1. Modern methods for longitudinal data analysis, capabilities, caveats and cautions
- Author
-
Lin, Ge, Justin X, Tu, Hui, Zhang, Hongyue, Wang, Hua, He, and Douglas, Gunzler
- Subjects
correlated outcomes ,binary variables ,加权广义估计方程 ,latent variable models ,相关结果 ,generalized linear mixed-effects models ,SAS ,广义线性混合效应 模型 ,weighted generalized estimating equations ,潜变量模型 ,二分类变量 ,Biostatistics in Psychiatry (35) - Abstract
Longitudinal studies are used in mental health research and services studies. The dominant approaches for longitudinal data analysis are the generalized linear mixed-effects models (GLMM) and the weighted generalized estimating equations (WGEE). Although both classes of models have been extensively published and widely applied, differences between and limitations about these methods are not clearly delineated and well documented. Unfortunately, some of the differences and limitations carry significant implications for reporting, comparing and interpreting research findings. In this report, we review both major approaches for longitudinal data analysis and highlight their similarities and major differences. We focus on comparison of the two classes of models in terms of model assumptions, model parameter interpretation, applicability and limitations, using both real and simulated data. We discuss caveats and cautions when applying the two different approaches to real study data.纵向研究可用于精神卫生及其服务领域的科研 中。纵向数据分析的主要方法是广义线性混合效应模 型(GLMM)和加权广义估计方程(WGEE)。虽然这 两个模型已被广泛应用,也有大量文献发表,但是人 们并没有清晰地描述这些方法间的差别以及方法本身 的局限性,缺少相关的文献记录。遗憾的是,有些差 别和局限性会明显影响对研究结果的报告、比较和解 释。本文回顾了纵向数据分析的两种主要方法,强调两 者的相似之处和主要差别。我们使用真实数据和模拟 数据着重比较这两类模型的假设、对参数的解释、适 用性和局限性,并讨论了将这两种不同的方法用于真 实数据研究时的注意事项,提出了相关的警示。.
- Published
- 2017