1. BECA: A Blockchain-Based Edge Computing Architecture for Internet of Things Systems
- Author
-
Oluwashina Joseph Ajayi, Joseph Rafferty, Jose Santos, Matias Garcia-Constantino, and Zhan Cui
- Subjects
IoT ,edge computing ,auditability ,Blockchain ,non-repudiation ,privacy ,Computer software ,QA76.75-76.765 ,Technology ,Cybernetics ,Q300-390 - Abstract
The scale of Internet of Things (IoT) systems has expanded in recent times and, in tandem with this, IoT solutions have developed symbiotic relationships with technologies, such as edge Computing. IoT has leveraged edge computing capabilities to improve the capabilities of IoT solutions, such as facilitating quick data retrieval, low latency response, and advanced computation, among others. However, in contrast with the benefits offered by edge computing capabilities, there are several detractors, such as centralized data storage, data ownership, privacy, data auditability, and security, which concern the IoT community. This study leveraged blockchain’s inherent capabilities, including distributed storage system, non-repudiation, privacy, security, and immutability, to provide a novel, advanced edge computing architecture for IoT systems. Specifically, this blockchain-based edge computing architecture addressed centralized data storage, data auditability, privacy, data ownership, and security. Following implementation, the performance of this solution was evaluated to quantify performance in terms of response time and resource utilization. The results show the viability of the proposed and implemented architecture, characterized by improved privacy, device data ownership, security, and data auditability while implementing decentralized storage.
- Published
- 2021
- Full Text
- View/download PDF