16 results on '"K. Patra, P."'
Search Results
2. Conformable Patch Antenna Array for Energy Harvesting
- Author
-
Akshat, C. Patel, Miral, P. Vaghela, Bajwa, Hassan, and Prabir, K. Patra
- Published
- 2009
- Full Text
- View/download PDF
3. The melt electrospinning of polycaprolactone (PCL) ultrafine fibers
- Author
-
Subramanian, Chitrabala, Samuel, C. Ugbolue, Warner, Steven B., and Prabir, K. Patra
- Published
- 2008
- Full Text
- View/download PDF
4. Fire Retardancy and Morphology of Nylon 6-clay Nanocomposite Compositions
- Author
-
Shanmuganathan, Kadhiravan, Razdan, Sandeep, Dembsey, Nick, Fan, Qinguo, Yong, K. Kim, Paul, D. Calvert, Steven, B. Warner, and Prabir, K. Patra
- Published
- 2006
- Full Text
- View/download PDF
5. カナダ・チャーチルにおける炭素・水素同位体比の観測から推定された大気中CH4濃度変動に対する北方湿地の寄与
- Author
-
Prabir, K. Patra, Douglas, E. J. Worthy, Fujita, R., Morimoto, S., Umezawa, T., Ishijima, K., K. Patra, P., E. J. Worthy, D., Goto, D., Aoki, S., and Nakazawa, T.
- Abstract
第7回極域科学シンポジウム/横断セッション:[IA] ニーオルスン観測拠点設立25周年記念横断セッション—北極域の科学(ニーオルスン、GRENE、ArCS)—12月2日(金)国立極地研究所1階交流アトリウム
- Published
- 2016
6. Large-scale increase in the seasonal cycle of CO2 in the Northern Hemisphere since 1960
- Author
-
D. Graven, H., F. Keeling, R., S. C. Piper, K. Patra, P., B. Stephens, B., C. Wofsy, S., R. Welp, L., Sweeney, C., P. Tans, P., J. Kelley, J., C. Daube, B., A. Kort, E., W. Santoni, G., and D. Bent, J.
- Abstract
第4回極域科学シンポジウム横断セッション:[IA] 「急変する北極気候システム及びその全球的な影響の総合的解明」―GRENE北極気候変動研究事業研究成果報告2013―11月12日(火) 国立極地研究所 2階大会議室
- Published
- 2013
7. Hierarchical Organometallic Materials: Self-Assembly of OrganicâOrganometallic Polyferrocenylsilane Block PolyelectrolyteâSurfactant Complexes in Bulk and in Thin Films.
- Author
-
Rumman Ahmed, Sanjib K. Patra, Laurent Chabanne, Charl F. J. Faul, and Ian Manners
- Published
- 2011
- Full Text
- View/download PDF
8. Thermoreversible Gelation of Poly(vinylidene fluoride-co-hexafluoro propylene) in Phthalates.
- Author
-
P. Jaya Prakash Yadav, Vinod K. Aswal, P. U. Sastry, A. K. Patra, and Pralay Maiti
- Published
- 2009
- Full Text
- View/download PDF
9. Ionically Self-Assembled Polyelectrolyte-Based Carbon Nanotube Fibers.
- Author
-
Sandeep Razdan, Prabir K. Patra, Swastik Kar, Lijie Ci, Robert Vajtai, Ákos Kukovecz, Zoltán Kónya, Imre Kiricsi, and Pulickel M. Ajayan
- Published
- 2009
- Full Text
- View/download PDF
10. N-Heterocyclic Carbene (NHC)-Catalyzed Direct Amidation of Aldehydes with Nitroso Compounds.
- Author
-
Fong Tian Wong, Pranab K. Patra, Jayasree Seayad, Yugen Zhang, and Jackie Y. Ying
- Published
- 2008
- Full Text
- View/download PDF
11. Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview.
- Author
-
D. N. Kamra, A. K. Patra, P. N. Chatterjee, Ravindra Kumar, Neeta Agarwal, and L. C. Chaudhary
- Abstract
Plants rich in secondary metabolites (saponins, tannins, essential oils, etc.) have antimicrobial activity which can be exploited for selective inhibition of a particular group of microbes in the rumen. We have screened a large number of plant extracts for their potential to inhibit methanogenesis and ciliate protozoa in an in vitro gas production test using buffalo rumen liquor as the inoculum. Out of 93 plant extracts tested, 11 inhibited in vitro methanogenesis to the extent of 25?50% and nine plant extracts inhibited methanogenesis more than 50%. Among 20 extracts exhibiting antimethanogenic activity, nine were ethanol extracts, 10 were methanol extracts and only one was a water extract. Some of these plant extracts inhibited ciliate protozoa as tested by microscopic examination and 14C-labelled radioisotopic technique, but the protozoa inhibition was not correlated with methane inhibition, indicating that the methanogens sensitive to plant secondary metabolites may or may not be having any symbiotic relationship with ciliate protozoa. Methane inhibition was accompanied by a drastic fall in the number of methanogens as determined by real time PCR. Plants that appeared to have some potential as feed additives to control methanogenesis by the ruminants are: (i) seed pulp of Sapindus mukorossi (rich in saponins) and Terminalia chebula (rich in tannins); (ii) leaves of Populus deltoides, Mangifera indica and Psidium guajava (rich in tannins and essential oils); and (iii) flower buds of Syzygium aromaticum and bulb of Allium sativum (rich in essential oils). Some of the plants reported in literature exhibiting antimethanogenic activity include Equisetum arvense, Lotus corniculatus, Rheum palmatum, Salvia officinalis, Sapindus saponaria, Uncaria gambir and Yucca schidigera. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
12. C−C Bond Forming Reaction through Aldol-Type Addition Mediated by a Ru2(CO)42Core.
- Author
-
Sanjib K. Patra and Jitendra K. Bera
- Published
- 2007
- Full Text
- View/download PDF
13. Axial Interaction of the Ru2(CO)42Core with the Aryl C-H Bond:? Route to Cyclometalated Compounds Involving a Metal-Metal-Bonded Diruthenium Unit
- Author
-
K. Patra, Sanjib and K. Bera, Jitendra
- Abstract
Room-temperature activation of the aromatic C-H bond by the Ru2(CO)42core has been achieved. The reactions of 2-phenyl-1,8-naphthyridine (phNP) and 2-(2,5-dimethyl-3-furyl)-1,8-naphthyridine (Me2fuNP) with Ru2(CO)4(MeCN)6BF42in dichloromethane provide the agostic-cyclometalated compounds Ru2(phNP)(C6H4-NP)(CO)4BF4 (1) and Ru2(Me2fuNP)(C4OMe2-NP)(CO)4BF4 (2), respectively. In both compounds, one of the ligands is ortho-metalated, while the second ligand is engaged in an agostic interaction. The ortho metalation is preferred over the potential S coordination for 2-(2-thienyl)-1,8-naphthyridine (thNP), yielding Ru2(thNP)(C4H2S-NP)(CO)4BF4 (3). In acetonitrile, the compound Ru2(thNP)2(CO)4BF42(4) is obtained exclusively. The donation of a C-H bonding electron pair to the Ru-Ru LUMO and back-donation from the filled Ru-Ru orbital to the C-H orbital cause facile C-H bond cleavage. In contrast, the isoelectronic Rh24provides the agostic compounds Rh2(OAc)3(phNP)Cl (5) and Rh2(L)(1-L)(OAc)2(CH3CN)2BF42(L phNP, nplNP (2-(2-naphthyl)-1,8-naphthyridine) for compounds 6and 7, respectively). The molecular structures of compounds 1-3, 5, and 7have been established by X-ray crystallography.
- Published
- 2006
- Full Text
- View/download PDF
14. Biological Activity of Designed Photolabile Metal Nitrosyls:? Light-Dependent Activation of Soluble Guanylate Cyclase and Vasorelaxant Properties in Rat Aorta
- Author
-
Madhani, Melanie, K. Patra, Apurba, W. Miller, Thomas, A. Eroy-Reveles, Aura, J. Hobbs, Adrian, M. Fukuto, Jon, and K. Mascharak, Pradip
- Abstract
The biological and pharmacological utility of nitric oxide (NO) has led to the development of many classes of NO-donor compounds as both research tools and therapeutic agents. Many donors currently in use rely on thermal decomposition or bioactivation for the release of NO. We have developed several photolabile metal-nitrosyl donors that release NO when exposed to either visible or UV light. Herein, we show that these donors are capable of activating the primary “NO receptor”, soluble guanylate cyclase (sGC), in a light-dependent fashion leading to increases in cGMP. Moreover, we demonstrate that these donors are capable of eliciting light-dependent increases of cGMP in smooth muscle cells and vasorelaxation of rat aortic smooth muscle tissue, all effects that are attributed to activation of sGC. The potential utility of these compounds as drugs and/or research tools is discussed.
- Published
- 2006
- Full Text
- View/download PDF
15. Novel Heterobimetallic Metallamacrocycles Based on the 1,1‘-Bis(1,8-naphthyrid-2-yl)ferrocene (FcNP2) Ligand: Structural Characterization of the Complexes M(FcNP2)22(M CuI, AgI) and MCl2(FcNP2)4(M ZnII, CoII)
- Author
-
Sadhukhan, Nabanita, K. Patra, Sanjib, Sana, Kasinath, and K. Bera, Jitendra
- Abstract
Self-assembly reactions of 1,1‘-bis(1,8-naphthyrid-2-yl)ferrocene (FcNP2) with CuI/AgIafford dimeric CuI/AgI(FcNP2)22and with ZnCl2/CoCl2yield tetrameric metallamacrocycles ZnII/CoIICl2(FcNP2)4.
- Published
- 2006
- Full Text
- View/download PDF
16. The Global Methane Budget: 2000–2017
- Author
-
M. Saunois, A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, P. Ciais, V. K. Arora, D. Bastviken, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, K. M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P. M. Crill, K. Covey, C. L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M. I. Hegglin, L. Höglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K. M. Jensen, F. Joos, T. Kleinen, P. B. Krummel, R. L. Langenfelds, G. G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K. C. McDonald, J. McNorton, P. A. Miller, J. R. Melton, I. Morino, J. Müller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O'Doherty, R. J. Parker, C. Peng, S. Peng, G. P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W. J. Riley, J. A. Rosentreter, A. Segers, I. J. Simpson, H. Shi, S. J. Smith, L. P. Steele, B. F. Thornton, H. Tian, Y. Tohjima, F. N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T. S. Weber, M. van Weele, G. R. van der Werf, R. F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhuang, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), CSIRO Marine and Atmospheric Research [Aspendale], Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), NASA Goddard Space Flight Center (GSFC), Department of Earth System Science [Stanford] (ESS), Stanford EARTH, Stanford University-Stanford University, Yale School of the Environment (YSE), NOAA/University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, SRON Netherlands Institute for Space Research (SRON), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), ICOS-ATC (ICOS-ATC), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Department of Thematic Studies – Technology and Social Change, Linköping University (LIU), European Commission - Joint Research Centre [Ispra] (JRC), Department of Chemistry [Irvine], University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), National Institute of Water and Atmospheric Research [Wellington] (NIWA), New York University [New York] (NYU), NYU System (NYU), Università degli studi della Campania 'Luigi Vanvitelli' = University of the Study of Campania Luigi Vanvitelli, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Bolin Centre for Climate Research, Stockholm University, Skidmore College [Saratoga Springs], Pacific Climate Impacts Consortium, University of Victoria [Canada] (UVIC), Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Roma (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], University of Reading (UOR), International Institute for Applied Systems Analysis [Laxenburg] (IIASA), National Institute for Environmental Studies (NIES), Oeschger Centre for Climate Change Research (OCCR), University of Bern, Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, VIC, Australia, Département de Physique [Bruxelles] (ULB), Faculté des Sciences [Bruxelles] (ULB), Université libre de Bruxelles (ULB)-Université libre de Bruxelles (ULB), Purdue Climate Change Research Center, Purdue University [West Lafayette], European Centre for Medium-Range Weather Forecasts (ECMWF), Lund University [Lund], Climate Research Division [Toronto], School of Geographical Sciences [Bristol], University of Bristol [Bristol], NOAA Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA), Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), School of Chemistry [Bristol], NERC National Centre for Earth Observation (NCEO), Natural Environment Research Council (NERC), Université du Québec à Montréal = University of Québec in Montréal (UQAM), Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University [Beijing], Center for International Climate and Environmental Research [Oslo] (CICERO), University of Oslo (UiO), Observatoire de Paris, Université Paris sciences et lettres (PSL), Massachusetts Institute of Technology (MIT), ICOS-RAMCES (ICOS-RAMCES), Université libre de Bruxelles (ULB), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Centre for Coastal Biogeochemistry Research, Southern Cross University (SCU), TNO Climate, Air and Sustainability [Utrecht], The Netherlands Organisation for Applied Scientific Research (TNO), International Center for Climate and Global Change Research and School of Forestry and Wildlife Sciences, Auburn University, Joint Global Change Research Institute, Pacific Northwest National Laboratory (PNNL)-University of Maryland [College Park], University of Maryland System-University of Maryland System, CSIRO Oceans and Atmosphere, CISRO Oceans and Atmosphere, Department of Geological Sciences and Bolin Centre for Climate Research, FAO Forestry, Food and Agriculture Organization of the United Nations [Rome, Italie] (FAO), Finnish Meteorological Institute (FMI), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Department of Chemistry [Imperial College London], Imperial College London, University of Rochester [USA], Royal Netherlands Meteorological Institute (KNMI), Vrije Universiteit Amsterdam [Amsterdam] (VU), Scripps Institution of Oceanography (SIO - UC San Diego), University of California [San Diego] (UC San Diego), University of Toronto, Department of Physical Geography and Ecosystem Science [Lund], Department of Geographical Sciences [College Park], University of Maryland [College Park], Hohai University, European Project: 725546,Metlake, European Project: 776810,H2020,H2020-SC5-2017-OneStageB,VERIFY(2018), European Project: 773421,H2020,H2020-BG-2017-1,NUNATARYUK(2017), Natural Environment Research Council [2006-2012], Earth Sciences, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Saunois, M., R. Stavert, A., Poulter, B., Bousquet, P., G. Canadell, J., B. Jackson, R., A. Raymond, P., J. Dlugokencky, E., Houweling, S., K. Patra, P., Ciais, P., K. Arora, V., Bastviken, D., Bergamaschi, P., R. Blake, D., Brailsford, G., Bruhwiler, L., M. Carlson, K., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., M. Crill, P., Covey, K., L. Curry, C., Etiope, G., Frankenberg, C., Gedney, N., I. Hegglin, M., Hoglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., M. Jensen, K., Joos, F., Kleinen, T., B. Krummel, P., L. Langenfelds, R., G. Laruelle, G., Liu, L., Machida, T., Maksyutov, S., C. McDonald, K., Mcnorton, J., A. Miller, P., R. Melton, J., Morino, I., Muller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., J. Parker, R., Peng, C., Peng, S., P. Peters, G., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., J. Riley, W., A. Rosentreter, J., Segers, A., J. Simpson, I., Shi, H., J. Smith, S., Paul Steele, L., F. Thornton, B., Tian, H., Tohjima, Y., N. Tubiello, F., Tsuruta, A., Viovy, N., Voulgarakis, A., S. Weber, T., Van Weele, M., R. Van Der Werf, G., F. Weiss, R., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., and Zhuang, Q.
- Subjects
Naturgeografi ,010504 meteorology & atmospheric sciences ,TRACE GASES ,ATMOSPHERIC METHANE ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,7. Clean energy ,Methane ,chemistry.chemical_compound ,CARBON-DIOXIDE ,SDG 13 - Climate Action ,Meteorology & Atmospheric Sciences ,Climate change ,CH4 EMISSIONS ,Geosciences, Multidisciplinary ,lcsh:Environmental sciences ,ComputingMilieux_MISCELLANEOUS ,lcsh:GE1-350 ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,0303 health sciences ,GREENHOUSE-GAS EMISSIONS ,Atmospheric methane ,lcsh:QE1-996.5 ,Géochimie ,Geology ,methane, global warming, climate change, greenhouse gases ,Carbon project ,Atmospheric chemistry ,Physical Sciences ,0406 Physical Geography and Environmental Geoscience ,BIOMASS BURNING EMISSIONS ,NATURAL-GAS ,PROCESS-BASED MODEL ,530 Physics ,03 medical and health sciences ,SDG 17 - Partnerships for the Goals ,Global Carbon Project ,0402 Geochemistry ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,030304 developmental biology ,0105 earth and related environmental sciences ,Science & Technology ,Radiative forcing ,15. Life on land ,Trace gas ,lcsh:Geology ,chemistry ,TM 4D-VAR V1.0 ,Physical Geography ,13. Climate action ,Greenhouse gas ,GOSAT SWIR XCO2 ,General Earth and Planetary Sciences ,Environmental science ,Global methane (CH4) budget ,0401 Atmospheric Sciences - Abstract
Understanding and quantifying the global methane (CH4) budgetis important for assessing realistic pathways to mitigate climate change.Atmospheric emissions and concentrations of CH4 continue to increase,making CH4 the second most important human-influenced greenhouse gas interms of climate forcing, after carbon dioxide (CO2). The relativeimportance of CH4 compared to CO2 depends on its shorteratmospheric lifetime, stronger warming potential, and variations inatmospheric growth rate over the past decade, the causes of which are stilldebated. Two major challenges in reducing uncertainties in the atmosphericgrowth rate arise from the variety of geographically overlapping CH4sources and from the destruction of CH4 by short-lived hydroxylradicals (OH). To address these challenges, we have established aconsortium of multidisciplinary scientists under the umbrella of the GlobalCarbon Project to synthesize and stimulate new research aimed at improvingand regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paperdedicated to the decadal methane budget, integrating results of top-downstudies (atmospheric observations within an atmospheric inverse-modellingframework) and bottom-up estimates (including process-based models forestimating land surface emissions and atmospheric chemistry, inventories ofanthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated byatmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximumestimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or∼ 60 % is attributed to anthropogenic sources, that isemissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009),and 24 Tg CH4 yr−1 larger than the one reported in the previousbudget for 2003–2012 (Saunois et al. 2016). Since 2012, global CH4emissions have been tracking the warmest scenarios assessed by theIntergovernmental Panel on Climate Change. Bottom-up methods suggest almost30 % larger global emissions (737 Tg CH4 yr−1, range 594–881)than top-down inversion methods. Indeed, bottom-up estimates for naturalsources such as natural wetlands, other inland water systems, and geologicalsources are higher than top-down estimates. The atmospheric constraints onthe top-down budget suggest that at least some of these bottom-up emissionsare overestimated. The latitudinal distribution of atmosphericobservation-based emissions indicates a predominance of tropical emissions(∼ 65 % of the global budget, info:eu-repo/semantics/published
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.