1. SAGA1 and MITH1 produce matrix-traversing membranes in the CO 2 -fixing pyrenoid.
- Author
-
Hennacy JH, Atkinson N, Kayser-Browne A, Ergun SL, Franklin E, Wang L, Eicke S, Kazachkova Y, Kafri M, Fauser F, Vilarrasa-Blasi J, Jinkerson RE, Zeeman SC, McCormick AJ, and Jonikas MC
- Abstract
Approximately one-third of global CO
2 assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO2 assimilation in the pyrenoid by delivering concentrated CO2 , but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga Chlamydomonas reinhardtii. Mutants deficient in SAGA1 or MITH1 lack matrix-traversing membranes and exhibit growth defects under CO2 -limiting conditions. Expression of SAGA1 and MITH1 together in a heterologous system, the model plant Arabidopsis thaliana, produces matrix-traversing membranes. Both proteins localize to matrix-traversing membranes. SAGA1 binds to the major matrix component, Rubisco, and is necessary to initiate matrix-traversing membranes. MITH1 binds to SAGA1 and is necessary for extension of membranes through the matrix. Our data suggest that SAGA1 and MITH1 cause membranes to traverse the matrix by creating an adhesive interaction between the membrane and matrix. Our study identifies and characterizes key factors in the biogenesis of pyrenoid matrix-traversing membranes, demonstrates the importance of these membranes to pyrenoid function and marks a key milestone toward pyrenoid engineering into crops for improving yields., Competing Interests: Competing interests Princeton University has submitted U.S. patent application 63/678,898 (2024) on aspects of the findings., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF