4 results on '"Julia Netz"'
Search Results
2. On the Accuracy of Mean-Field Spin–Orbit Operators for 3d Transition-Metal Systems
- Author
-
Andreas Köhn, Alexander O. Mitrushchenkov, Julia Netz, Institute for Theoretical Chemistry [Stuttgart], University of Stuttgart, Laboratoire Modélisation et Simulation Multi-Echelle (MSME), and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
- Subjects
Physics ,010304 chemical physics ,Spintronics ,Configuration interaction ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,Computer Science Applications ,Computational physics ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Operator (computer programming) ,Mean field theory ,0103 physical sciences ,Orbit (dynamics) ,Complete active space ,Physical and Theoretical Chemistry ,Quantum ,Spin-½ - Abstract
International audience; We present an extensive study of the performance of mean-field approximations to the spin−orbit operators on realistic molecular systems, as widely used in applications like single-molecule magnets, molecular quantum bits, and molecular spintronic devices. The test systems feature a 3d transition-metal center ion (V, Cr, Mn, Fe, Co, and Ni) in various coordinations and a multitude of energetically close- lying open-shell configurations that can couple via the spin−orbit operator. We performed complete active space spin−orbit configuration interaction calculations and compared the full two-electron Breit-Pauli spin−orbit operator to different approximations: the one-center approximation, the spin−orbit mean-field approach with electron densities from different state-averaging procedures, and the atomic mean-field integral approximation. We show that the mean-field approaches can lead to significant errors in the spin−orbital coupling matrix elements, which becomes particularly visible for the computed zero-field splittings. The one-center approximation, keeping all relevant two-electron terms, seems to be a significantly more accurate choice for the examples from our test set.
- Published
- 2021
- Full Text
- View/download PDF
3. Correction: Determination of the electronic structure of a dinuclear dysprosium single molecule magnet without symmetry idealization
- Author
-
Mauro Perfetti, Maren Gysler, Yvonne Rechkemmer-Patalen, Peng Zhang, Hatice Taştan, Florian Fischer, Julia Netz, Wolfgang Frey, Lucas W. Zimmermann, Thomas Schleid, Michael Hakl, Milan Orlita, Liviu Ungur, Liviu Chibotaru, Theis Brock-Nannestad, Stergios Piligkos, and Joris van Slageren
- Subjects
Chemistry ,General Chemistry - Abstract
We present the in-depth determination of the magnetic properties and electronic structure of the luminescent and volatile dysprosium-based single molecule magnet [Dy2(bpm)(fod)6] (Hfod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione, bpm = 2,2-bipyrimidine)., We present the in-depth determination of the magnetic properties and electronic structure of the luminescent and volatile dysprosium-based single molecule magnet [Dy2(bpm)(fod)6] (Hfod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione, bpm = 2,2′-bipyrimidine). Ab initio calculations were used to obtain a global picture of the electronic structure and to predict possible single molecule magnet behaviour, confirmed by experiments. The orientation of the susceptibility tensor was determined by means of cantilever torque magnetometry. An experimental determination of the electronic structure of the lanthanide ion was obtained combining Luminescence, Far Infrared and Magnetic Circular Dichroism spectroscopies. Fitting these energies to the full single ion plus crystal field Hamiltonian allowed determination of the eigenstates and crystal field parameters of a lanthanide complex without symmetry idealization. We then discuss the impact of a stepwise symmetry idealization on the modelling of the experimental data. This result is particularly important in view of the misleading outcomes that are often obtained when the symmetry of lanthanide complexes is idealized.
- Published
- 2019
4. Determination of the electronic structure of a dinuclear dysprosium single molecule magnet without symmetry idealization
- Author
-
Yvonne Rechkemmer-Patalen, Lucas W. Zimmermann, Maren Gysler, Thomas Schleid, Mauro Perfetti, Liviu Ungur, Stergios Piligkos, Hatice Taştan, Wolfgang Frey, Theis Brock-Nannestad, M. Hakl, Liviu F. Chibotaru, Joris van Slageren, Milan Orlita, Florian S. U. Fischer, Julia Netz, Peng Zhang, Institut für Physikalische Chemie, Universität Stuttgart [Stuttgart], Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Stryker Osteosynthesis, Stryker, Institut fr Anorganische Chemie der Universitt Stuttgart (IAC), Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G ), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire des champs magnétiques intenses (LCMI-GHMFL), Centre National de la Recherche Scientifique (CNRS), Division of Quantum and Chemistry, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Institute for Nanoscale Physics and Chemistry (INPAC), Université Catholique de Louvain = Catholic University of Louvain (UCL), Department of chemistry, IT University of Copenhagen, and Physikalisches Institut [Stuttgart] (Pfaffenwaldring 57, D–70550 Stuttgart, Germany)
- Subjects
Lanthanide ,Materials science ,DILANTHANIDE COMPLEXES ,Chemistry, Multidisciplinary ,chemistry.chemical_element ,RELAXATION ,Electronic structure ,010402 general chemistry ,01 natural sciences ,Molecular physics ,Ion ,Far infrared ,DESIGN ,Ab initio quantum chemistry methods ,[CHIM]Chemical Sciences ,Single-molecule magnet ,SPECTROSCOPIC DETERMINATION ,ION ,EXCHANGE ,single molecule magnets, spectroscopy, magnetism ,ComputingMilieux_MISCELLANEOUS ,Science & Technology ,010405 organic chemistry ,Magnetic circular dichroism ,TRIANGLES ,General Chemistry ,0104 chemical sciences ,Chemistry ,chemistry ,Physical Sciences ,Dysprosium ,LIGAND-FIELD ANALYSIS ,CRYSTAL-FIELD ,ANISOTROPY BARRIER - Abstract
We present the in-depth determination of the magnetic properties and electronic structure of the luminescent and volatile dysprosium-based single molecule magnet [Dy2(bpm)(fod)6] (Hfod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione, bpm = 2,2'-bipyrimidine). Ab initio calculations were used to obtain a global picture of the electronic structure and to predict possible single molecule magnet behaviour, confirmed by experiments. The orientation of the susceptibility tensor was determined by means of cantilever torque magnetometry. An experimental determination of the electronic structure of the lanthanide ion was obtained combining Luminescence, Far Infrared and Magnetic Circular Dichroism spectroscopies. Fitting these energies to the full single ion plus crystal field Hamiltonian allowed determination of the eigenstates and crystal field parameters of a lanthanide complex without symmetry idealization. We then discuss the impact of a stepwise symmetry idealization on the modelling of the experimental data. This result is particularly important in view of the misleading outcomes that are often obtained when the symmetry of lanthanide complexes is idealized. ispartof: CHEMICAL SCIENCE vol:10 issue:7 pages:2101-2110 ispartof: location:England status: published
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.