304 results on '"Kürten, Andreas"'
Search Results
2. Atmospheric new particle formation from the CERN CLOUD experiment
- Author
-
Kirkby, Jasper, Amorim, António, Baltensperger, Urs, Carslaw, Kenneth S., Christoudias, Theodoros, Curtius, Joachim, Donahue, Neil M., Haddad, Imad El, Flagan, Richard C., Gordon, Hamish, Hansel, Armin, Harder, Hartwig, Junninen, Heikki, Kulmala, Markku, Kürten, Andreas, Laaksonen, Ari, Lehtipalo, Katrianne, Lelieveld, Jos, Möhler, Ottmar, Riipinen, Ilona, Stratmann, Frank, Tomé, Antonio, Virtanen, Annele, Volkamer, Rainer, Winkler, Paul M., and Worsnop, Douglas R.
- Published
- 2023
- Full Text
- View/download PDF
3. The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source
- Author
-
Finkenzeller, Henning, Iyer, Siddharth, He, Xu-Cheng, Simon, Mario, Koenig, Theodore K., Lee, Christopher F., Valiev, Rashid, Hofbauer, Victoria, Amorim, Antonio, Baalbaki, Rima, Baccarini, Andrea, Beck, Lisa, Bell, David M., Caudillo, Lucía, Chen, Dexian, Chiu, Randall, Chu, Biwu, Dada, Lubna, Duplissy, Jonathan, Heinritzi, Martin, Kemppainen, Deniz, Kim, Changhyuk, Krechmer, Jordan, Kürten, Andreas, Kvashnin, Alexandr, Lamkaddam, Houssni, Lee, Chuan Ping, Lehtipalo, Katrianne, Li, Zijun, Makhmutov, Vladimir, Manninen, Hanna E., Marie, Guillaume, Marten, Ruby, Mauldin, Roy L., Mentler, Bernhard, Müller, Tatjana, Petäjä, Tuukka, Philippov, Maxim, Ranjithkumar, Ananth, Rörup, Birte, Shen, Jiali, Stolzenburg, Dominik, Tauber, Christian, Tham, Yee Jun, Tomé, António, Vazquez-Pufleau, Miguel, Wagner, Andrea C., Wang, Dongyu S., Wang, Mingyi, Wang, Yonghong, Weber, Stefan K., Nie, Wei, Wu, Yusheng, Xiao, Mao, Ye, Qing, Zauner-Wieczorek, Marcel, Hansel, Armin, Baltensperger, Urs, Brioude, Jérome, Curtius, Joachim, Donahue, Neil M., Haddad, Imad El, Flagan, Richard C., Kulmala, Markku, Kirkby, Jasper, Sipilä, Mikko, Worsnop, Douglas R., Kurten, Theo, Rissanen, Matti, and Volkamer, Rainer
- Published
- 2023
- Full Text
- View/download PDF
4. Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation
- Author
-
Wang, Mingyi, Xiao, Mao, Bertozzi, Barbara, Marie, Guillaume, Rörup, Birte, Schulze, Benjamin, Bardakov, Roman, He, Xu-Cheng, Shen, Jiali, Scholz, Wiebke, Marten, Ruby, Dada, Lubna, Baalbaki, Rima, Lopez, Brandon, Lamkaddam, Houssni, Manninen, Hanna E., Amorim, António, Ataei, Farnoush, Bogert, Pia, Brasseur, Zoé, Caudillo, Lucía, De Menezes, Louis-Philippe, Duplissy, Jonathan, Ekman, Annica M. L., Finkenzeller, Henning, Carracedo, Loïc Gonzalez, Granzin, Manuel, Guida, Roberto, Heinritzi, Martin, Hofbauer, Victoria, Höhler, Kristina, Korhonen, Kimmo, Krechmer, Jordan E., Kürten, Andreas, Lehtipalo, Katrianne, Mahfouz, Naser G. A., Makhmutov, Vladimir, Massabò, Dario, Mathot, Serge, Mauldin, Roy L., Mentler, Bernhard, Müller, Tatjana, Onnela, Antti, Petäjä, Tuukka, Philippov, Maxim, Piedehierro, Ana A., Pozzer, Andrea, Ranjithkumar, Ananth, Schervish, Meredith, Schobesberger, Siegfried, Simon, Mario, Stozhkov, Yuri, Tomé, António, Umo, Nsikanabasi Silas, Vogel, Franziska, Wagner, Robert, Wang, Dongyu S., Weber, Stefan K., Welti, André, Wu, Yusheng, Zauner-Wieczorek, Marcel, Sipilä, Mikko, Winkler, Paul M., Hansel, Armin, Baltensperger, Urs, Kulmala, Markku, Flagan, Richard C., Curtius, Joachim, Riipinen, Ilona, Gordon, Hamish, Lelieveld, Jos, El-Haddad, Imad, Volkamer, Rainer, Worsnop, Douglas R., Christoudias, Theodoros, Kirkby, Jasper, Möhler, Ottmar, and Donahue, Neil M.
- Published
- 2022
- Full Text
- View/download PDF
5. Nucleation of jet engine oil vapours is a large source of aviation-related ultrafine particles
- Author
-
Ungeheuer, Florian, Caudillo, Lucía, Ditas, Florian, Simon, Mario, van Pinxteren, Dominik, Kılıç, Doğuşhan, Rose, Diana, Jacobi, Stefan, Kürten, Andreas, Curtius, Joachim, and Vogel, Alexander L.
- Published
- 2022
- Full Text
- View/download PDF
6. Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
- Author
-
Stolzenburg, Dominik, Fischer, Lukas, Vogel, Alexander L, Heinritzi, Martin, Schervish, Meredith, Simon, Mario, Wagner, Andrea C, Dada, Lubna, Ahonen, Lauri R, Amorim, Antonio, Baccarini, Andrea, Bauer, Paulus S, Baumgartner, Bernhard, Bergen, Anton, Bianchi, Federico, Breitenlechner, Martin, Brilke, Sophia, Mazon, Stephany Buenrostro, Chen, Dexian, Dias, António, Draper, Danielle C, Duplissy, Jonathan, Haddad, Imad El, Finkenzeller, Henning, Frege, Carla, Fuchs, Claudia, Garmash, Olga, Gordon, Hamish, He, Xucheng, Helm, Johanna, Hofbauer, Victoria, Hoyle, Christopher R, Kim, Changhyuk, Kirkby, Jasper, Kontkanen, Jenni, Kürten, Andreas, Lampilahti, Janne, Lawler, Michael, Lehtipalo, Katrianne, Leiminger, Markus, Mai, Huajun, Mathot, Serge, Mentler, Bernhard, Molteni, Ugo, Nie, Wei, Nieminen, Tuomo, Nowak, John B, Ojdanic, Andrea, Onnela, Antti, Passananti, Monica, Petäjä, Tuukka, Quéléver, Lauriane LJ, Rissanen, Matti P, Sarnela, Nina, Schallhart, Simon, Tauber, Christian, Tomé, António, Wagner, Robert, Wang, Mingyi, Weitz, Lena, Wimmer, Daniela, Xiao, Mao, Yan, Chao, Ye, Penglin, Zha, Qiaozhi, Baltensperger, Urs, Curtius, Joachim, Dommen, Josef, Flagan, Richard C, Kulmala, Markku, Smith, James N, Worsnop, Douglas R, Hansel, Armin, Donahue, Neil M, and Winkler, Paul M
- Subjects
aerosols ,nanoparticle growth ,aerosol formation ,CLOUD experiment ,volatile organic compounds - Abstract
Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes
- Published
- 2018
7. Neutral molecular cluster formation of sulfuric acid dimethylamine observed in real time under atmospheric conditions
- Author
-
Kürten, Andreas, Jokinen, Tuija, Simon, Mario, Sipilä, Mikko, Sarnela, Nina, Junninen, Heikki, Adamov, Alexey, Almeida, João, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, Dommen, Josef, Donahue, Neil M., Duplissy, Jonathan, Ehrharta, Sebastian, Flagan, Richard C., Franchin, Alessandro, Hakala, Jani, Hansel, Armin, Heinritzia, Martin, Hutterli, Manuel, Kangasluoma, Juha, Kirkby, Jasper, Laaksonen, Ari, Lehtipalo, Katrianne, Leiminger, Markus, Makhmutov, Vladimir, Mathot, Serge, Onnela, Antti, Petäjä, Tuukka, Praplan, Arnaud P., Riccobono, Francesco, Rissanen, Matti P., Rondo, Linda, Schobesberger, Siegfried, Seinfeld, John H., Steiner, Gerhard, Tomé, António, Tröstl, Jasmin, Winkler, Paul M., Williamson, Christina, Wimmer, Daniela, Ye, Penglin, Baltensperger, Urs, Carslaw, Kenneth S., Kulmala, Markku, Worsnop, Douglas R., and Curtius, Joachim
- Subjects
Physics - Atmospheric and Oceanic Physics ,Physics - Chemical Physics - Abstract
For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller comparedwith those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus., Comment: Main text plus SI
- Published
- 2015
- Full Text
- View/download PDF
8. Nitrate Radicals Suppress Biogenic New Particle Formation from Monoterpene Oxidation
- Author
-
Li, Dandan, primary, Huang, Wei, additional, Wang, Dongyu, additional, Wang, Mingyi, additional, Thornton, Joel A., additional, Caudillo, Lucía, additional, Rörup, Birte, additional, Marten, Ruby, additional, Scholz, Wiebke, additional, Finkenzeller, Henning, additional, Marie, Guillaume, additional, Baltensperger, Urs, additional, Bell, David M., additional, Brasseur, Zoé, additional, Curtius, Joachim, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Gong, Xianda, additional, Hansel, Armin, additional, He, Xu-Cheng, additional, Hofbauer, Victoria, additional, Junninen, Heikki, additional, Krechmer, Jordan E., additional, Kürten, Andreas, additional, Lamkaddam, Houssni, additional, Lehtipalo, Katrianne, additional, Lopez, Brandon, additional, Ma, Yingge, additional, Mahfouz, Naser G. A., additional, Manninen, Hanna E., additional, Mentler, Bernhard, additional, Perrier, Sebastien, additional, Petäjä, Tuukka, additional, Pfeifer, Joschka, additional, Philippov, Maxim, additional, Schervish, Meredith, additional, Schobesberger, Siegfried, additional, Shen, Jiali, additional, Surdu, Mihnea, additional, Tomaz, Sophie, additional, Volkamer, Rainer, additional, Wang, Xinke, additional, Weber, Stefan K., additional, Welti, André, additional, Worsnop, Douglas R., additional, Wu, Yusheng, additional, Yan, Chao, additional, Zauner-Wieczorek, Marcel, additional, Kulmala, Markku, additional, Kirkby, Jasper, additional, Donahue, Neil M., additional, George, Christian, additional, El-Haddad, Imad, additional, Bianchi, Federico, additional, and Riva, Matthieu, additional
- Published
- 2024
- Full Text
- View/download PDF
9. The role of low-volatility organic compounds in initial particle growth in the atmosphere
- Author
-
Tröstl, Jasmin, Chuang, Wayne K, Gordon, Hamish, Heinritzi, Martin, Yan, Chao, Molteni, Ugo, Ahlm, Lars, Frege, Carla, Bianchi, Federico, Wagner, Robert, Simon, Mario, Lehtipalo, Katrianne, Williamson, Christina, Craven, Jill S, Duplissy, Jonathan, Adamov, Alexey, Almeida, Joao, Bernhammer, Anne-Kathrin, Breitenlechner, Martin, Brilke, Sophia, Dias, Antònio, Ehrhart, Sebastian, Flagan, Richard C, Franchin, Alessandro, Fuchs, Claudia, Guida, Roberto, Gysel, Martin, Hansel, Armin, Hoyle, Christopher R, Jokinen, Tuija, Junninen, Heikki, Kangasluoma, Juha, Keskinen, Helmi, Kim, Jaeseok, Krapf, Manuel, Kürten, Andreas, Laaksonen, Ari, Lawler, Michael, Leiminger, Markus, Mathot, Serge, Möhler, Ottmar, Nieminen, Tuomo, Onnela, Antti, Petäjä, Tuukka, Piel, Felix M, Miettinen, Pasi, Rissanen, Matti P, Rondo, Linda, Sarnela, Nina, Schobesberger, Siegfried, Sengupta, Kamalika, Sipilä, Mikko, Smith, James N, Steiner, Gerhard, Tomè, Antònio, Virtanen, Annele, Wagner, Andrea C, Weingartner, Ernest, Wimmer, Daniela, Winkler, Paul M, Ye, Penglin, Carslaw, Kenneth S, Curtius, Joachim, Dommen, Josef, Kirkby, Jasper, Kulmala, Markku, Riipinen, Ilona, Worsnop, Douglas R, Donahue, Neil M, and Baltensperger, Urs
- Subjects
General Science & Technology - Abstract
About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
- Published
- 2016
10. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles.
- Author
-
Lehtipalo, Katrianne, Rondo, Linda, Kontkanen, Jenni, Schobesberger, Siegfried, Jokinen, Tuija, Sarnela, Nina, Kürten, Andreas, Ehrhart, Sebastian, Franchin, Alessandro, Nieminen, Tuomo, Riccobono, Francesco, Sipilä, Mikko, Yli-Juuti, Taina, Duplissy, Jonathan, Adamov, Alexey, Ahlm, Lars, Almeida, João, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, Dommen, Josef, Downard, Andrew J, Dunne, Eimear M, Flagan, Richard C, Guida, Roberto, Hakala, Jani, Hansel, Armin, Jud, Werner, Kangasluoma, Juha, Kerminen, Veli-Matti, Keskinen, Helmi, Kim, Jaeseok, Kirkby, Jasper, Kupc, Agnieszka, Kupiainen-Määttä, Oona, Laaksonen, Ari, Lawler, Michael J, Leiminger, Markus, Mathot, Serge, Olenius, Tinja, Ortega, Ismael K, Onnela, Antti, Petäjä, Tuukka, Praplan, Arnaud, Rissanen, Matti P, Ruuskanen, Taina, Santos, Filipe D, Schallhart, Simon, Schnitzhofer, Ralf, Simon, Mario, Smith, James N, Tröstl, Jasmin, Tsagkogeorgas, Georgios, Tomé, António, Vaattovaara, Petri, Vehkamäki, Hanna, Vrtala, Aron E, Wagner, Paul E, Williamson, Christina, Wimmer, Daniela, Winkler, Paul M, Virtanen, Annele, Donahue, Neil M, Carslaw, Kenneth S, Baltensperger, Urs, Riipinen, Ilona, Curtius, Joachim, Worsnop, Douglas R, and Kulmala, Markku
- Abstract
The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.
- Published
- 2016
11. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
- Author
-
Wang, Mingyi, Kong, Weimeng, Marten, Ruby, He, Xu-Cheng, Chen, Dexian, Pfeifer, Joschka, Heitto, Arto, Kontkanen, Jenni, Dada, Lubna, Kürten, Andreas, Yli-Juuti, Taina, Manninen, Hanna E., Amanatidis, Stavros, Amorim, António, Baalbaki, Rima, Baccarini, Andrea, Bell, David M., Bertozzi, Barbara, Bräkling, Steffen, Brilke, Sophia, Murillo, Lucía Caudillo, Chiu, Randall, Chu, Biwu, De Menezes, Louis-Philippe, Duplissy, Jonathan, Finkenzeller, Henning, Carracedo, Loic Gonzalez, Granzin, Manuel, Guida, Roberto, Hansel, Armin, Hofbauer, Victoria, Krechmer, Jordan, Lehtipalo, Katrianne, Lamkaddam, Houssni, Lampimäki, Markus, Lee, Chuan Ping, Makhmutov, Vladimir, Marie, Guillaume, Mathot, Serge, Mauldin, Roy L., Mentler, Bernhard, Müller, Tatjana, Onnela, Antti, Partoll, Eva, Petäjä, Tuukka, Philippov, Maxim, Pospisilova, Veronika, Ranjithkumar, Ananth, Rissanen, Matti, Rörup, Birte, Scholz, Wiebke, Shen, Jiali, Simon, Mario, Sipilä, Mikko, Steiner, Gerhard, Stolzenburg, Dominik, Tham, Yee Jun, Tomé, António, Wagner, Andrea C., Wang, Dongyu S., Wang, Yonghong, Weber, Stefan K., Winkler, Paul M., Wlasits, Peter J., Wu, Yusheng, Xiao, Mao, Ye, Qing, Zauner-Wieczorek, Marcel, Zhou, Xueqin, Volkamer, Rainer, Riipinen, Ilona, Dommen, Josef, Curtius, Joachim, Baltensperger, Urs, Kulmala, Markku, Worsnop, Douglas R., Kirkby, Jasper, Seinfeld, John H., El-Haddad, Imad, Flagan, Richard C., and Donahue, Neil M.
- Published
- 2020
- Full Text
- View/download PDF
12. Role of sesquiterpenes in biogenic new particle formation
- Author
-
Dada, Lubna, primary, Stolzenburg, Dominik, additional, Simon, Mario, additional, Fischer, Lukas, additional, Heinritzi, Martin, additional, Wang, Mingyi, additional, Xiao, Mao, additional, Vogel, Alexander L., additional, Ahonen, Lauri, additional, Amorim, Antonio, additional, Baalbaki, Rima, additional, Baccarini, Andrea, additional, Baltensperger, Urs, additional, Bianchi, Federico, additional, Daellenbach, Kaspar R., additional, DeVivo, Jenna, additional, Dias, Antonio, additional, Dommen, Josef, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, Hansel, Armin, additional, He, Xu-Cheng, additional, Hofbauer, Victoria, additional, Hoyle, Christopher R., additional, Kangasluoma, Juha, additional, Kim, Changhyuk, additional, Kürten, Andreas, additional, Kvashnin, Aleksander, additional, Mauldin, Roy, additional, Makhmutov, Vladimir, additional, Marten, Ruby, additional, Mentler, Bernhard, additional, Nie, Wei, additional, Petäjä, Tuukka, additional, Quéléver, Lauriane L. J., additional, Saathoff, Harald, additional, Tauber, Christian, additional, Tome, Antonio, additional, Molteni, Ugo, additional, Volkamer, Rainer, additional, Wagner, Robert, additional, Wagner, Andrea C., additional, Wimmer, Daniela, additional, Winkler, Paul M., additional, Yan, Chao, additional, Zha, Qiaozhi, additional, Rissanen, Matti, additional, Gordon, Hamish, additional, Curtius, Joachim, additional, Worsnop, Douglas R., additional, Lehtipalo, Katrianne, additional, Donahue, Neil M., additional, Kirkby, Jasper, additional, El Haddad, Imad, additional, and Kulmala, Markku, additional
- Published
- 2023
- Full Text
- View/download PDF
13. An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
- Author
-
Caudillo, Lucía, primary, Surdu, Mihnea, additional, Lopez, Brandon, additional, Wang, Mingyi, additional, Thoma, Markus, additional, Bräkling, Steffen, additional, Buchholz, Angela, additional, Simon, Mario, additional, Wagner, Andrea C., additional, Müller, Tatjana, additional, Granzin, Manuel, additional, Heinritzi, Martin, additional, Amorim, Antonio, additional, Bell, David M., additional, Brasseur, Zoé, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, He, Xu-Cheng, additional, Lamkaddam, Houssni, additional, Mahfouz, Naser G. A., additional, Makhmutov, Vladimir, additional, Manninen, Hanna E., additional, Marie, Guillaume, additional, Marten, Ruby, additional, Mauldin, Roy L., additional, Mentler, Bernhard, additional, Onnela, Antti, additional, Petäjä, Tuukka, additional, Pfeifer, Joschka, additional, Philippov, Maxim, additional, Piedehierro, Ana A., additional, Rörup, Birte, additional, Scholz, Wiebke, additional, Shen, Jiali, additional, Stolzenburg, Dominik, additional, Tauber, Christian, additional, Tian, Ping, additional, Tomé, António, additional, Umo, Nsikanabasi Silas, additional, Wang, Dongyu S., additional, Wang, Yonghong, additional, Weber, Stefan K., additional, Welti, André, additional, Zauner-Wieczorek, Marcel, additional, Baltensperger, Urs, additional, Flagan, Richard C., additional, Hansel, Armin, additional, Kirkby, Jasper, additional, Kulmala, Markku, additional, Lehtipalo, Katrianne, additional, Worsnop, Douglas R., additional, Haddad, Imad El, additional, Donahue, Neil M., additional, Vogel, Alexander L., additional, Kürten, Andreas, additional, and Curtius, Joachim, additional
- Published
- 2023
- Full Text
- View/download PDF
14. Global atmospheric particle formation from CERN CLOUD measurements
- Author
-
Dunne, Eimear M., Gordon, Hamish, Kürten, Andreas, Almeida, João, Duplissy, Jonathan, Williamson, Christina, Ortega, Ismael K., Pringle, Kirsty J., Adamov, Alexey, Baltensperger, Urs, Barmet, Peter, Benduhn, Francois, Bianchi, Federico, Breitenlechner, Martin, Clarke, Antony, Curtius, Joachim, Dommen, Josef, Donahue, Neil M., Ehrhart, Sebastian, Flagan, Richard C., Franchin, Alessandro, Guida, Roberto, Hakala, Jani, Hansel, Armin, Heinritzi, Martin, Jokinen, Tuija, Kangasluoma, Juha, Kirkby, Jasper, Kulmala, Markku, Kupc, Agnieszka, Lawler, Michael J., Lehtipalo, Katrianne, Makhmutov, Vladimir, Mann, Graham, Mathot, Serge, Merikanto, Joonas, Miettinen, Pasi, Nenes, Athanasios, Onnela, Antti, Rap, Alexandra, Reddington, Carly L. S., Riccobono, Francesco, Richards, Nigel A. D., Rissanen, Matti P., Rondo, Linda, Sarnela, Nina, Schobesberger, Siegfried, Sengupta, Kamalika, Simon, Mario, Sipilä, Mikko, Smith, James N., Stozkhov, Yuri, Tomé, Antonio, Tröstl, Jasmin, Wagner, Paul E., Wimmer, Daniela, Winkler, Paul M., Worsnop, Douglas R., and Carslaw, Kenneth S.
- Published
- 2016
15. Characterization of Aerosol Particles Produced by a Skyscraper Demolition by Blasting
- Author
-
Wagner, Andrea C., Bergen, Anton, Brilke, Sophia, Bühner, Bertram, Ebert, Martin, Haunold, Werner, Heinritzi, Martin, Herzog, Stephan, Jacobi, Stefan, Kürten, Andreas, Piel, Felix, Ramme, Alfons, Weber, Daniel, Weinbruch, Stephan, and Curtius, Joachim
- Published
- 2017
- Full Text
- View/download PDF
16. Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
- Author
-
Pfeifer, Joschka, Mahfouz, Naser G. A., Schulze, Benjamin C., Mathot, Serge, Stolzenburg, Dominik, Baalbaki, Rima, Brasseur, Zoé, Caudillo, Lucia, Dada, Lubna, Granzin, Manuel, He, Xu-Cheng, Lamkaddam, Houssni, Lopez, Brandon, Makhmutov, Vladimir, Marten, Ruby, Mentler, Bernhard, Müller, Tatjana, Onnela, Antti, Philippov, Maxim, Piedehierro, Ana A., Rörup, Birte, Schervish, Meredith, Tian, Ping, Umo, Nsikanabasi S., Wang, Dongyu S., Wang, Mingyi, Weber, Stefan K., Welti, André, Wu, Yusheng, Zauner-Wieczorek, Marcel, Amorim, Antonio, Haddad, Imad, Kulmala, Markku, Lehtipalo, Katrianne, Petäjä, Tuukka, Tomé, António, Mirme, Sander, Manninen, Hanna E., Donahue, Neil M., Flagan, Richard C., Kürten, Andreas, Curtius, Joachim, and Kirkby, Jasper
- Abstract
Aerosol particles have an important role in Earth's radiation balance and climate, both directly and indirectly through aerosol–cloud interactions. Most aerosol particles in the atmosphere are weakly charged, affecting both their collision rates with ions and neutral molecules, as well as the rates by which they are scavenged by other aerosol particles and cloud droplets. The rate coefficients between ions and aerosol particles are important since they determine the growth rates and lifetimes of ions and charged aerosol particles, and so they may influence cloud microphysics, dynamics, and aerosol processing. However, despite their importance, very few experimental measurements exist of charged aerosol collision rates under atmospheric conditions, where galactic cosmic rays in the lower troposphere give rise to ion pair concentrations of around 1000 cm−3. Here we present measurements in the CERN CLOUD chamber of the rate coefficients between ions and small ( nm) aerosol particles containing up to 9 elementary charges, e. We find the rate coefficient of a singly charged ion with an oppositely charged particle increases from 2.0 (0.4–4.4) × 10−6 cm3 s−1 to 30.6 (24.9–45.1) × 10−6 cm3 s−1 for particles with charges of 1 to 9 e, respectively, where the parentheses indicate the ±1σ uncertainty interval. Our measurements are compatible with theoretical predictions and show excellent agreement with the model of Gatti and Kortshagen (2008).
- Published
- 2023
17. Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere
- Author
-
He, Xu-Cheng, Simon, Mario, Iyer, Siddharth, Xie, Hong-Bin, Rörup, Birte, Shen, Jiali, Finkenzeller, Henning, Stolzenburg, Dominik, Zhang, Rongjie, Baccarini, Andrea, Tham, Yee Jun, Wang, Mingyi, Amanatidis, Stavros, Piedehierro, Ana A., Amorim, Antonio, Baalbaki, Rima, Brasseur, Zoé, Caudillo, Lucía, Chu, Biwu, Dada, Lubna, Duplissy, Jonathan, El Haddad, Imad, Flagan, Richard C., Granzin, Manuel, Hansel, Armin, Heinritzi, Martin, Hofbauer, Victoria, Jokinen, Tuija, Kemppainen, Deniz, Kong, Weimeng, Krechmer, Jordan, Kürten, Andreas, Lamkaddam, Houssni, Lopez, Brandon, Ma, Fangfang, Mahfouz, Naser G. A., Makhmutov, Vladimir, Manninen, Hanna E., Marie, Guillaume, Marten, Ruby, Massabò, Dario, Mauldin, Roy L., Mentler, Bernhard, Onnela, Antti, Petäjä, Tuukka, Pfeifer, Joschka, Philippov, Maxim, Ranjithkumar, Ananth, Rissanen, Matti P., Schobesberger, Siegfried, Scholz, Wiebke, Schulze, Benjamin, Surdu, Mihnea, Thakur, Roseline C., Tomé, António, Wagner, Andrea C., Wang, Dongyu, Wang, Yonghong, Weber, Stefan K., Welti, André, Winkler, Paul M., Zauner-Wieczorek, Marcel, Baltensperger, Urs, Curtius, Joachim, Kurtén, Theo, Worsnop, Douglas R., Volkamer, Rainer, Lehtipalo, Katrianne, Kirkby, Jasper, Donahue, Neil M., Sipilä, Mikko, Kulmala, Markku, He, Xu-Cheng, Simon, Mario, Iyer, Siddharth, Xie, Hong-Bin, Rörup, Birte, Shen, Jiali, Finkenzeller, Henning, Stolzenburg, Dominik, Zhang, Rongjie, Baccarini, Andrea, Tham, Yee Jun, Wang, Mingyi, Amanatidis, Stavros, Piedehierro, Ana A., Amorim, Antonio, Baalbaki, Rima, Brasseur, Zoé, Caudillo, Lucía, Chu, Biwu, Dada, Lubna, Duplissy, Jonathan, El Haddad, Imad, Flagan, Richard C., Granzin, Manuel, Hansel, Armin, Heinritzi, Martin, Hofbauer, Victoria, Jokinen, Tuija, Kemppainen, Deniz, Kong, Weimeng, Krechmer, Jordan, Kürten, Andreas, Lamkaddam, Houssni, Lopez, Brandon, Ma, Fangfang, Mahfouz, Naser G. A., Makhmutov, Vladimir, Manninen, Hanna E., Marie, Guillaume, Marten, Ruby, Massabò, Dario, Mauldin, Roy L., Mentler, Bernhard, Onnela, Antti, Petäjä, Tuukka, Pfeifer, Joschka, Philippov, Maxim, Ranjithkumar, Ananth, Rissanen, Matti P., Schobesberger, Siegfried, Scholz, Wiebke, Schulze, Benjamin, Surdu, Mihnea, Thakur, Roseline C., Tomé, António, Wagner, Andrea C., Wang, Dongyu, Wang, Yonghong, Weber, Stefan K., Welti, André, Winkler, Paul M., Zauner-Wieczorek, Marcel, Baltensperger, Urs, Curtius, Joachim, Kurtén, Theo, Worsnop, Douglas R., Volkamer, Rainer, Lehtipalo, Katrianne, Kirkby, Jasper, Donahue, Neil M., Sipilä, Mikko, and Kulmala, Markku
- Abstract
The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H2SO4), stabilized by ammonia (NH3). However, in marine and polar regions, NH3 is generally low, and H2SO4 is frequently found together with iodine oxoacids [HIOx, i.e., iodic acid (HIO3) and iodous acid (HIO2)]. In experiments performed with the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we investigated the interplay of H2SO4 and HIOx during atmospheric particle nucleation. We found that HIOx greatly enhances H2SO4(-NH3) nucleation through two different interactions. First, HIO3 strongly binds with H2SO4 in charged clusters so they drive particle nucleation synergistically. Second, HIO2 substitutes for NH3, forming strongly bound H2SO4-HIO2 acid-base pairs in molecular clusters. Global observations imply that HIOx is enhancing H2SO4(-NH3) nucleation rates 10- to 10,000-fold in marine and polar regions.
- Published
- 2023
18. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
- Author
-
Gordon, Hamish, Sengupta, Kamalika, Rap, Alexandru, Duplissy, Jonathan, Frege, Carla, Williamson, Christina, Heinritzi, Martin, Simon, Mario, Yan, Chao, Almeida, João, Tröstl, Jasmin, Nieminen, Tuomo, Ortega, Ismael K., Wagner, Robert, Dunne, Eimear M., Adamov, Alexey, Amorim, Antonio, Bernhammer, Anne-Kathrin, Bianchi, Federico, Breitenlechner, Martin, Brilke, Sophia, Chen, Xuemeng, Craven, Jill S., Dias, Antonio, Ehrhart, Sebastian, Fischer, Lukas, Flagan, Richard C., Franchin, Alessandro, Fuchs, Claudia, Guida, Roberto, Hakala, Jani, Hoyle, Christopher R., Jokinen, Tuija, Junninen, Heikki, Kangasluoma, Juha, Kim, Jaeseok, Kirkby, Jasper, Krapf, Manuel, Kürten, Andreas, Laaksonen, Ari, Lehtipalo, Katrianne, Makhmutov, Vladimir, Mathot, Serge, Molteni, Ugo, Monks, Sarah A., Onnela, Antti, Peräkylä, Otso, Piel, Felix, Petäjä, Tuukka, Praplan, Arnaud P., Pringle, Kirsty J., Richards, Nigel A. D., Rissanen, Matti P., Rondo, Linda, Sarnela, Nina, Schobesberger, Siegfried, Scott, Catherine E., Seinfeld, John H., Sharma, Sangeeta, Sipilä, Mikko, Steiner, Gerhard, Stozhkov, Yuri, Stratmann, Frank, Tomé, Antonio, Virtanen, Annele, Vogel, Alexander Lucas, Wagner, Andrea C., Wagner, Paul E., Weingartner, Ernest, Wimmer, Daniela, Winkler, Paul M., Ye, Penglin, Zhang, Xuan, Hansel, Armin, Dommen, Josef, Donahue, Neil M., Worsnop, Douglas R., Baltensperger, Urs, Kulmala, Markku, Curtius, Joachim, and Carslaw, Kenneth S.
- Published
- 2016
19. Temperature, humidity, and ionisation effect of iodine oxoacid nucleation
- Author
-
Rörup, Birte, He, Xu-Cheng, Shen, Jiali, Baalbaki, Rima, Dada, Lubna, Sipilä, Mikko, Kirkby, Jasper, Kulmala, Markku, Amorim, Antonio, Baccarini, Andrea, Bell, David M., Caudillo-Plath, Lucía, Duplissy, Jonathan, Finkenzeller, Henning, Kürten, Andreas, Lamkaddam, Houssni, Lee, Chuan Ping, Makhmutov, Vladimir, Manninen, Hanna E., Marie, Guillaume, Marten, Ruby, Mentler, Bernhard, Onnela, Antti, Philippov, Maxim, Scholz, Carolin Wiebke, Simon, Mario, Stolzenburg, Dominik, Tham, Yee Jun, Tomé, António, Wagner, Andrea C., Wang, Mingyi, Wang, Dongyu, Wang, Yonghong, Weber, Stefan K., Zauner-Wieczorek, Marcel, Baltensperger, Urs, Curtius, Joachim, Donahue, Neil M., El Haddad, Imad, Flagan, Richard C., Hansel, Armin, Möhler, Ottmar, Petäjä, Tuukka, Volkamer, Rainer, Worsnop, Douglas, and Lehtipalo, Katrianne
- Abstract
Iodine oxoacids are recognised for their significant contribution to the formation of new particles in marine and polar atmospheres. Nevertheless, to incorporate the iodine oxoacid nucleation mechanism into global simulations, it is essential to comprehend how this mechanism varies under various atmospheric conditions. In this study, we combined measurements from the CLOUD (Cosmic Leaving OUtdoor Droplets) chamber at CERN and simulations with a kinetic model to investigate the impact of temperature, ionisation, and humidity on iodine oxoacid nucleation. Our findings reveal that ion-induced particle formation rates remain largely unaffected by changes in temperature. However, neutral particle formation rates experience a significant increase when the temperature drops from +10 °C to −10 °C. Running the kinetic model with varying ionisation rates demonstrates that the particle formation rate only increases with a higher ionisation rate when the iodic acid concentration exceeds 1.5 × 107cm−3, a concentration rarely reached in pristine marine atmospheres. Consequently, our simulations suggest that, despite higher ionisation rates, the charged cluster nucleation pathway of iodic acid is unlikely to be enhanced in the upper troposphere by higher ionisation rates. Instead, the neutral nucleation channel is likely to be the dominant channel in that region. Notably, the iodine oxoacid nucleation mechanism remains unaffected by changes in relative humidity from 2% to 80%. However, under unrealistically dry conditions (below 0.008% RH at +10 °C), iodine oxides (I2O4and I2O5) significantly enhance formation rates. Therefore, we conclude that iodine oxoacid nucleation is the dominant nucleation mechanism for iodine nucleation in the marine and polar boundary layer atmosphere.
- Published
- 2024
- Full Text
- View/download PDF
20. Supplementary material to "Measurement of the rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber"
- Author
-
Pfeifer, Joschka, primary, Mahfouz, Naser G., additional, Schulze, Ben, additional, Mathot, Serge, additional, Stolzenburg, Dominik, additional, Baalbaki, Rima, additional, Brasseur, Zoé, additional, Caudillo, Lucia, additional, Dada, Lubna, additional, Granzin, Manuel, additional, He, Xu-Cheng, additional, Lamkaddam, Houssni, additional, Lopez, Brandon, additional, Makhmutov, Vladimir, additional, Marten, Ruby, additional, Mentler, Bernhard, additional, Müller, Tatjana, additional, Onnela, Antti, additional, Philippov, Maxim, additional, Piedehierro, Ana A., additional, Rörup, Birte, additional, Schervish, Meredith, additional, Tian, Ping, additional, Umo, Nsikanabasi S., additional, Wang, Dongyu S., additional, Wang, Mingyi, additional, Weber, Stefan K., additional, Welti, André, additional, Wu, Yusheng, additional, Zauner-Wieczorek, Marcel, additional, Amorim, Antonio, additional, El Haddad, Imad, additional, Kulmala, Markku, additional, Lehtipalo, Katrianne, additional, Petäjä, Tuukka, additional, Tomé, António, additional, Mirme, Sander, additional, Manninen, Hanna E., additional, Donahue, Neil M., additional, Flagan, Richard C., additional, Kürten, Andreas, additional, Curtius, Joachim, additional, and Kirkby, Jasper, additional
- Published
- 2022
- Full Text
- View/download PDF
21. Measurement of the rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
- Author
-
Pfeifer, Joschka, primary, Mahfouz, Naser G., additional, Schulze, Ben, additional, Mathot, Serge, additional, Stolzenburg, Dominik, additional, Baalbaki, Rima, additional, Brasseur, Zoé, additional, Caudillo, Lucia, additional, Dada, Lubna, additional, Granzin, Manuel, additional, He, Xu-Cheng, additional, Lamkaddam, Houssni, additional, Lopez, Brandon, additional, Makhmutov, Vladimir, additional, Marten, Ruby, additional, Mentler, Bernhard, additional, Müller, Tatjana, additional, Onnela, Antti, additional, Philippov, Maxim, additional, Piedehierro, Ana A., additional, Rörup, Birte, additional, Schervish, Meredith, additional, Tian, Ping, additional, Umo, Nsikanabasi S., additional, Wang, Dongyu S., additional, Wang, Mingyi, additional, Weber, Stefan K., additional, Welti, André, additional, Wu, Yusheng, additional, Zauner-Wieczorek, Marcel, additional, Amorim, Antonio, additional, El Haddad, Imad, additional, Kulmala, Markku, additional, Lehtipalo, Katrianne, additional, Petäjä, Tuukka, additional, Tomé, António, additional, Mirme, Sander, additional, Manninen, Hanna E., additional, Donahue, Neil M., additional, Flagan, Richard C., additional, Kürten, Andreas, additional, Curtius, Joachim, additional, and Kirkby, Jasper, additional
- Published
- 2022
- Full Text
- View/download PDF
22. The ion–ion recombination coefficient α: comparison of temperature- and pressure-dependent parameterisations for the troposphere and stratosphere
- Author
-
Zauner-Wieczorek, Marcel, Curtius, Joachim, and Kürten, Andreas
- Abstract
Many different atmospheric, physical, and chemical processes are affected by ions. An important sink for atmospheric ions is the reaction and mutual neutralisation of a positive and negative ion, also called ion–ion recombination. While the value for the ion–ion recombination coefficient α is well-known for standard conditions (namely 1.7 × 10−6 cm3 s−1), it needs to be calculated for deviating temperature and pressure conditions, especially for applications at higher altitudes of the atmosphere. In this work, we review the history of theories and parameterisations of the ion–ion recombination coefficient, focussing on the temperature and pressure dependencies as well as the altitude range between 0 and 50 km. Commencing with theories based on J. J. Thomson's work, we describe important semi-empirical adjustments as well as field, model, and laboratory data sets, followed by short reviews of binary recombination theories, model simulations, and the application of ion–aerosol theories to ion–ion recombination. We present a comparison between theories, parameterisations, and field, model, and laboratory data sets to conclude favourable parameterisations. While many theories agree well with field data above an altitude of approximately 10 km, the nature of the recombination coefficient is still widely unknown between Earth's surface and an altitude of 10 km. According to the current state of knowledge, it appears reasonable to assume an almost constant value for the recombination coefficient for this region, while it is necessary to use values that are adjusted for pressure and temperature for altitudes above 10 km. Suitable parameterisations for different altitude ranges are presented and the need for future research, be it in the laboratory or by means of modelling, is identified.
- Published
- 2022
23. The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source
- Author
-
Finkenzeller, Henning, primary, Iyer, Siddharth, additional, He, Xu-Cheng, additional, Simon, Mario, additional, Koenig, Theodore K., additional, Lee, Christopher F., additional, Valiev, Rashid, additional, Hofbauer, Victoria, additional, Amorim, Antonio, additional, Baalbaki, Rima, additional, Baccarini, Andrea, additional, Beck, Lisa, additional, Bell, David M., additional, Caudillo, Lucía, additional, Chen, Dexian, additional, Chiu, Randall, additional, Chu, Biwu, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Heinritzi, Martin, additional, Kemppainen, Deniz, additional, Kim, Changhyuk, additional, Krechmer, Jordan, additional, Kürten, Andreas, additional, Kvashnin, Alexandr, additional, Lamkaddam, Houssni, additional, Lee, Chuan Ping, additional, Lehtipalo, Katrianne, additional, Li, Zijun, additional, Makhmutov, Vladimir, additional, Manninen, Hanna E., additional, Marie, Guillaume, additional, Marten, Ruby, additional, Mauldin, Roy L., additional, Mentler, Bernhard, additional, Müller, Tatjana, additional, Petäjä, Tuukka, additional, Philippov, Maxim, additional, Ranjithkumar, Ananth, additional, Rörup, Birte, additional, Shen, Jiali, additional, Stolzenburg, Dominik, additional, Tauber, Christian, additional, Tham, Yee Jun, additional, Tomé, António, additional, Vazquez-Pufleau, Miguel, additional, Wagner, Andrea C., additional, Wang, Dongyu S., additional, Wang, Mingyi, additional, Wang, Yonghong, additional, Weber, Stefan K., additional, Nie, Wei, additional, Wu, Yusheng, additional, Xiao, Mao, additional, Ye, Qing, additional, Zauner-Wieczorek, Marcel, additional, Hansel, Armin, additional, Baltensperger, Urs, additional, Brioude, Jérome, additional, Curtius, Joachim, additional, Donahue, Neil M., additional, Haddad, Imad El, additional, Flagan, Richard C., additional, Kulmala, Markku, additional, Kirkby, Jasper, additional, Sipilä, Mikko, additional, Worsnop, Douglas R., additional, Kurten, Theo, additional, Rissanen, Matti, additional, and Volkamer, Rainer, additional
- Published
- 2022
- Full Text
- View/download PDF
24. The ion–ion recombination coefficient α: comparison of temperature- and pressure-dependent parameterisations for the troposphere and stratosphere
- Author
-
Zauner-Wieczorek, Marcel, primary, Curtius, Joachim, additional, and Kürten, Andreas, additional
- Published
- 2022
- Full Text
- View/download PDF
25. High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures
- Author
-
Shen, Jiali, primary, Scholz, Wiebke, additional, He, Xu-Cheng, additional, Zhou, Putian, additional, Marie, Guillaume, additional, Wang, Mingyi, additional, Marten, Ruby, additional, Surdu, Mihnea, additional, Rörup, Birte, additional, Baalbaki, Rima, additional, Amorim, Antonio, additional, Ataei, Farnoush, additional, Bell, David M., additional, Bertozzi, Barbara, additional, Brasseur, Zoé, additional, Caudillo, Lucía, additional, Chen, Dexian, additional, Chu, Biwu, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, Granzin, Manuel, additional, Guida, Roberto, additional, Heinritzi, Martin, additional, Hofbauer, Victoria, additional, Iyer, Siddharth, additional, Kemppainen, Deniz, additional, Kong, Weimeng, additional, Krechmer, Jordan E., additional, Kürten, Andreas, additional, Lamkaddam, Houssni, additional, Lee, Chuan Ping, additional, Lopez, Brandon, additional, Mahfouz, Naser G. A., additional, Manninen, Hanna E., additional, Massabò, Dario, additional, Mauldin, Roy L., additional, Mentler, Bernhard, additional, Müller, Tatjana, additional, Pfeifer, Joschka, additional, Philippov, Maxim, additional, Piedehierro, Ana A., additional, Roldin, Pontus, additional, Schobesberger, Siegfried, additional, Simon, Mario, additional, Stolzenburg, Dominik, additional, Tham, Yee Jun, additional, Tomé, António, additional, Umo, Nsikanabasi Silas, additional, Wang, Dongyu, additional, Wang, Yonghong, additional, Weber, Stefan K., additional, Welti, André, additional, Wollesen de Jonge, Robin, additional, Wu, Yusheng, additional, Zauner-Wieczorek, Marcel, additional, Zust, Felix, additional, Baltensperger, Urs, additional, Curtius, Joachim, additional, Flagan, Richard C., additional, Hansel, Armin, additional, Möhler, Ottmar, additional, Petäjä, Tuukka, additional, Volkamer, Rainer, additional, Kulmala, Markku, additional, Lehtipalo, Katrianne, additional, Rissanen, Matti, additional, Kirkby, Jasper, additional, El-Haddad, Imad, additional, Bianchi, Federico, additional, Sipilä, Mikko, additional, Donahue, Neil M., additional, and Worsnop, Douglas R., additional
- Published
- 2022
- Full Text
- View/download PDF
26. Mass spectrometric measurements of ambient ions and estimation of gaseous sulfuric acid in the free troposphere and lowermost stratosphere during the CAFE-EU/BLUESKY campaign
- Author
-
Zauner-Wieczorek, Marcel, primary, Heinritzi, Martin, additional, Granzin, Manuel, additional, Keber, Timo, additional, Kürten, Andreas, additional, Kaiser, Katharina, additional, Schneider, Johannes, additional, and Curtius, Joachim, additional
- Published
- 2022
- Full Text
- View/download PDF
27. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions
- Author
-
Kürten, Andreas, Jokinen, Tuija, Simon, Mario, Sipilä, Mikko, Sarnela, Nina, Junninen, Heikki, Adamov, Alexey, Almeida, João, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, Dommen, Josef, Donahue, Neil M., Duplissy, Jonathan, Ehrhart, Sebastian, Flagan, Richard C., Franchin, Alessandro, Hakala, Jani, Hansel, Armin, Heinritzi, Martin, Hutterli, Manuel, Kangasluoma, Juha, Kirkby, Jasper, Laaksonen, Ari, Lehtipalo, Katrianne, Leiminger, Markus, Makhmutov, Vladimir, Mathot, Serge, Onnela, Antti, Petäjä, Tuukka, Praplan, Arnaud P., Riccobono, Francesco, Rissanen, Matti P., Rondo, Linda, Schobesberger, Siegfried, Seinfeld, John H., Steiner, Gerhard, Tomé, António, Tröstl, Jasmin, Winkler, Paul M., Williamson, Christina, Wimmer, Daniela, Ye, Penglin, Baltensperger, Urs, Carslaw, Kenneth S., Kulmala, Markku, Worsnop, Douglas R., and Curtius, Joachim
- Published
- 2014
28. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles
- Author
-
Riccobono, Francesco, Schobesberger, Siegfried, Scott, Catherine E., Dommen, Josef, Ortega, Ismael K., Rondo, Linda, Almeida, João, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, David, André, Downard, Andrew, Dunne, Eimear M., Duplissy, Jonathan, Ehrhart, Sebastian, Flagan, Richard C., Franchin, Alessandro, Hansel, Armin, Junninen, Heikki, Kajos, Maija, Keskinen, Helmi, Kupc, Agnieszka, Kürten, Andreas, Kvashin, Alexander N., Laaksonen, Ari, Lehtipalo, Katrianne, Makhmutov, Vladimir, Mathot, Serge, Nieminen, Tuomo, Onnela, Antti, Petäjä, Tuukka, Praplan, Arnaud P., Santos, Filipe D., Schallhart, Simon, Seinfeld, John H., Sipilä, Mikko, Spracklen, Dominick V., Stozhkov, Yuri, Stratmann, Frank, Tomé, Antonio, Tsagkogeorgas, Georgios, Vaattovaara, Petri, Viisanen, Yrjö, Vrtala, Aron, Wagner, Paul E., Weingartner, Ernest, Wex, Heike, Wimmer, Daniela, Carslaw, Kenneth S., Curtius, Joachim, Donahue, Neil M., Kirkby, Jasper, Kulmala, Markku, Worsnop, Douglas R., and Baltensperger, Urs
- Published
- 2014
29. Ion-induced nucleation of pure biogenic particles
- Author
-
Kirkby, Jasper, Duplissy, Jonathan, Sengupta, Kamalika, Frege, Carla, Gordon, Hamish, Williamson, Christina, Heinritzi, Martin, Simon, Mario, Yan, Chao, Almeida, João, Tröstl, Jasmin, Nieminen, Tuomo, Ortega, Ismael K., Wagner, Robert, Adamov, Alexey, Amorim, Antonio, Bernhammer, Anne-Kathrin, Bianchi, Federico, Breitenlechner, Martin, Brilke, Sophia, Chen, Xuemeng, Craven, Jill, Dias, Antonio, Ehrhart, Sebastian, Flagan, Richard C., Franchin, Alessandro, Fuchs, Claudia, Guida, Roberto, Hakala, Jani, Hoyle, Christopher R., Jokinen, Tuija, Junninen, Heikki, Kangasluoma, Juha, Kim, Jaeseok, Krapf, Manuel, Kürten, Andreas, Laaksonen, Ari, Lehtipalo, Katrianne, Makhmutov, Vladimir, Mathot, Serge, Molteni, Ugo, Onnela, Antti, Peräkylä, Otso, Piel, Felix, Petäjä, Tuukka, Praplan, Arnaud P., Pringle, Kirsty, Rap, Alexandru, Richards, Nigel A. D., Riipinen, Ilona, Rissanen, Matti P., Rondo, Linda, Sarnela, Nina, Schobesberger, Siegfried, Scott, Catherine E., Seinfeld, John H., Sipilä, Mikko, Steiner, Gerhard, Stozhkov, Yuri, Stratmann, Frank, Tomé, Antonio, Virtanen, Annele, Vogel, Alexander L., Wagner, Andrea C., Wagner, Paul E., Weingartner, Ernest, Wimmer, Daniela, Winkler, Paul M., Ye, Penglin, Zhang, Xuan, Hansel, Armin, Dommen, Josef, Donahue, Neil M., Worsnop, Douglas R., Baltensperger, Urs, Kulmala, Markku, Carslaw, Kenneth S., and Curtius, Joachim
- Published
- 2016
- Full Text
- View/download PDF
30. An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
- Author
-
Caudillo, Lucía, primary, Surdu, Mihnea, additional, Lopez, Brandon, additional, Wang, Mingyi, additional, Thoma, Markus, additional, Bräkling, Steffen, additional, Buchholz, Angela, additional, Simon, Mario, additional, Wagner, Andrea C., additional, Müller, Tatjana, additional, Granzin, Manuel, additional, Heinritzi, Martin, additional, Amorim, Antonio, additional, Bell, David M., additional, Brasseur, Zoé, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, He, Xu-Cheng, additional, Lamkaddam, Houssni, additional, Mahfouz, Naser G. A., additional, Makhmutov, Vladimir, additional, Manninen, Hanna E., additional, Marie, Guillaume, additional, Marten, Ruby, additional, Mauldin, Roy L., additional, Mentler, Bernhard, additional, Onnela, Antti, additional, Petäjä, Tuukka, additional, Pfeifer, Joschka, additional, Philippov, Maxim, additional, Piedehierro, Ana A., additional, Rörup, Birte, additional, Scholz, Wiebke, additional, Shen, Jiali, additional, Stolzenburg, Dominik, additional, Tauber, Christian, additional, Tian, Ping, additional, Tomé, António, additional, Umo, Nsikanabasi Silas, additional, Wang, Dongyu S., additional, Wang, Yonghong, additional, Weber, Stefan K., additional, Welti, André, additional, Zauner-Wieczorek, Marcel, additional, Baltensperger, Urs, additional, Flagan, Richard C., additional, Hansel, Armin, additional, Kirkby, Jasper, additional, Kulmala, Markku, additional, Lehtipalo, Katrianne, additional, Worsnop, Douglas R., additional, Haddad, Imad El, additional, Donahue, Neil M., additional, Vogel, Alexander L., additional, Kürten, Andreas, additional, and Curtius, Joachim, additional
- Published
- 2022
- Full Text
- View/download PDF
31. Supplementary material to "An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles"
- Author
-
Caudillo, Lucía, primary, Surdu, Mihnea, additional, Lopez, Brandon, additional, Wang, Mingyi, additional, Thoma, Markus, additional, Bräkling, Steffen, additional, Buchholz, Angela, additional, Simon, Mario, additional, Wagner, Andrea C., additional, Müller, Tatjana, additional, Granzin, Manuel, additional, Heinritzi, Martin, additional, Amorim, Antonio, additional, Bell, David M., additional, Brasseur, Zoé, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, He, Xu-Cheng, additional, Lamkaddam, Houssni, additional, Mahfouz, Naser G. A., additional, Makhmutov, Vladimir, additional, Manninen, Hanna E., additional, Marie, Guillaume, additional, Marten, Ruby, additional, Mauldin, Roy L., additional, Mentler, Bernhard, additional, Onnela, Antti, additional, Petäjä, Tuukka, additional, Pfeifer, Joschka, additional, Philippov, Maxim, additional, Piedehierro, Ana A., additional, Rörup, Birte, additional, Scholz, Wiebke, additional, Shen, Jiali, additional, Stolzenburg, Dominik, additional, Tauber, Christian, additional, Tian, Ping, additional, Tomé, António, additional, Umo, Nsikanabasi Silas, additional, Wang, Dongyu S., additional, Wang, Yonghong, additional, Weber, Stefan K., additional, Welti, André, additional, Zauner-Wieczorek, Marcel, additional, Baltensperger, Urs, additional, Flagan, Richard C., additional, Hansel, Armin, additional, Kirkby, Jasper, additional, Kulmala, Markku, additional, Lehtipalo, Katrianne, additional, Worsnop, Douglas R., additional, Haddad, Imad El, additional, Donahue, Neil M., additional, Vogel, Alexander L., additional, Kürten, Andreas, additional, and Curtius, Joachim, additional
- Published
- 2022
- Full Text
- View/download PDF
32. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules
- Author
-
Schobesberger, Siegfried, Junninen, Heikki, Bianchi, Federico, Lönn, Gustaf, Ehn, Mikael, Lehtipalo, Katrianne, Dommen, Josef, Ehrhart, Sebastian, Ortega, Ismael K., Franchin, Alessandro, Nieminen, Tuomo, Riccobono, Francesco, Hutterli, Manuel, Duplissy, Jonathan, Almeida, João, Amorim, Antonio, Breitenlechner, Martin, Downard, Andrew J., Dunne, Eimear M., Flagan, Richard C., Kajos, Maija, Keskinen, Helmi, Kirkby, Jasper, Kupc, Agnieszka, Kürten, Andreas, Kurtén, Theo, Laaksonen, Ari, Mathot, Serge, Onnela, Antti, Praplan, Arnaud P., Rondo, Linda, Santos, Filipe D., Schallhart, Simon, Schnitzhofer, Ralf, Sipilä, Mikko, Tomé, António, Tsagkogeorgas, Georgios, Vehkamäki, Hanna, Wimmer, Daniela, Baltensperger, Urs, Carslaw, Kenneth S., Curtius, Joachim, Hansel, Armin, Petäjä, Tuukka, Kulmala, Markku, Donahue, Neil M., and Worsnop, Douglas R.
- Published
- 2013
33. Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene
- Author
-
Paulot, Fabien, Crounse, John D., Kjaergaard, Henrik G., Kürten, Andreas, Clair, Jason M. St., Seinfeld, John H., and Wennberg, Paul O.
- Published
- 2009
- Full Text
- View/download PDF
34. Survival of newly formed particles in haze conditions
- Author
-
Marten, Ruby, primary, Xiao, Mao, additional, Rörup, Birte, additional, Wang, Mingyi, additional, Kong, Weimeng, additional, He, Xu-Cheng, additional, Stolzenburg, Dominik, additional, Pfeifer, Joschka, additional, Marie, Guillaume, additional, Wang, Dongyu S., additional, Scholz, Wiebke, additional, Baccarini, Andrea, additional, Lee, Chuan Ping, additional, Amorim, Antonio, additional, Baalbaki, Rima, additional, Bell, David M., additional, Bertozzi, Barbara, additional, Caudillo, Lucía, additional, Chu, Biwu, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, Carracedo, Loïc Gonzalez, additional, Granzin, Manuel, additional, Hansel, Armin, additional, Heinritzi, Martin, additional, Hofbauer, Victoria, additional, Kemppainen, Deniz, additional, Kürten, Andreas, additional, Lampimäki, Markus, additional, Lehtipalo, Katrianne, additional, Makhmutov, Vladimir, additional, Manninen, Hanna E., additional, Mentler, Bernhard, additional, Petäjä, Tuukka, additional, Philippov, Maxim, additional, Shen, Jiali, additional, Simon, Mario, additional, Stozhkov, Yuri, additional, Tomé, António, additional, Wagner, Andrea C., additional, Wang, Yonghong, additional, Weber, Stefan K., additional, Wu, Yusheng, additional, Zauner-Wieczorek, Marcel, additional, Curtius, Joachim, additional, Kulmala, Markku, additional, Möhler, Ottmar, additional, Volkamer, Rainer, additional, Winkler, Paul M., additional, Worsnop, Douglas R., additional, Dommen, Josef, additional, Flagan, Richard C., additional, Kirkby, Jasper, additional, Donahue, Neil M., additional, Lamkaddam, Houssni, additional, Baltensperger, Urs, additional, and El Haddad, Imad, additional
- Published
- 2022
- Full Text
- View/download PDF
35. Chemical composition of nanoparticles from <i>α</i>-pinene nucleation and the influence of isoprene and relative humidity at low temperature
- Author
-
Caudillo, Lucía, primary, Rörup, Birte, additional, Heinritzi, Martin, additional, Marie, Guillaume, additional, Simon, Mario, additional, Wagner, Andrea C., additional, Müller, Tatjana, additional, Granzin, Manuel, additional, Amorim, Antonio, additional, Ataei, Farnoush, additional, Baalbaki, Rima, additional, Bertozzi, Barbara, additional, Brasseur, Zoé, additional, Chiu, Randall, additional, Chu, Biwu, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, Gonzalez Carracedo, Loïc, additional, He, Xu-Cheng, additional, Hofbauer, Victoria, additional, Kong, Weimeng, additional, Lamkaddam, Houssni, additional, Lee, Chuan P., additional, Lopez, Brandon, additional, Mahfouz, Naser G. A., additional, Makhmutov, Vladimir, additional, Manninen, Hanna E., additional, Marten, Ruby, additional, Massabò, Dario, additional, Mauldin, Roy L., additional, Mentler, Bernhard, additional, Molteni, Ugo, additional, Onnela, Antti, additional, Pfeifer, Joschka, additional, Philippov, Maxim, additional, Piedehierro, Ana A., additional, Schervish, Meredith, additional, Scholz, Wiebke, additional, Schulze, Benjamin, additional, Shen, Jiali, additional, Stolzenburg, Dominik, additional, Stozhkov, Yuri, additional, Surdu, Mihnea, additional, Tauber, Christian, additional, Tham, Yee Jun, additional, Tian, Ping, additional, Tomé, António, additional, Vogt, Steffen, additional, Wang, Mingyi, additional, Wang, Dongyu S., additional, Weber, Stefan K., additional, Welti, André, additional, Yonghong, Wang, additional, Yusheng, Wu, additional, Zauner-Wieczorek, Marcel, additional, Baltensperger, Urs, additional, El Haddad, Imad, additional, Flagan, Richard C., additional, Hansel, Armin, additional, Höhler, Kristina, additional, Kirkby, Jasper, additional, Kulmala, Markku, additional, Lehtipalo, Katrianne, additional, Möhler, Ottmar, additional, Saathoff, Harald, additional, Volkamer, Rainer, additional, Winkler, Paul M., additional, Donahue, Neil M., additional, Kürten, Andreas, additional, and Curtius, Joachim, additional
- Published
- 2021
- Full Text
- View/download PDF
36. The ion-ion recombination coefficient α: Comparison of temperature- and pressure-dependent parameterisations for the troposphere and lower stratosphere
- Author
-
Zauner-Wieczorek, Marcel, primary, Curtius, Joachim, additional, and Kürten, Andreas, additional
- Published
- 2021
- Full Text
- View/download PDF
37. The driving factors of new particle formation and growth in the polluted boundary layer
- Author
-
Xiao, Mao, primary, Hoyle, Christopher R., additional, Dada, Lubna, additional, Stolzenburg, Dominik, additional, Kürten, Andreas, additional, Wang, Mingyi, additional, Lamkaddam, Houssni, additional, Garmash, Olga, additional, Mentler, Bernhard, additional, Molteni, Ugo, additional, Baccarini, Andrea, additional, Simon, Mario, additional, He, Xu-Cheng, additional, Lehtipalo, Katrianne, additional, Ahonen, Lauri R., additional, Baalbaki, Rima, additional, Bauer, Paulus S., additional, Beck, Lisa, additional, Bell, David, additional, Bianchi, Federico, additional, Brilke, Sophia, additional, Chen, Dexian, additional, Chiu, Randall, additional, Dias, António, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, Gordon, Hamish, additional, Hofbauer, Victoria, additional, Kim, Changhyuk, additional, Koenig, Theodore K., additional, Lampilahti, Janne, additional, Lee, Chuan Ping, additional, Li, Zijun, additional, Mai, Huajun, additional, Makhmutov, Vladimir, additional, Manninen, Hanna E., additional, Marten, Ruby, additional, Mathot, Serge, additional, Mauldin, Roy L., additional, Nie, Wei, additional, Onnela, Antti, additional, Partoll, Eva, additional, Petäjä, Tuukka, additional, Pfeifer, Joschka, additional, Pospisilova, Veronika, additional, Quéléver, Lauriane L. J., additional, Rissanen, Matti, additional, Schobesberger, Siegfried, additional, Schuchmann, Simone, additional, Stozhkov, Yuri, additional, Tauber, Christian, additional, Tham, Yee Jun, additional, Tomé, António, additional, Vazquez-Pufleau, Miguel, additional, Wagner, Andrea C., additional, Wagner, Robert, additional, Wang, Yonghong, additional, Weitz, Lena, additional, Wimmer, Daniela, additional, Wu, Yusheng, additional, Yan, Chao, additional, Ye, Penglin, additional, Ye, Qing, additional, Zha, Qiaozhi, additional, Zhou, Xueqin, additional, Amorim, Antonio, additional, Carslaw, Ken, additional, Curtius, Joachim, additional, Hansel, Armin, additional, Volkamer, Rainer, additional, Winkler, Paul M., additional, Flagan, Richard C., additional, Kulmala, Markku, additional, Worsnop, Douglas R., additional, Kirkby, Jasper, additional, Donahue, Neil M., additional, Baltensperger, Urs, additional, El Haddad, Imad, additional, and Dommen, Josef, additional
- Published
- 2021
- Full Text
- View/download PDF
38. New particle formation from sulfuric acid and ammonia: nucleation and growth model based on thermodynamics derived from CLOUD measurements for a wide range of conditions
- Author
-
Kürten, Andreas and Abbatt, Jonathan
- Subjects
lcsh:Chemistry ,lcsh:QD1-999 ,ddc:550 ,lcsh:Physics ,lcsh:QC1-999 - Abstract
Understanding new particle formation and growth is important because of the strong impact of these processes on climate and air quality. Measurements to elucidate the main new particle formation mechanisms are essential; however, these mechanisms have to be implemented in models to estimate their impact on the regional and global scale. Parameterizations are computationally cheap ways of implementing nucleation schemes in models, but they have their limitations, as they do not necessarily include all relevant parameters. Process models using sophisticated nucleation schemes can be useful for the generation of look-up tables in large-scale models or for the analysis of individual new particle formation events. In addition, some other important properties can be derived from a process model that implicitly calculates the evolution of the full aerosol size distribution, e.g., the particle growth rates. Within this study, a model (SANTIAGO – Sulfuric acid Ammonia NucleaTIon And GrOwth model) is constructed that simulates new particle formation starting from the monomer of sulfuric acid up to a particle size of several hundred nanometers. The smallest sulfuric acid clusters containing one to four acid molecules and a varying amount of base (ammonia) are allowed to evaporate in the model, whereas growth beyond the pentamer (five sulfuric acid molecules) is assumed to be entirely collision-controlled. The main goal of the present study is to derive appropriate thermodynamic data needed to calculate the cluster evaporation rates as a function of temperature. These data are derived numerically from CLOUD (Cosmics Leaving OUtdoor Droplets) chamber new particle formation rates for neutral sulfuric acid–water–ammonia nucleation at temperatures between 208 and 292 K. The numeric methods include an optimization scheme to derive the best estimates for the thermodynamic data (dH and dS) and a Monte Carlo method to derive their probability density functions. The derived data are compared to literature values. Using different data sets for dH and dS in SANTIAGO detailed comparison between model results and measured CLOUD new particle formation rates is discussed.
- Published
- 2019
39. Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
- Author
-
Almeida, João, Schobesberger, Siegfried, Kürten, Andreas, Ortega, Ismael K., Kupiainen-Määttä, Oona, Praplan, Arnaud P., Adamov, Alexey, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, David, André, Dommen, Josef, Donahue, Neil M., Downard, Andrew, Dunne, Eimear, Duplissy, Jonathan, Ehrhart, Sebastian, Flagan, Richard C., Franchin, Alessandro, Guida, Roberto, Hakala, Jani, Hansel, Armin, Heinritzi, Martin, Henschel, Henning, Jokinen, Tuija, Junninen, Heikki, Kajos, Maija, Kangasluoma, Juha, Keskinen, Helmi, Kupc, Agnieszka, Kurtén, Theo, Kvashin, Alexander N., Laaksonen, Ari, Lehtipalo, Katrianne, Leiminger, Markus, Leppä, Johannes, Loukonen, Ville, Makhmutov, Vladimir, Mathot, Serge, McGrath, Matthew J., Nieminen, Tuomo, Olenius, Tinja, Onnela, Antti, Petäjä, Tuukka, Riccobono, Francesco, Riipinen, Ilona, Rissanen, Matti, Rondo, Linda, Ruuskanen, Taina, Santos, Filipe D., Sarnela, Nina, Schallhart, Simon, Schnitzhofer, Ralf, Seinfeld, John H., Simon, Mario, Sipilä, Mikko, Stozhkov, Yuri, Stratmann, Frank, Tomé, Antonio, Tröstl, Jasmin, Tsagkogeorgas, Georgios, Vaattovaara, Petri, Viisanen, Yrjo, Virtanen, Annele, Vrtala, Aron, Wagner, Paul E., Weingartner, Ernest, Wex, Heike, Williamson, Christina, Wimmer, Daniela, Ye, Penglin, Yli-Juuti, Taina, Carslaw, Kenneth S., Kulmala, Markku, Curtius, Joachim, Baltensperger, Urs, Worsnop, Douglas R., Vehkamäki, Hanna, and Kirkby, Jasper
- Published
- 2013
- Full Text
- View/download PDF
40. Supplementary material to "Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature"
- Author
-
Caudillo, Lucía, primary, Rörup, Birte, additional, Heinritzi, Martin, additional, Marie, Guillaume, additional, Simon, Mario, additional, Wagner, Andrea C., additional, Müller, Tatjana, additional, Granzin, Manuel, additional, Amorim, Antonio, additional, Ataei, Farnoush, additional, Baalbaki, Rima, additional, Bertozzi, Barbara, additional, Brasseur, Zoé, additional, Chiu, Randall, additional, Chu, Biwu, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, Gonzalez Carracedo, Loïc, additional, He, Xu-Cheng, additional, Hofbauer, Victoria, additional, Kong, Weimeng, additional, Lamkaddam, Houssni, additional, Lee, Chuan P., additional, Lopez, Brandon, additional, Mahfouz, Naser G. A., additional, Makhmutov, Vladimir, additional, Manninen, Hanna E., additional, Marten, Ruby, additional, Massabò, Dario, additional, Mauldin, Roy L., additional, Mentler, Bernhard, additional, Molteni, Ugo, additional, Onnela, Antti, additional, Pfeifer, Joschka, additional, Philippov, Maxim, additional, Piedehierro, Ana A., additional, Schervish, Meredith, additional, Scholz, Wiebke, additional, Schulze, Benjamin, additional, Shen, Jiali, additional, Stolzenburg, Dominik, additional, Stozhkov, Yuri, additional, Surdu, Mihnea, additional, Tauber, Christian, additional, Tham, Yee Jun, additional, Tian, Ping, additional, Tomé, António, additional, Vogt, Steffen, additional, Wang, Mingyi, additional, Wang, Dongyu S., additional, Weber, Stefan K., additional, Welti, André, additional, Yonghong, Wang, additional, Yusheng, Wu, additional, Zauner-Wieczorek, Marcel, additional, Baltensperger, Urs, additional, El Haddad, Imad, additional, Flagan, Richard C., additional, Hansel, Armin, additional, Höhler, Kristina, additional, Kirkby, Jasper, additional, Kulmala, Markku, additional, Lehtipalo, Katrianne, additional, Möhler, Ottmar, additional, Saathoff, Harald, additional, Volkamer, Rainer, additional, Winkler, Paul M., additional, Donahue, Neil M., additional, Kürten, Andreas, additional, and Curtius, Joachim, additional
- Published
- 2021
- Full Text
- View/download PDF
41. Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature
- Author
-
Caudillo, Lucía, primary, Rörup, Birte, additional, Heinritzi, Martin, additional, Marie, Guillaume, additional, Simon, Mario, additional, Wagner, Andrea C., additional, Müller, Tatjana, additional, Granzin, Manuel, additional, Amorim, Antonio, additional, Ataei, Farnoush, additional, Baalbaki, Rima, additional, Bertozzi, Barbara, additional, Brasseur, Zoé, additional, Chiu, Randall, additional, Chu, Biwu, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, Gonzalez Carracedo, Loïc, additional, He, Xu-Cheng, additional, Hofbauer, Victoria, additional, Kong, Weimeng, additional, Lamkaddam, Houssni, additional, Lee, Chuan P., additional, Lopez, Brandon, additional, Mahfouz, Naser G. A., additional, Makhmutov, Vladimir, additional, Manninen, Hanna E., additional, Marten, Ruby, additional, Massabò, Dario, additional, Mauldin, Roy L., additional, Mentler, Bernhard, additional, Molteni, Ugo, additional, Onnela, Antti, additional, Pfeifer, Joschka, additional, Philippov, Maxim, additional, Piedehierro, Ana A., additional, Schervish, Meredith, additional, Scholz, Wiebke, additional, Schulze, Benjamin, additional, Shen, Jiali, additional, Stolzenburg, Dominik, additional, Stozhkov, Yuri, additional, Surdu, Mihnea, additional, Tauber, Christian, additional, Tham, Yee Jun, additional, Tian, Ping, additional, Tomé, António, additional, Vogt, Steffen, additional, Wang, Mingyi, additional, Wang, Dongyu S., additional, Weber, Stefan K., additional, Welti, André, additional, Yonghong, Wang, additional, Yusheng, Wu, additional, Zauner-Wieczorek, Marcel, additional, Baltensperger, Urs, additional, El Haddad, Imad, additional, Flagan, Richard C., additional, Hansel, Armin, additional, Höhler, Kristina, additional, Kirkby, Jasper, additional, Kulmala, Markku, additional, Lehtipalo, Katrianne, additional, Möhler, Ottmar, additional, Saathoff, Harald, additional, Volkamer, Rainer, additional, Winkler, Paul M., additional, Donahue, Neil M., additional, Kürten, Andreas, additional, and Curtius, Joachim, additional
- Published
- 2021
- Full Text
- View/download PDF
42. Role of iodine oxoacids in atmospheric aerosol nucleation
- Author
-
He, Xu-Cheng, Tham, Yee Jun, Dada, Lubna, Wang, Mingyi, Finkenzeller, Henning, Stolzenburg, Dominik, Iyer, Siddharth, Simon, Mario, Kürten, Andreas, Shen, Jiali, Rörup, Birte, Rissanen, Matti, Schobesberger, Siegfried, Baalbaki, Rima, Wang, Dongyu S., Koenig, Theodore K., Jokinen, Tuija, Sarnela, Nina, Beck, Lisa J., Almeida, João, Amanatidis, Stavros, Amorim, António, Ataei, Farnoush, Baccarini, Andrea, Bertozzi, Barbara, Bianchi, Federico, Brilke, Sophia, Caudillo, Lucía, Chen, Dexian, Chiu, Randall, Chu, Biwu, Dias, António, Ding, Aijun, Dommen, Josef, Duplissy, Jonathan, El Haddad, Imad, Gonzalez Carracedo, Loïc, Granzin, Manuel, Hansel, Armin, Heinritzi, Martin, Hofbauer, Victoria, Junninen, Heikki, Kangasluoma, Juha, Kemppainen, Deniz, Kim, Changhyuk, Kong, Weimeng, Krechmer, Jordan E., Kvashin, Aleksander, Laitinen, Totti, Lamkaddam, Houssni, Lee, Chuan Ping, Lehtipalo, Katrianne, Leiminger, Markus, Li, Zijun, Makhmutov, Vladimir, Manninen, Hanna E., Marie, Guillaume, Marten, Ruby, Mathot, Serge, Mauldin, Roy L., Mentler, Bernhard, Möhler, Ottmar, Müller, Tatjana, Nie, Wei, Onnela, Antti, Petäjä, Tuukka, Pfeifer, Joschka, Philippov, Maxim, Ranjithkumar, Ananth, Saiz-Lopez, Alfonso, Salma, Imre, Scholz, Wiebke, Schuchmann, Simone, Schulze, Benjamin, Steiner, Gerhard, Stozhkov, Yuri, Tauber, Christian, Tomé, António, Thakur, Roseline C., Väisänen, Olli, Vazquez-Pufleau, Miguel, Wagner, Andrea C., Wang, Yonghong, Weber, Stefan K., Winkler, Paul M., Wu, Yusheng, Xiao, Mao, Yan, Chao, Ye, Qing, Ylisirniö, Arttu, Zauner-Wieczorek, Marcel, Zha, Qiaozhi, Zhou, Putian, Flagan, Richard C., Curtius, Joachim, Baltensperger, Urs, Kulmala, Markku, Kerminen, Veli-Matti, Kurtén, Theo, Donahue, Neil M., Volkamer, Rainer, Kirkby, Jasper, Worsnop, Douglas R., Sipilä, Mikko, Tampere University, Physics, European Organization for Nuclear Research, Academy of Finland, European Commission, Consejo Superior de Investigaciones Científicas (España), Austrian Science Fund, Swiss National Science Foundation, National Science Foundation (US), Federal Ministry of Education and Research (Germany), Fundação para a Ciência e a Tecnologia (Portugal), Jiangsu Collaborative Innovation Center of Climate Change, Estonian Research Council, National Research, Development and Innovation Office (Hungary), and National Aeronautics and Space Administration (US)
- Subjects
Earth sciences ,ddc:550 ,114 Physical sciences - Abstract
8 pags., 5 figs., Iodic acid (HIO) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIOparticles are rapid, even exceeding sulfuric acid-ammonia rates under similar conditions. We also find that ion-induced nucleation involves IOand the sequential addition of HIOand that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO) followed by HIO, showing that HIOplays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO, which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere., We thank the European Organization for Nuclear Research (CERN) for supporting CLOUD with important technical and financial resources and for providing a particle beam from the CERN Proton Synchrotron. This research has received support from the Academy of Finland (projects 316114, 307331, 310682, 266388, 3282290, 306853, 296628, 229574, 333397, 326948, and 1325656); the European Research Council (projects 692891, 616075, 764991, 316662, 742206, and 714621); CSC – Finnish IT center; the EC Seventh Framework Programme and the EU H2020 programme Marie Skłodowska Curie ITN “CLOUD-TRAIN” (316662) and “CLOUD-MOTION” (764991); Austrian Science Fund (FWF) (J3951-N36 and P27295-N20); the Swiss National Science Foundation (20FI20_159851, 200021_169090, 200020_172602, and 20FI20_172622); the U.S. National Science Foundation (grants AGS1447056, AGS1439551, AGS1801574, AGS1620530, AGS1801897, AGS153128, AGS1649147, AGS1801280, AGS1602086, and AGS1801329); MSCA H2020 COFUND-FP-CERN2014 fellowship (665779); German Federal Ministry of Education and Research: CLOUD-16 (01LK1601A); Portuguese Foundation for Science and Technology (CERN/FIS-COM/0014/2017); Academy of Finland Centre of Excellence in Atmospheric Sciences (grant 272041); European Regional Development Fund (project MOBTT42); Jiangsu Collaborative Innovation Center for Climate Change; Yangtze River Delta Atmosphere and Earth System Science National Observation and Research Station; Estonian Research Council (project PRG714); Hungarian National Research, Development and Innovation Office (K116788 and K132254); NASA Graduate Fellowship (NASA-NNX16AP36H); and ACTRIS 2TNA H2020 OCTAVE (654109).
- Published
- 2021
43. Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature
- Author
-
Caudillo, Lucía, Rörup, Birte, Heinritzi, Martin, Marie, Guillaume, Simon, Mario, Wagner, Andrea C., Müller, Tatjana, Granzin, Manuel, Amorim, Antonio, Ataei, Farnoush, Baalbaki, Rima, Bertozzi, Barbara, Brasseur, Zoé, Chiu, Randall, Chu, Biwu, Dada, Lubna, Duplissy, Jonathan, Finkenzeller, Henning, Gonzalez Carracedo, Loïc, He, Xu-Cheng, Hofbauer, Victoria, Kong, Weimeng, Lamkaddam, Houssni, Lee, Chuan P., Lopez, Brandon, Mahfouz, Naser G. A., Makhmutov, Vladimir, Manninen, Hanna E., Marten, Ruby, Massabò, Dario, Mauldin, Roy L., Mentler, Bernhard, Molteni, Ugo, Onnela, Antti, Pfeifer, Joschka, Philippov, Maxim, Piedehierro, Ana A., Schervish, Meredith, Scholz, Wiebke, Schulze, Benjamin, Shen, Jiali, Stolzenburg, Dominik, Stozhkov, Yuri, Surdu, Mihnea, Tauber, Christian, Tham, Yee Jun, Tian, Ping, Tomé, António, Vogt, Steffen, Wang, Mingyi, Wang, Dongyu S., Weber, Stefan K., Welti, André, Yonghong, Wang, Yusheng, Wu, Zauner-Wieczorek, Marcel, Baltensperger, Urs, El Haddad, Imad, Flagan, Richard C., Hansel, Armin, Höhler, Kristina, Kirkby, Jasper, Kulmala, Markku, Lehtipalo, Katrianne, Möhler, Ottmar, Saathoff, Harald, Volkamer, Rainer, Winkler, Paul M., Donahue, Neil M., Kürten, Andreas, and Curtius, Joachim
- Subjects
Atmospheric Science - Abstract
The abstract is available here: https://uscholar.univie.ac.at/o:1597268
- Published
- 2021
44. Corrigendum: New particle formation from sulfuric acid and ammonia : nucleation and growth model based on thermodynamics derived from CLOUD measurements for a wide range of condition
- Author
-
Kürten, Andreas
- Subjects
ddc:550 - Abstract
Corrigendum to "New particle formation from sulfuric acid and ammonia: nucleation and growth model based on thermodynamics derived from CLOUD measurements for a wide range of conditions" published in Atmos. Chem. Phys., 19, 5033–5050, 2019
- Published
- 2020
45. Molecular understanding of new-particle formation from α-pinene between −50 and +25 °C
- Author
-
Simon, Mario, Dada, Lubna, Heinritzi, Martin, Scholz, Wiebke, Stolzenburg, Dominik, Fischer, Lukas, Wagner, Andrea C., Kürten, Andreas, Rörup, Birte, He, Xu-Cheng, Almeida, João, Baalbaki, Rima, Baccarini, Andrea, Bauer, Paulus S., Beck, Lisa, Bergen, Anton, Bianchi, Federico, Bräkling, Steffen, Brilke, Sophia, Caudillo, Lucia, Chen, Dexian, Chu, Biwu, Dias, António, Draper, Danielle C., Duplissy, Jonathan, El-Haddad, Imad, Finkenzeller, Henning, Frege, Carla, Gonzalez-Carracedo, Loic, Gordon, Hamish, Granzin, Manuel, Hakala, Jani, Hofbauer, Victoria, Hoyle, Christopher R., Kim, Changhyuk, Kong, Weimeng, Lamkaddam, Houssni, Lee, Chuan P., Lehtipalo, Katrianne, Leiminger, Markus, Mai, Huajun, Manninen, Hanna E., Marie, Guillaume, Marten, Ruby, Mentler, Bernhard, Molteni, Ugo, Nichman, Leonid, Nie, Wei, Ojdanic, Andrea, Onnela, Antti, Partoll, Eva, Petäjä, Tuukka, Pfeifer, Joschka, Philippov, Maxim, Quéléver, Lauriane L. J., Ranjithkumar, Ananth, Rissanen, Matti P., Schallhart, Simon, Schobesberger, Siegfried, Schuchmann, Simone, Shen, Jiali, Sipilä, Mikko, Steiner, Gerhard, Stozhkov, Yuri, Tauber, Christian, Tham, Yee J., Tomé, António R., Vazquez-Pufleau, Miguel, Vogel, Alexander L., Wagner, Robert, Wang, Mingyi, Wang, Dongyu S., Wang, Yonghong, Weber, Stefan K., Wu, Yusheng, Xiao, Mao, Yan, Chao, Ye, Penglin, Ye, Qing, Zauner-Wieczorek, Marcel, Zhou, Xueqin, Baltensperger, Urs, Dommen, Josef, Flagan, Richard C., Hansel, Armin, Kulmala, Markku, Volkamer, Rainer, Winkler, Paul M., Worsnop, Douglas R., Donahue, Neil M., Kirkby, Jasper, Curtius, Joachim, Tampere University, and Physics
- Subjects
Atmospheric Science ,114 Physical sciences - Abstract
Highly oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth s climate. HOMs are formed by rapid, gasphase autoxidation of volatile organic compounds (VOCs) such as -pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs can play an important role in new-particle formation (NPF) and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds such as sulfuric acid. Both the autoxidation reaction forming HOMs and their NPF rates are expected to be strongly dependent on temperature. However, experimental data on both effects are limited. Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN to address this question. In this study, we show that a decrease in temperature (from C25 to 50 C) results in a reduced HOM yield and reduced oxidation state of the products, whereas the NPF rates (J1:7 nm) increase substantially. Measurements with two different chemical ionization mass spectrometers (using nitrate and protonated water as reagent ion, respectively) provide the molecular composition of the gaseous oxidation products, and a two-dimensional volatility basis set (2D VBS) model provides their volatility distribution. The HOM yield decreases with temperature from 6.2% at 25 C to 0.7% at 50 C. However, there is a strong reduction of the saturation vapor pressure of each oxidation state as the temperature is reduced. Overall, the reduction in volatility with temperature leads to an increase in the nucleation rates by up to 3 orders of magnitude at 50 C compared with 25 C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature, since the neutral molecular clusters have increased stability against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic NPF at the molecular level. Our measurements, therefore, improve our understanding of pure biogenic NPF for a wide range of tropospheric temperatures and precursor concentrations. publishedVersion
- Published
- 2020
46. Development and characterization of an ion trap mass spectrometer for the on-line chemical analysis of atmospheric aerosol particles
- Author
-
Kürten, Andreas, Curtius, Joachim, Helleis, Frank, Lovejoy, Edward R., and Borrmann, Stephan
- Published
- 2007
- Full Text
- View/download PDF
47. Supplementary material to "The driving factors of new particle formation and growth in the polluted boundary layer"
- Author
-
Xiao, Mao, primary, Hoyle, Christopher R., additional, Dada, Lubna, additional, Stolzenburg, Dominik, additional, Kürten, Andreas, additional, Wang, Mingyi, additional, Lamkaddam, Houssni, additional, Garmash, Olga, additional, Mentler, Bernhard, additional, Molteni, Ugo, additional, Baccarini, Andrea, additional, Simon, Mario, additional, He, Xu-Cheng, additional, Lehtipalo, Katrianne, additional, Ahonen, Lauri R., additional, Baalbaki, Rima, additional, Bauer, Paulus S., additional, Beck, Lisa, additional, Bell, David, additional, Bianchi, Federico, additional, Brilke, Sophia, additional, Chen, Dexian, additional, Chiu, Randall, additional, Dias, António, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, Gordon, Hamish, additional, Hofbauer, Victoria, additional, Kim, Changhyuk, additional, Koenig, Theodore K., additional, Lampilahti, Janne, additional, Lee, Chuan Ping, additional, Li, Zijun, additional, Mai, Huajun, additional, Makhmutov, Vladimir, additional, Manninen, Hanna E., additional, Marten, Ruby, additional, Mathot, Serge, additional, Mauldin, Roy L., additional, Nie, Wei, additional, Onnela, Antti, additional, Partoll, Eva, additional, Petäjä, Tuukka, additional, Pfeifer, Joschka, additional, Pospisilova, Veronika, additional, Quéléver, Lauriane L. J., additional, Rissanen, Matti, additional, Schobesberger, Siegfried, additional, Schuchmann, Simone, additional, Stozhkov, Yuri, additional, Tauber, Christian, additional, Tham, Yee Jun, additional, Tomé, António, additional, Vazquez-Pufleau, Miguel, additional, Wagner, Andrea C., additional, Wanger, Robert, additional, Wang, Yonghong, additional, Weitz, Lena, additional, Wimmer, Daniela, additional, Wu, Yusheng, additional, Yan, Chao, additional, Ye, Penglin, additional, Ye, Qing, additional, Zha, Qiaozhi, additional, Zhou, Xueqin, additional, Amorim, Antonio, additional, Carslaw, Ken, additional, Curtius, Joachim, additional, Hansel, Armin, additional, Volkamer, Rainer, additional, Winkler, Paul M., additional, Flagan, Richard C., additional, Kulmala, Markku, additional, Worsnop, Douglas R., additional, Kirkby, Jasper, additional, Donahue, Neil M., additional, Baltensperger, Urs, additional, El Haddad, Imad, additional, and Dommen, Josef, additional
- Published
- 2021
- Full Text
- View/download PDF
48. Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry
- Author
-
Surdu, Mihnea, primary, Pospisilova, Veronika, additional, Xiao, Mao, additional, Wang, Mingyi, additional, Mentler, Bernhard, additional, Simon, Mario, additional, Stolzenburg, Dominik, additional, Hoyle, Christopher R., additional, Bell, David M., additional, Lee, Chuan Ping, additional, Lamkaddam, Houssni, additional, Lopez-Hilfiker, Felipe, additional, Ahonen, Lauri R., additional, Amorim, Antonio, additional, Baccarini, Andrea, additional, Chen, Dexian, additional, Dada, Lubna, additional, Duplissy, Jonathan, additional, Finkenzeller, Henning, additional, He, Xu-Cheng, additional, Hofbauer, Victoria, additional, Kim, Changhyuk, additional, Kürten, Andreas, additional, Kvashnin, Aleksandr, additional, Lehtipalo, Katrianne, additional, Makhmutov, Vladimir, additional, Molteni, Ugo, additional, Nie, Wei, additional, Onnela, Antti, additional, Petäjä, Tuukka, additional, Quéléver, Lauriane L. J., additional, Tauber, Christian, additional, Tomé, António, additional, Wagner, Robert, additional, Yan, Chao, additional, Prevot, Andre S. H., additional, Dommen, Josef, additional, Donahue, Neil M., additional, Hansel, Armin, additional, Curtius, Joachim, additional, Winkler, Paul M., additional, Kulmala, Markku, additional, Volkamer, Rainer, additional, Flagan, Richard C., additional, Kirkby, Jasper, additional, Worsnop, Douglas R., additional, Slowik, Jay G., additional, Wang, Dongyu S., additional, Baltensperger, Urs, additional, and Haddad, Imad el, additional
- Published
- 2021
- Full Text
- View/download PDF
49. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
- Author
-
Kirkby, Jasper, Curtius, Joachim, Almeida, João, Dunne, Eimear, Duplissy, Jonathan, Ehrhart, Sebastian, Franchin, Alessandro, Gagné, Stéphanie, Ickes, Luisa, Kürten, Andreas, Kupc, Agnieszka, Metzger, Axel, Riccobono, Francesco, Rondo, Linda, Schobesberger, Siegfried, Tsagkogeorgas, Georgios, Wimmer, Daniela, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, David, André, Dommen, Josef, Downard, Andrew, Ehn, Mikael, Flagan, Richard C., Haider, Stefan, Hansel, Armin, Hauser, Daniel, Jud, Werner, Junninen, Heikki, Kreissl, Fabian, Kvashin, Alexander, Laaksonen, Ari, Lehtipalo, Katrianne, Lima, Jorge, Lovejoy, Edward R., Makhmutov, Vladimir, Mathot, Serge, Mikkilä, Jyri, Minginette, Pierre, Mogo, Sandra, Nieminen, Tuomo, Onnela, Antti, Pereira, Paulo, Petäjä, Tuukka, Schnitzhofer, Ralf, Seinfeld, John H., Sipilä, Mikko, Stozhkov, Yuri, Stratmann, Frank, Tomé, Antonio, Vanhanen, Joonas, Viisanen, Yrjo, Vrtala, Aron, Wagner, Paul E., Walther, Hansueli, Weingartner, Ernest, Wex, Heike, Winkler, Paul M., Carslaw, Kenneth S., Worsnop, Douglas R., Baltensperger, Urs, and Kulmala, Markku
- Published
- 2011
- Full Text
- View/download PDF
50. Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method
- Author
-
He, Xu-Cheng, primary, Iyer, Siddharth, additional, Sipilä, Mikko, additional, Ylisirniö, Arttu, additional, Peltola, Maija, additional, Kontkanen, Jenni, additional, Baalbaki, Rima, additional, Simon, Mario, additional, Kürten, Andreas, additional, Tham, Yee Jun, additional, Pesonen, Janne, additional, Ahonen, Lauri R., additional, Amanatidis, Stavros, additional, Amorim, Antonio, additional, Baccarini, Andrea, additional, Beck, Lisa, additional, Bianchi, Federico, additional, Brilke, Sophia, additional, Chen, Dexian, additional, Chiu, Randall, additional, Curtius, Joachim, additional, Dada, Lubna, additional, Dias, Antonio, additional, Dommen, Josef, additional, Donahue, Neil M., additional, Duplissy, Jonathan, additional, El Haddad, Imad, additional, Finkenzeller, Henning, additional, Fischer, Lukas, additional, Heinritzi, Martin, additional, Hofbauer, Victoria, additional, Kangasluoma, Juha, additional, Kim, Changhyuk, additional, Koenig, Theodore K., additional, Kubečka, Jakub, additional, Kvashnin, Aleksandr, additional, Lamkaddam, Houssni, additional, Lee, Chuan Ping, additional, Leiminger, Markus, additional, Li, Zijun, additional, Makhmutov, Vladimir, additional, Xiao, Mao, additional, Marten, Ruby, additional, Nie, Wei, additional, Onnela, Antti, additional, Partoll, Eva, additional, Petäjä, Tuukka, additional, Salo, Vili-Taneli, additional, Schuchmann, Simone, additional, Steiner, Gerhard, additional, Stolzenburg, Dominik, additional, Stozhkov, Yuri, additional, Tauber, Christian, additional, Tomé, António, additional, Väisänen, Olli, additional, Vazquez-Pufleau, Miguel, additional, Volkamer, Rainer, additional, Wagner, Andrea C., additional, Wang, Mingyi, additional, Wang, Yonghong, additional, Wimmer, Daniela, additional, Winkler, Paul M., additional, Worsnop, Douglas R., additional, Wu, Yusheng, additional, Yan, Chao, additional, Ye, Qing, additional, Lehtinen, Kari, additional, Nieminen, Tuomo, additional, Manninen, Hanna E., additional, Rissanen, Matti, additional, Schobesberger, Siegfried, additional, Lehtipalo, Katrianne, additional, Baltensperger, Urs, additional, Hansel, Armin, additional, Kerminen, Veli-Matti, additional, Flagan, Richard C., additional, Kirkby, Jasper, additional, Kurtén, Theo, additional, and Kulmala, Markku, additional
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.