K. E. Saavik Ford, Christopher P. L. Berry, Daniela D. Doneva, Niels Warburton, Tessa Baker, Kaze Wong, Jose María Ezquiaga, Guido Mueller, Michael L. Katz, Karan Jani, Surjeet Rajendran, Katelyn Breivik, Barry McKernan, Pau Amaro-Seoane, Nicola Tamanini, Adam Burrows, Shimon Kolkowitz, Germano Nardini, Chiara Caprini, Michael Zevin, Igor Pikovski, Pierre Auclair, Manuel Arca Sedda, Alberto Sesana, David Vartanyan, Helvi Witek, Xian Chen, Lijing Shao, J. Baird, Emanuele Berti, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (AEI), Max-Planck-Gesellschaft, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Department of Physics and Astronomy [U Mississippi], The University of Mississippi [Oxford], Affymetrix Inc., Harvard-Smithsonian Center for Astrophysics (CfA), Smithsonian Institution-Harvard University [Cambridge], Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Harvard University-Smithsonian Institution
The gravitational-wave astronomical revolution began in 2015 with LIGO's observation of the coalescence of two stellar-mass black holes. Over the coming decades, ground-based detectors like LIGO will extend their reach, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will enable gravitational-wave observations of the massive black holes in galactic centres. Between LISA and ground-based observatories lies the unexplored decihertz gravitational-wave frequency band. Here, we propose a Decihertz Observatory to cover this band, and complement observations made by other gravitational-wave observatories. The decihertz band is uniquely suited to observation of intermediate-mass ($\sim 10^2$-$10^4 M_\odot$) black holes, which may form the missing link between stellar-mass and massive black holes, offering a unique opportunity to measure their properties. Decihertz observations will be able to detect stellar-mass binaries days to years before they merge and are observed by ground-based detectors, providing early warning of nearby binary neutron star mergers, and enabling measurements of the eccentricity of binary black holes, providing revealing insights into their formation. Observing decihertz gravitational-waves also opens the possibility of testing fundamental physics in a new laboratory, permitting unique tests of general relativity and the Standard Model of particle physics. Overall, a Decihertz Observatory will answer key questions about how black holes form and evolve across cosmic time, open new avenues for multimessenger astronomy, and advance our understanding of gravitation, particle physics and cosmology., 52 pages, 5 figures, 4 tables. Submitted to Classical & Quantum Gravity. Based upon a white paper for ESA's Voyage 2050 on behalf of the LISA Consortium 2050 Task Force