1. Stromal Cell-Derived Factor 1 Gene Polymorphism Is Associated with Susceptibility to Adverse Long-Term Allograft Outcomes in Non-Diabetic Kidney Transplant Recipients
- Author
-
Chung-Jieh Wang, Jen-Pi Tsai, Shun-Fa Yang, Jong-Da Lian, and Horng-Rong Chang
- Subjects
gene polymorphism ,stromal cell-derived factor 1 ,renal transplantation ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Although the genetic polymorphism of Stromal Cell-Derived Factor 1 (SDF-1) is associated with higher mortality of liver allograft recipients, the role of SDF-1 in the modulation of renal allograft outcomes is unclear. Between March 2000 and January 2008, we recruited 252 non-diabetic renal transplant recipients (RTRs). Baseline characteristics and blood chemistry were recorded. Genomic DNA extraction with polymerase chain reaction-restriction fragment length polymorphism was utilized to analyze the genetic polymorphisms of SDF-1 (rs1801157). The influence of SDF-1 on an adverse renal allograft outcome, defined as either a doubling of serum creatinine, graft failure, or patient death was evaluated. Sixteen patients with the SDF-1 AA/AG genotype and nine with the SDF-1 GG genotype reached an adverse outcome. According to Kaplan-Meier analysis, patients carrying the SDF-1 AA/AG genotype or A allele showed a significantly higher risk of reaching an adverse outcome than those carrying the SDF-1 GG genotype or G allele (p = 0.041; p = 0.0051, respectively; log rank test). Stepwise multivariate Cox proportional regression analysis revealed that patients carrying the SDF-1 AA/AG genotype and A allele had a 2.742-fold (95% CI. 1.106–6.799, p = 0.03) and 2.306-fold (95% CI. 1.254–4.24, p = 0.008) risk of experiencing an adverse outcome. The SDF-1 AA/AG genotype and A allele have a detrimental impact on the long-term outcome of RTRs.
- Published
- 2014
- Full Text
- View/download PDF