1. Investigation of in vitro biotransformation of tris (1-chloro-2-propyl) phosphate and confirmation in human urine
- Author
-
Fatima den Ouden, Andrea Estévez-Danta, Lidia Belova, Celine Gys, Anna Klimowska, Maarten Roggeman, Natan Van Wichelen, José Benito Quintana, Rosario Rodil, Giulia Poma, and Adrian Covaci
- Subjects
TCIPP ,In vitro metabolism ,Human liver microsomes ,Human liver cytosol ,In vivo metabolism ,Human exposome ,Toxicology. Poisons ,RA1190-1270 - Abstract
Tris (1-chloro-2-propyl) phosphate (TCIPP) is one of the major organophosphate flame retardants present in the indoor and outdoor environment. Knowledge of biotransformation pathways is important to elucidate potential bioavailability and toxicity of TCIPP and to identify relevant biomarkers. This study aimed to identify TCIPP metabolites through in vitro human metabolism assays and finally to confirm these findings in urine samples from an occupationally exposed population to propose new biomarkers to accurately monitor exposure to TCIPP.TCIPP was incubated with human liver microsomes and human liver cytosol to identify Phase I and Phase II metabolites, by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Using a suspect-screening approach, the established biomarkers bis (1-chloro-2-propyl) hydrogen phosphate (BCIPP) and 1-hydroxy-2-propyl bis (1-chloro-2-propyl) phosphate (BCIPHIPP) were identified. In addition, carboxyethyl bis (1-chloro-2-propyl) phosphate (TCIPP-M1), bis (1-chloropropan-2-yl) (-oxopropan-2-yl) phosphate (TCIPP-M2) and 1-chloro-3-hydroxypropan-2-yl bis (1-chloropropan-2-yl) phosphate (TCIPP-M3) were identified. TCIPP-M2, an intermediate product, was not reported before in literature. In urine samples, apart from BCIPP and BCIPHIPP, TCIPP-M1 and TCIPP-M3 were identified for the first time. Interestingly, BCIPP showed the lowest detection frequency, likely due to the poor sensitivity for this compound. Therefore, TCIPP-M1 and TCIPP-M3 could serve as potential additional biomarkers to more efficiently monitor TCIPP exposure in humans.
- Published
- 2024
- Full Text
- View/download PDF