgi. L2/vDNA resides within the Golgi lumen until G2/M, whereupon vesicular L2/vDNA traffics along spindle microtubules, tethering to chromosomes to access daughter cell nuclei. L2/vDNA-containing vesicles likely remain intact until G1, following nuclear envelope reformation. We hypothesize that this unique vesicular trafficking protects HPV from cGAS/STING surveillance. Here, we investigate cGAS/STING responses to HPV infection. DNA transfection resulted in acute cGAS/STING activation and downstream IFN responses. In contrast, HPV infection elicited minimal cGAS/STING and IFN responses. To determine the role of vesicular trafficking in cGAS/STING evasion, we forced premature viral penetration of vesicular membranes with membrane-perturbing cationic lipids. Such treatment renders a non-infectious trafficking-defective mutant HPV infectious, yet susceptible to cGAS/STING detection. Overall, HPV evades cGAS/STING by its unique subcellular trafficking, a property that may contribute to establishment of infection., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
47. Novel Circoviruses Detected in Feces of Sonoran Felids.
- Author
-
Payne N, Kraberger S, Fontenele RS, Schmidlin K, Bergeman MH, Cassaigne I, Culver M, Varsani A, and Van Doorslaer K
- Subjects
- Animals, Animals, Wild virology, Circovirus classification, Circovirus genetics, Metagenomics, Mexico, Phylogeny, Sequence Analysis, Swine, Circovirus isolation & purification, Feces virology, Lynx virology, Puma virology
- Abstract
Sonoran felids are threatened by drought and habitat fragmentation. Vector range expansion and anthropogenic factors such as habitat encroachment and climate change are altering viral evolutionary dynamics and exposure. However, little is known about the diversity of viruses present in these populations. Small felid populations with lower genetic diversity are likely to be most threatened with extinction by emerging diseases, as with other selective pressures, due to having less adaptive potential. We used a metagenomic approach to identify novel circoviruses, which may have a negative impact on the population viability, from confirmed bobcat ( Lynx rufus ) and puma ( Puma concolor ) scats collected in Sonora, Mexico. Given some circoviruses are known to cause disease in their hosts, such as porcine and avian circoviruses, we took a non-invasive approach using scat to identify circoviruses in free-roaming bobcats and puma. Three circovirus genomes were determined, and, based on the current species demarcation, they represent two novel species. Phylogenetic analyses reveal that one circovirus species is more closely related to rodent associated circoviruses and the other to bat associated circoviruses, sharing highest genome-wide pairwise identity of approximately 70% and 63%, respectively. At this time, it is unknown whether these scat-derived circoviruses infect felids, their prey, or another organism that might have had contact with the scat in the environment. Further studies should be conducted to elucidate the host of these viruses and assess health impacts in felids.
- Published
- 2020
- Full Text
- View/download PDF
48. Rules of Expansion: an Updated Consensus Operator Site for the CopR-CopY Family of Bacterial Copper Exporter System Repressors.
- Author
-
O'Brien H, Alvin JW, Menghani SV, Sanchez-Rosario Y, Van Doorslaer K, and Johnson MDL
- Subjects
- Bacterial Proteins genetics, DNA-Binding Proteins, Gene Expression Regulation, Bacterial, Sequence Alignment, Streptococcus pneumoniae genetics, Bacteria genetics, Copper metabolism, Operon, Repressor Proteins genetics, Trans-Activators genetics
- Abstract
Copper is broadly toxic to bacteria. As such, bacteria have evolved specialized copper export systems ( cop operons) often consisting of a DNA-binding/copper-responsive regulator (which can be a repressor or activator), a copper chaperone, and a copper exporter. For those bacteria using DNA-binding copper repressors, few studies have examined the regulation of this operon regarding the operator DNA sequence needed for repressor binding. In Streptococcus pneumoniae (the pneumococcus), CopY is the copper repressor for the cop operon. Previously, homologs of pneumococcal CopY have been characterized to bind a 10-base consensus sequence T/GACANNTGTA known as the cop box. Using this motif, we sought to determine whether genes outside the cop operon are also regulated by the CopY repressor, which was previously shown in Lactococcus lactis We found that S. pneumoniae CopY did not bind to cop operators upstream of these candidate genes in vitro During this process, we found that the cop box sequence is necessary but not sufficient for CopY binding. Here, we propose an updated operator sequence for the S. pneumoniae cop operon to be ATTGACAAATGTAGAT binding CopY with a dissociation constant ( K
d ) of ∼28 nM. We demonstrate strong cross-species interaction between some CopY proteins and CopY operators, suggesting strong evolutionary conservation. Taken together with our binding studies and bioinformatics data, we propose the consensus operator RNYKACANNYGTMRNY for the bacterial CopR-CopY copper repressor homologs. IMPORTANCE Many Gram-positive bacteria respond to copper stress by upregulating a copper export system controlled by a copper-sensitive repressor, CopR-CopY. The previous operator sequence for this family of proteins had been identified as TACANNTGTA. Here, using several recombinant proteins and mutations in various DNA fragments, we define those 10 bases as necessary but not sufficient for binding and in doing so, refine the cop operon operator to the 16-base sequence RNYKACANNTGTMRNY. Due to the sheer number of repressors that have been said to bind to the original 10 bases, including many antibiotic resistance repressors such as BlaI and MecI, we feel that this study highlights the need to reexamine many of these sites of the past and use added stringency for verifying operators in the future., (Copyright © 2020 O’Brien et al.)- Published
- 2020
- Full Text
- View/download PDF
49. A Novel Divergent Geminivirus Identified in Asymptomatic New World Cactaceae Plants.
- Author
-
Fontenele RS, Salywon AM, Majure LC, Cobb IN, Bhaskara A, Avalos-Calleros JA, Argüello-Astorga GR, Schmidlin K, Khalifeh A, Smith K, Schreck J, Lund MC, Köhler M, Wojciechowski MF, Hodgson WC, Puente-Martinez R, Van Doorslaer K, Kumari S, Vernière C, Filloux D, Roumagnac P, Lefeuvre P, Ribeiro SG, Kraberger S, Martin DP, and Varsani A
- Subjects
- Animals, Geminiviridae classification, Geminiviridae isolation & purification, Hemiptera virology, Mexico, Recombination, Genetic, Nicotiana virology, United States, Cactaceae virology, Geminiviridae genetics, Genome, Viral, Phylogeny, Plant Diseases virology
- Abstract
Cactaceae comprise a diverse and iconic group of flowering plants which are almost exclusively indigenous to the New World. The wide variety of growth forms found amongst the cacti have led to the trafficking of many species throughout the world as ornamentals. Despite the evolution and physiological properties of these plants having been extensively studied, little research has focused on cactus-associated viral communities. While only single-stranded RNA viruses had ever been reported in cacti, here we report the discovery of cactus-infecting single-stranded DNA viruses. These viruses all apparently belong to a single divergent species of the family Geminiviridae and have been tentatively named Opuntia virus 1 (OpV1). A total of 79 apparently complete OpV1 genomes were recovered from 31 different cactus plants (belonging to 20 different cactus species from both the Cactoideae and Opuntioideae clades) and from nine cactus-feeding cochineal insects ( Dactylopius sp.) sampled in the USA and Mexico. These 79 OpV1 genomes all share > 78.4% nucleotide identity with one another and < 64.9% identity with previously characterized geminiviruses. Collectively, the OpV1 genomes display evidence of frequent recombination, with some genomes displaying up to five recombinant regions. In one case, recombinant regions span ~40% of the genome. We demonstrate that an infectious clone of an OpV1 genome can replicate in Nicotiana benthamiana and Opuntia microdasys. In addition to expanding the inventory of viruses that are known to infect cacti, the OpV1 group is so distantly related to other known geminiviruses that it likely represents a new geminivirus genus. It remains to be determined whether, like its cactus hosts, its geographical distribution spans the globe.
- Published
- 2020
- Full Text
- View/download PDF
50. Insertional oncogenesis by HPV70 revealed by multiple genomic analyses in a clinically HPV-negative cervical cancer.
- Author
-
Van Arsdale A, Patterson NE, Maggi EC, Agoni L, Van Doorslaer K, Harmon B, Nevadunsky N, Kuo DYS, Einstein MH, Lenz J, and Montagna C
- Subjects
- Base Sequence, Carcinogenesis genetics, Carcinogenesis metabolism, DNA, Viral analysis, Female, Genomics, High-Throughput Nucleotide Sequencing methods, Humans, Middle Aged, Papillomaviridae pathogenicity, Papillomavirus Infections genetics, Polymerase Chain Reaction, RNA, Messenger genetics, Repressor Proteins genetics, Tumor Suppressor Proteins genetics, Uterine Cervical Neoplasms metabolism, Papillomaviridae genetics, Papillomavirus Infections diagnosis, Uterine Cervical Neoplasms genetics
- Abstract
Cervical carcinogenesis, the second leading cause of cancer death in women worldwide, is caused by multiple types of human papillomaviruses (HPVs). To investigate a possible role for HPV in a cervical carcinoma that was HPV-negative by PCR testing, we performed HPV DNA hybridization capture plus massively parallel sequencing. This detected a subgenomic, URR-E6-E7-E1 segment of HPV70 DNA, a type not generally associated with cervical cancer, inserted in an intron of the B-cell lymphoma/leukemia 11B (BCL11B) gene in the human genome. Long range DNA sequencing confirmed the virus and flanking BCL11B DNA structures including both insertion junctions. Global transcriptomic analysis detected multiple, alternatively spliced, HPV70-BCL11B, fusion transcripts with fused open reading frames. The insertion and fusion transcripts were present in an intraepithelial precursor phase of tumorigenesis. These results suggest oncogenicity of HPV70, identify novel BCL11B variants with potential oncogenic implications, and underscore the advantages of thorough genomic analyses to elucidate insights into HPV-associated tumorigenesis., (© 2019 The Authors. Genes, Chromosomes & Cancer published by Wiley Periodicals, Inc.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.