1. DI-3-n-butylphthalide mitigates stress-induced cognitive deficits in mice through inhibition of NLRP3-Mediated neuroinflammation
- Author
-
Xiu Chen, Juan-Ling He, Xue-Ting Liu, Na Zhao, Fan Geng, Meng-Meng Zhu, Gong-Ping Liu, and Qing-Guo Ren
- Subjects
DI-3-n-Butylphthalide ,Chronic stress ,Cognitive deficits ,NLRP3 inflammasome ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 ,Neurology. Diseases of the nervous system ,RC346-429 ,Neurophysiology and neuropsychology ,QP351-495 - Abstract
Our previous study has demonstrated that chronic stress could cause cognitive deficits and tau pathology. However, the underlying mechanism and whether/how DI-3-n-Butylphthalide (NBP) ameliorates these effects are still unclear. Here, Wild-type mice were subjected to chronic unpredictable and mild stress (CUMS) for 8 weeks. Following the initial 4 weeks, the stressed animals were separated into susceptible (depressive) and unsusceptible (resilient) groups based on behavioral tests. Then, NBP (30 mg/kg i.g) was administered for 4 weeks. Morris water maze (MWM), Western-blot, Golgi staining, immunofluorescence staining and ELISA were used to examine behavioral, biochemical, and pathological changes. The results showed that both depressive and resilient mice displayed spatial memory deficits and an accumulation of tau in the hippocampus. Activated microglia and NLRP3 inflammasome were found after 8-week chronic stress. We also found a decreased level of postsynaptic density (PSD) related proteins (PSD93 and PSD95) and decreased the number of dendritic spines in the hippocampus. Interestingly, almost all the pathological changes in depressive and resilient mice previously mentioned could be reversed by NBP treatment. To further investigate the role of NLRP3 inflammasome in chronic stress-induced cognitive deficits, NLRP3 KO mice were also exposed to chronic stress. And these changes induced by chronic stress could not be found in NLRP3 KO mice. These results show an important role for the NLRP3/caspase-1/IL-1β axis in chronic stress-induced cognitive deficits and NBP meliorates cognitive impairments and selectively attenuates phosphorylated tau accumulation in stressed mice through regulation of NLRP3 inflammatory signaling pathway.
- Published
- 2022
- Full Text
- View/download PDF