1. Analytical Solution for the Problem of Point Location in Arbitrary Planar Domains.
- Author
-
Santos, Vitor
- Subjects
- *
PARAMETRIC equations , *ANALYTICAL solutions , *CALCULUS , *ARITHMETIC , *GEOMETRY - Abstract
This paper presents a general analytical solution for the problem of locating points in planar regions with an arbitrary geometry at the boundary. The proposed methodology overcomes the traditional solutions used for polygonal regions. The method originated from the explicit evaluation of the contour integral using the Residue and Cauchy theorems, which then evolved toward a technique very similar to the winding number and, finally, simplified into a variant of ray-crossing approach slightly more informed and more universal than the classic approach, which had been used for decades. The very close relation of both techniques also emerges during the derivation of the solution. The resulting algorithm becomes simpler and potentially faster than the current state of the art for point locations in arbitrary polygons because it uses fewer operations. For polygonal regions, it is also applicable without further processing for special cases of degeneracy, and it is possible to use in fully integer arithmetic; it can also be vectorized for parallel computation. The major novelty, however, is the extension of the technique to virtually any shape or segment delimiting a planar domain, be it linear, a circular arc, or a higher order curve. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF