SREBP-2, oxidosqualene cyclase (OSC) or lanosterol demethylase were identified as novel sterol pathway-associated targets that, when probed with chemical agents, can inhibit hepatitis C virus (HCV) replication. Using a combination chemical genetics approach, combinations of chemicals targeting sterol pathway enzymes downstream of and including OSC or protein geranylgeranyl transferase I (PGGT) produce robust and selective synergistic inhibition of HCV replication. Inhibition of enzymes upstream of OSC elicit proviral responses that are dominant to the effects of inhibiting all downstream targets. Inhibition of the sterol pathway without inhibition of regulatory feedback mechanisms ultimately results in an increase in HCV replication because of a compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) expression. Increases in HMGCR expression without inhibition of HMGCR enzymatic activity ultimately stimulate HCV replication through increasing the cellular pool of geranylgeranyl pyrophosphate (GGPP). Chemical inhibitors that ultimately prevent SREBP-2 activation, inhibit PGGT or encourage the production of polar sterols have great potential as HCV therapeutics if associated toxicities can be reduced., Chemical inhibition of enzymes in either the cholesterol or the fatty acid biosynthetic pathways has been shown to impact viral replication, both positively and negatively (Su et al, 2002; Ye et al, 2003; Kapadia and Chisari, 2005; Sagan et al, 2006; Amemiya et al, 2008). FBL2 has been identified as a 50 kDa geranylgeranylated host protein that is necessary for localization of the hepatitis C virus (HCV) replication complex to the membranous web through its close association with the HCV protein NS5A and is critical for HCV replication (Wang et al, 2005). Inhibition of the protein geranylgeranyl transferase I (PGGT), an enzyme that transfers geranylgeranyl pyrophosphate (GGPP) to cellular proteins such as FBL2 for the purpose of membrane anchoring, negatively impacts HCV replication (Ye et al, 2003). Conversely, chemical agents that increase intracellular GGPP concentrations promote viral replication (Kapadia and Chisari, 2005). Statin compounds that inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in the sterol pathway (Goldstein and Brown, 1990), have been suggested to inhibit HCV replication through ultimately reducing the cellular pool of GGPP (Ye et al, 2003; Kapadia and Chisari, 2005; Ikeda et al, 2006). However, inhibition of the sterol pathway with statin drugs has not yielded consistent results in patients. The use of statins for the treatment of HCV is likely to be complicated by the reported compensatory increase in HMGCR expression in vitro and in vivo (Stone et al, 1989; Cohen et al, 1993) in response to treatment. Enzymes in the sterol pathway are regulated on a transcriptional level by sterol regulatory element-binding proteins (SREBPs), specifically SREBP-2 (Hua et al, 1993; Brown and Goldstein, 1997). When cholesterol stores in cells are depleted, SREBP-2 activates transcription of genes in the sterol pathway such as HMGCR, HMG-CoA synthase, farnesyl pyrophosphate (FPP) synthase, squalene synthase (SQLS) and the LDL receptor (Smith et al, 1988, 1990; Sakai et al, 1996; Brown and Goldstein, 1999; Horton et al, 2002). The requirement of additional downstream sterol pathway metabolites for HCV replication has not been completely elucidated. To further understand the impact of the sterol pathway and its regulation on HCV replication, we conducted a high-throughput combination chemical genetic screen using 16 chemical probes that are known to modulate the activity of target enzymes relating to the sterol biosynthesis pathway (Figure 1). Using this approach, we identified several novel antiviral targets including SREBP-2 as well as targets downstream of HMGCR in the sterol pathway such as oxidosqualene cyclase (OSC) and lanosterol demethylase. Many of our chemical probes, specifically SR-12813, farnesol and squalestatin, strongly promoted replicon replication. The actions of both farnesol and squalestatin ultimately result in an increase in the cellular pool of GGPP, which is known to increase HCV replication (Ye et al, 2003; Kapadia and Chisari, 2005; Wang et al, 2005). Chemical combinations targeting enzymes upstream of squalene epoxidase (SQLE) at the top of the sterol pathway (Figure 4A) elicited Bateson-type epistatic responses (Boone et al, 2007), where the upstream agent's response predominates over the effects of inhibiting all downstream targets. This was especially notable for combinations including simvastatin and either U18666A or squalestatin, and for squalestatin in combination with Ro48-8071. Treatment with squalestatin prevents the SQLS substrate, farnesyl pyrophosphate (FPP) from being further metabolized by the sterol pathway. As FPP concentrations increase, the metabolite can be shunted away from the sterol pathway toward farnesylation and GGPP synthetic pathways, resulting in an increase in host protein geranylgeranylation, including FBL2, and consequently replicon replication. This increase in replicon replication explains the source of the observed epistasis over Ro48-8071 treatment. Combinations between probes targeting enzymes downstream of and including OSC produced robust synergies with each other or with a PGGT inhibitor. Figure 4B highlights examples of antiviral synergy resulting from treatment of cells with an OSC inhibitor in combination with an inhibitor of either an enzyme upstream or downstream of OSC. A combination of terconazole and U18666A is synergistic without similar combination effects in the host proliferation screen. Likewise, clomiphene was also synergistic when added to replicon cells in combination with U18666A. One of the greatest synergies observed downstream in the sterol pathway is a combination of amorolfine and AY 9944, suggesting that there is value in developing combinations of drugs that target enzymes in the sterol pathway, which are downstream of HMGCR. Interactions with the protein prenylation pathway also showed strong mechanistic patterns (Figure 4C). GGTI-286 is a peptidomimetic compound resembling the CAAX domain of a protein to be geranylgeranylated and is a competitive inhibitor of protein geranylgeranylation. Simvastatin impedes the antiviral effect of GGTI-286 at low concentrations but that antagonism is balanced by comparable synergy at higher concentrations. At the low simvastatin concentrations, a compensatory increase in HMGCR expression leads to increased cellular levels of GGPP, which are likely to result in an increase in PGGT enzymatic turnover and decreased GGTI-286 efficacy. The antiviral synergy observed at the higher inhibitor concentrations is likely nonspecific as synergy was also observed in a host viability assay. Further downstream, however, a competitive interaction was observed between GGTI-286 and squalestatin, where the opposing effect of one compound obscures the other compound's effect. This competitive relationship between GGTI and SQLE explains the epistatic response observed between those two agents. For inhibitors of targets downstream of OSC, such as amorolfine, there are strong antiviral synergies with GGTI-286. Notably, combinations with OSC inhibitors and GGTI-286 were selective, in that comparable synergy was not found in a host viability assay. This selectivity suggests that jointly targeting OSC and PGGT is a promising avenue for future HCV therapy development. This study provides a comprehensive and unique perspective into the impact of sterol pathway regulation on HCV replication and provides compelling insight into the use of chemical combinations to maximize antiviral effects while minimizing proviral consequences. Our results suggest that HCV therapeutics developed against sterol pathway targets must consider the impact on underlying sterol pathway regulation. We found combinations of inhibitors of the lower part of the sterol pathway that are effective and synergistic with each other when tested in combination. Furthermore, the combination effects observed with simvastatin suggest that, though statins inhibit HMGCR activity, the resulting regulatory consequences of such inhibition ultimately lead to undesirable epistatic effects. Inhibitors that prevent SREBP-2 activation, inhibit PGGT or encourage the production of polar sterols have great potential as HCV therapeutics if associated toxicities can be reduced., The search for effective Hepatitis C antiviral therapies has recently focused on host sterol metabolism and protein prenylation pathways that indirectly affect viral replication. However, inhibition of the sterol pathway with statin drugs has not yielded consistent results in patients. Here, we present a combination chemical genetic study to explore how the sterol and protein prenylation pathways work together to affect hepatitis C viral replication in a replicon assay. In addition to finding novel targets affecting viral replication, our data suggest that the viral replication is strongly affected by sterol pathway regulation. There is a marked transition from antagonistic to synergistic antiviral effects as the combination targets shift downstream along the sterol pathway. We also show how pathway regulation frustrates potential hepatitis C therapies based on the sterol pathway, and reveal novel synergies that selectively inhibit hepatitis C replication over host toxicity. In particular, combinations targeting the downstream sterol pathway enzymes produced robust and selective synergistic inhibition of hepatitis C replication. Our findings show how combination chemical genetics can reveal critical pathway connections relevant to viral replication, and can identify potential treatments with an increased therapeutic window.