182 results on '"Jones SJM"'
Search Results
2. Additional file 1 of HostSeq: a Canadian whole genome sequencing and clinical data resource
- Author
-
Yoo, S, Garg, E, Elliott, LT, Hung, RJ, Halevy, AR, Brooks, JD, Bull, SB, Gagnon, F, Greenwood, CMT, Lawless, JF, Paterson, AD, Sun, L, Zawati, MH, Lerner-Ellis, J, Abraham, RJS, Birol, I, Bourque, G, Garant, J-M, Gosselin, C, Li, J, Whitney, J, Thiruvahindrapuram, B, Herbrick, J-A, Lorenti, M, Reuter, MS, Adeoye, OO, Liu, S, Allen, U, Bernier, FP, Biggs, CM, Cheung, AM, Cowan, J, Herridge, M, Maslove, DM, Modi, BP, Mooser, V, Morris, SK, Ostrowski, M, Parekh, RS, Pfeffer, G, Suchowersky, O, Taher, J, Upton, J, Warren, RL, Yeung, RSM, Aziz, N, Turvey, SE, Knoppers, BM, Lathrop, M, Jones, SJM, Scherer, SW, and Strug, LJ
- Abstract
Additional file 1: Table S1. HostSeq Core Consent Elements. In order to deposit datasets in HostSeq COVID-19 controlled-access Databank, all the elements in this table must be obtained in the research consent. Table S2. HostSeq Case Report Form. Table S3. Software used for processing WGS data. Table S4. List of HostSeq participating studies as described in respective protocols. Table S5. Distribution of sex and age across HostSeq studies (n = 9,427). SD: Standard deviation; IQR: interquartile range. Figure S1. Quality of HostSeq genomes. (A) Missing rate < 5%, (B) Contamination rate < 3%, (C) Mean coverage >10. Figure S2. Predicted population admixture and ancestry classification in HostSeq genomes. Each bar represents a genome. Proportion of African, East Asian and European ancestries is determined, and genomes classified into 8 ancestry groups using GRAF-pop. They are further categorized into 5 superpopulations: AFR - African and African-American, AMR - Latin American Asian and Latin American African, EAS - Asian-Pacific Islander and East Asian, SAS - South Asian, and EUR - European. 3% of genomes remain uncategorized. Figure S3. Genetic distances score of HostSeq genomes. The four genetic distances (GD1-4) scores from GRAF-pop represent the distance of each genome from several reference populations and are used to predict ancestry. Barycentric coordinates of GD1 and GD2 are used to predict admixture proportion of African, East Asian and European ancestries.
- Published
- 2023
- Full Text
- View/download PDF
3. HostSeq : A Canadian Whole Genome Sequencing and Clinical Data Resource
- Author
-
Yoo, S, primary, Garg, E, additional, Elliott, LT, additional, Hung, RJ, additional, Halevy, AR, additional, Brooks, JD, additional, Bull, SB, additional, Gagnon, F, additional, Greenwood, CMT, additional, Lawless, JF, additional, Paterson, AD, additional, Sun, L, additional, Zawati, MH, additional, Lerner-Ellis, J, additional, Abraham, RJS, additional, Birol, I, additional, Bourque, G, additional, Garant, J-M, additional, Gosselin, C, additional, Li, J, additional, Whitney, J, additional, Thiruvahindrapuram, B, additional, Herbrick, J-A, additional, Lorenti, M, additional, Reuter, MS, additional, Adeoye, NO, additional, Liu, S, additional, Allen, U, additional, Bernier, FP, additional, Biggs, CM, additional, Cheung, AM, additional, Cowan, J, additional, Herridge, M, additional, Maslove, DM, additional, Modi, BP, additional, Mooser, V, additional, Morris, SK, additional, Ostrowski, M, additional, Parekh, RS, additional, Pfeffer, G, additional, Suchowersky, O, additional, Taher, J, additional, Upton, J, additional, Warren, RL, additional, Yeung, RSM, additional, Aziz, N, additional, Turvey, SE, additional, Knoppers, BM, additional, Lathrop, M, additional, Jones, SJM, additional, Scherer, SW, additional, and Strug, LJ, additional
- Published
- 2022
- Full Text
- View/download PDF
4. CanDIG: Secure Federated Genomic Queries and Analyses Across Jurisdictions
- Author
-
Mia Husić, Michael Brudno, L. J. Dursi, Krista M. Pace, Coral-Sasso F, Naidoo D, Stephanie A. Grover, Yann Joly, Palmer Sl, Ponomarev A, Carl Virtanen, Memon N, Sevan Hakgor, Shaikh Rashid, Pierre-Olivier Quirion, Pierre-Étienne Jacques, de Borja R, L.L. Siu, Jones Sjm, Zhibin Lu, Bozoky Z, Wong M, David Bujold, Li J, Pavlov K, Lipski A, Trevor J. Pugh, Guillaume Bourque, Sethi A, Agarwal S, and David Malkin
- Subjects
Data sharing ,Critical mass (sociodynamics) ,Data custodian ,Alliance ,Computer science ,Control (management) ,Genomics ,Security policy ,Omics ,Data science - Abstract
Rapid expansions of bioinformatics and computational biology have broadened the collection and use of -omics data including genomic, transcriptomic, methylomic and a myriad of other health data types, in the clinic and the laboratory. Both clinical and research uses of such data require co-analysis with large datasets, for which participant privacy and the need for data custodian controls must remain paramount. This is particularly challenging in multi-jurisdictional settings, such as Canada, where health privacy and security requirements are often heterogeneous. Data federation presents a solution to this, allowing for integration and analysis of large datasets from various sites while abiding by local policies.The Canadian Distributed Infrastructure for Genomics platform (CanDIG) enables federated querying and analysis of -omics and health data while keeping that data local and under local control. It builds upon existing infrastructures to connect five health and research institutions across Canada, relies heavily on standards and tooling brought together by the Global Alliance for Genomics and Health (GA4GH), implements a clear division of responsibilities among its participants and adheres to international data sharing standards. Participating researchers and clinicians can therefore contribute to and quickly access a critical mass of -omics data across a national network in a manner that takes into account the multi-jurisdictional nature of our privacy and security policies. Through this, CanDIG gives medical and research communities the tools needed to use and analyze the ever-growing amount of -omics data available to them in order to improve our understanding and treatment of various conditions and diseases. CanDIG is being used to make genomic and phenotypic data available for querying across Canada as part of data sharing for five leading pan-Canadian projects including the Terry Fox Comprehensive Cancer Care Centre Consortium Network (TF4CN) and Terry Fox PRecision Oncology For Young peopLE (PROFYLE), and making data from provincial projects such as POG (Personalized Onco- Genomics) more widely available.
- Published
- 2021
5. GA4GH: International policies and standards for data sharing across genomic research and healthcare.
- Author
-
Rehm, HL, Page, AJH, Smith, L, Adams, JB, Alterovitz, G, Babb, LJ, Barkley, MP, Baudis, M, Beauvais, MJS, Beck, T, Beckmann, JS, Beltran, S, Bernick, D, Bernier, A, Bonfield, JK, Boughtwood, TF, Bourque, G, Bowers, SR, Brookes, AJ, Brudno, M, Brush, MH, Bujold, D, Burdett, T, Buske, OJ, Cabili, MN, Cameron, DL, Carroll, RJ, Casas-Silva, E, Chakravarty, D, Chaudhari, BP, Chen, SH, Cherry, JM, Chung, J, Cline, M, Clissold, HL, Cook-Deegan, RM, Courtot, M, Cunningham, F, Cupak, M, Davies, RM, Denisko, D, Doerr, MJ, Dolman, LI, Dove, ES, Dursi, LJ, Dyke, SOM, Eddy, JA, Eilbeck, K, Ellrott, KP, Fairley, S, Fakhro, KA, Firth, HV, Fitzsimons, MS, Fiume, M, Flicek, P, Fore, IM, Freeberg, MA, Freimuth, RR, Fromont, LA, Fuerth, J, Gaff, CL, Gan, W, Ghanaim, EM, Glazer, D, Green, RC, Griffith, M, Griffith, OL, Grossman, RL, Groza, T, Auvil, JMG, Guigó, R, Gupta, D, Haendel, MA, Hamosh, A, Hansen, DP, Hart, RK, Hartley, DM, Haussler, D, Hendricks-Sturrup, RM, Ho, CWL, Hobb, AE, Hoffman, MM, Hofmann, OM, Holub, P, Hsu, JS, Hubaux, J-P, Hunt, SE, Husami, A, Jacobsen, JO, Jamuar, SS, Janes, EL, Jeanson, F, Jené, A, Johns, AL, Joly, Y, Jones, SJM, Kanitz, A, Kato, K, Keane, TM, Kekesi-Lafrance, K, Kelleher, J, Kerry, G, Khor, S-S, Knoppers, BM, Konopko, MA, Kosaki, K, Kuba, M, Lawson, J, Leinonen, R, Li, S, Lin, MF, Linden, M, Liu, X, Udara Liyanage, I, Lopez, J, Lucassen, AM, Lukowski, M, Mann, AL, Marshall, J, Mattioni, M, Metke-Jimenez, A, Middleton, A, Milne, RJ, Molnár-Gábor, F, Mulder, N, Munoz-Torres, MC, Nag, R, Nakagawa, H, Nasir, J, Navarro, A, Nelson, TH, Niewielska, A, Nisselle, A, Niu, J, Nyrönen, TH, O'Connor, BD, Oesterle, S, Ogishima, S, Wang, VO, Paglione, LAD, Palumbo, E, Parkinson, HE, Philippakis, AA, Pizarro, AD, Prlic, A, Rambla, J, Rendon, A, Rider, RA, Robinson, PN, Rodarmer, KW, Rodriguez, LL, Rubin, AF, Rueda, M, Rushton, GA, Ryan, RS, Saunders, GI, Schuilenburg, H, Schwede, T, Scollen, S, Senf, A, Sheffield, NC, Skantharajah, N, Smith, AV, Sofia, HJ, Spalding, D, Spurdle, AB, Stark, Z, Stein, LD, Suematsu, M, Tan, P, Tedds, JA, Thomson, AA, Thorogood, A, Tickle, TL, Tokunaga, K, Törnroos, J, Torrents, D, Upchurch, S, Valencia, A, Guimera, RV, Vamathevan, J, Varma, S, Vears, DF, Viner, C, Voisin, C, Wagner, AH, Wallace, SE, Walsh, BP, Williams, MS, Winkler, EC, Wold, BJ, Wood, GM, Woolley, JP, Yamasaki, C, Yates, AD, Yung, CK, Zass, LJ, Zaytseva, K, Zhang, J, Goodhand, P, North, K, Birney, E, Rehm, HL, Page, AJH, Smith, L, Adams, JB, Alterovitz, G, Babb, LJ, Barkley, MP, Baudis, M, Beauvais, MJS, Beck, T, Beckmann, JS, Beltran, S, Bernick, D, Bernier, A, Bonfield, JK, Boughtwood, TF, Bourque, G, Bowers, SR, Brookes, AJ, Brudno, M, Brush, MH, Bujold, D, Burdett, T, Buske, OJ, Cabili, MN, Cameron, DL, Carroll, RJ, Casas-Silva, E, Chakravarty, D, Chaudhari, BP, Chen, SH, Cherry, JM, Chung, J, Cline, M, Clissold, HL, Cook-Deegan, RM, Courtot, M, Cunningham, F, Cupak, M, Davies, RM, Denisko, D, Doerr, MJ, Dolman, LI, Dove, ES, Dursi, LJ, Dyke, SOM, Eddy, JA, Eilbeck, K, Ellrott, KP, Fairley, S, Fakhro, KA, Firth, HV, Fitzsimons, MS, Fiume, M, Flicek, P, Fore, IM, Freeberg, MA, Freimuth, RR, Fromont, LA, Fuerth, J, Gaff, CL, Gan, W, Ghanaim, EM, Glazer, D, Green, RC, Griffith, M, Griffith, OL, Grossman, RL, Groza, T, Auvil, JMG, Guigó, R, Gupta, D, Haendel, MA, Hamosh, A, Hansen, DP, Hart, RK, Hartley, DM, Haussler, D, Hendricks-Sturrup, RM, Ho, CWL, Hobb, AE, Hoffman, MM, Hofmann, OM, Holub, P, Hsu, JS, Hubaux, J-P, Hunt, SE, Husami, A, Jacobsen, JO, Jamuar, SS, Janes, EL, Jeanson, F, Jené, A, Johns, AL, Joly, Y, Jones, SJM, Kanitz, A, Kato, K, Keane, TM, Kekesi-Lafrance, K, Kelleher, J, Kerry, G, Khor, S-S, Knoppers, BM, Konopko, MA, Kosaki, K, Kuba, M, Lawson, J, Leinonen, R, Li, S, Lin, MF, Linden, M, Liu, X, Udara Liyanage, I, Lopez, J, Lucassen, AM, Lukowski, M, Mann, AL, Marshall, J, Mattioni, M, Metke-Jimenez, A, Middleton, A, Milne, RJ, Molnár-Gábor, F, Mulder, N, Munoz-Torres, MC, Nag, R, Nakagawa, H, Nasir, J, Navarro, A, Nelson, TH, Niewielska, A, Nisselle, A, Niu, J, Nyrönen, TH, O'Connor, BD, Oesterle, S, Ogishima, S, Wang, VO, Paglione, LAD, Palumbo, E, Parkinson, HE, Philippakis, AA, Pizarro, AD, Prlic, A, Rambla, J, Rendon, A, Rider, RA, Robinson, PN, Rodarmer, KW, Rodriguez, LL, Rubin, AF, Rueda, M, Rushton, GA, Ryan, RS, Saunders, GI, Schuilenburg, H, Schwede, T, Scollen, S, Senf, A, Sheffield, NC, Skantharajah, N, Smith, AV, Sofia, HJ, Spalding, D, Spurdle, AB, Stark, Z, Stein, LD, Suematsu, M, Tan, P, Tedds, JA, Thomson, AA, Thorogood, A, Tickle, TL, Tokunaga, K, Törnroos, J, Torrents, D, Upchurch, S, Valencia, A, Guimera, RV, Vamathevan, J, Varma, S, Vears, DF, Viner, C, Voisin, C, Wagner, AH, Wallace, SE, Walsh, BP, Williams, MS, Winkler, EC, Wold, BJ, Wood, GM, Woolley, JP, Yamasaki, C, Yates, AD, Yung, CK, Zass, LJ, Zaytseva, K, Zhang, J, Goodhand, P, North, K, and Birney, E
- Abstract
The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits.
- Published
- 2021
6. Synthesis of glioma histopathology images using generative adversarial networks
- Author
-
Levine, AB, primary, Peng, J, additional, Jones, SJM, additional, Bashashati, A, additional, and Yip, S, additional
- Published
- 2021
- Full Text
- View/download PDF
7. Conservation of long-range synteny and microsynteny between the genomes of two distantly related nematodes
- Author
-
Guiliano, DB, Hall, N, Jones, SJM, Clark, LN, Corton, CH, Barrell, BG, and Blaxter, ML
- Published
- 2002
- Full Text
- View/download PDF
8. The genetic basis and cell of origin of mixed phenotype acute leukaemia.
- Author
-
Alexander, TB, Gu, Z, Iacobucci, I, Dickerson, K, Choi, JK, Xu, B, Payne-Turner, D, Yoshihara, H, Loh, ML, Horan, J, Buldini, B, Basso, G, Elitzur, S, de Haas, V, Zwaan, CM, Yeoh, A, Reinhardt, D, Tomizawa, D, Kiyokawa, N, Lammens, T, De Moerloose, B, Catchpoole, D, Hori, H, Moorman, A, Moore, AS, Hrusak, O, Meshinchi, S, Orgel, E, Devidas, M, Borowitz, M, Wood, B, Heerema, NA, Carrol, A, Yang, Y-L, Smith, MA, Davidsen, TM, Hermida, LC, Gesuwan, P, Marra, MA, Ma, Y, Mungall, AJ, Moore, RA, Jones, SJM, Valentine, M, Janke, LJ, Rubnitz, JE, Pui, C-H, Ding, L, Liu, Y, Zhang, J, Nichols, KE, Downing, JR, Cao, X, Shi, L, Pounds, S, Newman, S, Pei, D, Guidry Auvil, JM, Gerhard, DS, Hunger, SP, Inaba, H, Mullighan, CG, Alexander, TB, Gu, Z, Iacobucci, I, Dickerson, K, Choi, JK, Xu, B, Payne-Turner, D, Yoshihara, H, Loh, ML, Horan, J, Buldini, B, Basso, G, Elitzur, S, de Haas, V, Zwaan, CM, Yeoh, A, Reinhardt, D, Tomizawa, D, Kiyokawa, N, Lammens, T, De Moerloose, B, Catchpoole, D, Hori, H, Moorman, A, Moore, AS, Hrusak, O, Meshinchi, S, Orgel, E, Devidas, M, Borowitz, M, Wood, B, Heerema, NA, Carrol, A, Yang, Y-L, Smith, MA, Davidsen, TM, Hermida, LC, Gesuwan, P, Marra, MA, Ma, Y, Mungall, AJ, Moore, RA, Jones, SJM, Valentine, M, Janke, LJ, Rubnitz, JE, Pui, C-H, Ding, L, Liu, Y, Zhang, J, Nichols, KE, Downing, JR, Cao, X, Shi, L, Pounds, S, Newman, S, Pei, D, Guidry Auvil, JM, Gerhard, DS, Hunger, SP, Inaba, H, and Mullighan, CG
- Abstract
Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymphoid features, limited genetic characterization, and a lack of consensus regarding appropriate therapy. Here we show that the two principal subtypes of MPAL, T/myeloid (T/M) and B/myeloid (B/M), are genetically distinct. Rearrangement of ZNF384 is common in B/M MPAL, and biallelic WT1 alterations are common in T/M MPAL, which shares genomic features with early T-cell precursor acute lymphoblastic leukaemia. We show that the intratumoral immunophenotypic heterogeneity characteristic of MPAL is independent of somatic genetic variation, that founding lesions arise in primitive haematopoietic progenitors, and that individual phenotypic subpopulations can reconstitute the immunophenotypic diversity in vivo. These findings indicate that the cell of origin and founding lesions, rather than an accumulation of distinct genomic alterations, prime tumour cells for lineage promiscuity. Moreover, these findings position MPAL in the spectrum of immature leukaemias and provide a genetically informed framework for future clinical trials of potential treatments for MPAL.
- Published
- 2018
9. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas
- Author
-
Lazar, AJ, McLellan, MD, Bailey, MH, Miller, CA, Appelbaum, EL, Cordes, MG, Fronick, CC, Fulton, LA, Fulton, RS, Mardis, ER, Schmidt, HK, Wong, W, Wilson, RK, Yellapantula, V, Radenbaugh, AJ, Hoadley, KA, Hayes, DN, Parker, JS, Wilkerson, MD, Auman, JT, Balu, S, Bodenheimer, T, Hoyle, AP, Jefferys, SR, Jones, CD, Lehmann, K-V, Meng, S, Mieczkowski, PA, Mose, LE, Perou, CM, Roach, J, Senbabaoglu, Y, Shi, Y, Simons, JV, Skelly, T, Soloway, MG, Tan, D, Veluvolu, U, Davis, IJ, Hepperla, AJ, Brohl, AS, Kasaian, K, Mungall, K, Sadeghi, S, Barthel, FP, Verhaak, R, Hu, X, Chibon, F, Cherniack, AD, Shih, J, Beroukhim, R, Meyerson, M, Cibulskis, C, Gabriel, SB, Saksena, G, Schumacher, SE, Gao, Q, Wyczalkowski, M, Bowlby, R, Robertson, AG, Ally, A, Balasundaram, M, Brooks, D, Carlsen, R, Chuah, E, Dhalla, N, Holt, RA, Jones, SJM, Lee, D, Li, I, Ma, Y, Marra, MA, Mayo, M, Moore, RA, Mungall, AJ, Schein, JE, Sipahimalani, P, Tam, A, Thiessen, N, Wong, T, Danilova, L, Cope, L, Baylin, SB, Bootwalla, MS, Lai, PH, Laird, PW, Maglinte, DT, Van Den Berg, DJ, Weisenberger, DJ, Wrangle, J, Drill, E, Shen, R, Iype, L, Reynolds, SM, Shmulevich, I, Yau, C, Armenia, J, Liu, EM, Benz, C, Pastore, A, Sanchez-Vega, F, Schultz, N, Akbani, R, Hegde, AM, Liu, W, Lu, Y, Mills, GB, Weinstein, JN, Roszik, J, Anur, P, Spellman, P, Abeshouse, A, Chen, H-W, Gao, J, Heins, Z, Kundra, R, Larsson, E, Ochoa, A, Sander, C, Socci, N, Zhang, H, Noble, MS, Heiman, DI, Kim, J, Chin, L, Getz, G, Cho, J, Defreitas, T, Frazer, S, Gehlenborg, N, Lawrence, MS, Lin, P, Meier, S, Voet, D, Byers, L, Diao, L, Gay, CM, Wang, J, Newton, Y, Cooper, LAD, Gutman, DA, Lee, S, Nalisnik, M, Bowen, J, Gastier-Foster, JM, Gerken, M, Helsel, C, Hobensack, S, Leraas, KM, Lichtenberg, TM, Ramirez, NC, Wise, L, Zmuda, E, Anderson, ML, Castro, P, Ittmann, M, Gordienko, E, Paklina, O, Setdikova, G, Raut, CP, Karlan, BY, Lester, J, Belyaev, D, Fulidou, V, Potapova, O, Voronina, O, Demetri, GD, Ramalingam, SS, Behera, M, Delman, K, Owonikoko, TK, Sica, GL, Boyd, J, Magliocco, A, Salner, A, Bennett, J, Iacocca, M, Swanson, P, Dottino, P, Kalir, T, Pereira, E, Akeredolu, T, Crain, D, Curley, E, Gardner, J, Mallery, D, Morris, S, Paulauskis, J, Penny, R, Shelton, C, Shelton, T, Thompson, E, Hoon, DB, Parfitt, J, Birrer, M, Karseladze, A, Mariamidze, A, Dao, F, Levine, DA, Olvera, N, Maki, RG, Bartlett, J, Eschbacher, J, Dubina, M, Mozgovoy, E, Fedosenko, K, Manikhas, G, Sekhon, H, Ramirez, N, Ingram, DR, Torres, KE, DiSaia, P, Godwin, AK, Godwin, EM, Kuo, H, Madan, R, Reilly, C, Adebamowo, C, Adebamowo, SN, Bocklage, T, Higgins, K, Martinez, C, Boice, L, Grilley-Olson, JE, Huang, M, Perou, AH, Thorne, LB, Rathmell, WK, Gutmann, DH, Singer, S, Chudamani, S, Liu, J, Lolla, L, Naresh, R, Pihl, T, Sun, Q, Wan, Y, Wu, Y, Felau, I, Zenklusen, JC, Demchok, JA, Ferguson, ML, Hutter, CM, Sofia, HJ, Tarnuzzer, R, Wang, Z, Yang, L, Zhang, JJ, Demicco, EG, Doyle, LA, Hornick, JL, Rubin, BP, de Rijn, MV, Baker, L, Riedel, RF, Ding, L, Ladanyi, M, Novak, JE, Van Tine, BA, Davis, LE, Grilley-Olsen, JE, Pollock, RE, Jones, KB, Martignetti, JA, Tong, P, and Network, CGAR
- Subjects
0301 basic medicine ,Leiomyosarcoma ,Adult ,Epigenomics ,DNA Copy Number Variations ,Genomics ,Biology ,General Biochemistry, Genetics and Molecular Biology ,Undifferentiated Pleomorphic Sarcoma ,Article ,03 medical and health sciences ,Young Adult ,0302 clinical medicine ,medicine ,Cluster Analysis ,Humans ,ATRX ,Aged ,Comparative genomics ,Aged, 80 and over ,Genome, Human ,Sarcoma ,Middle Aged ,medicine.disease ,Synovial sarcoma ,030104 developmental biology ,030220 oncology & carcinogenesis ,Immunology ,DNA methylation ,Mutation ,Cancer research ,Genome-Wide Association Study - Abstract
Summary Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes ( TP53 , ATRX , RB1 ) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types.
- Published
- 2017
- Full Text
- View/download PDF
10. Integrated genomic characterization of oesophageal carcinoma
- Author
-
Kim, J, Bowlby, R, Mungall, AJ, Robertson, AG, Odze, RD, Cherniack, AD, Shih, J, Pedamallu, CS, Cibulskis, C, Dunford, A, Meier, SR, Raphael, BJ, Wu, H-T, Wong, AM, Willis, JE, Bass, AJ, Derks, S, Garman, K, McCall, SJ, Wiznerowicz, M, Pantazi, A, Parfenov, M, Thorsson, V, Shmulevich, I, Dhankani, V, Miller, M, Sakai, R, Wang, K, Schultz, N, Shen, R, Arora, A, Weinhold, N, Sanchez-Vega, F, Kelsen, DP, Zhang, J, Felau, I, Demchok, J, Rabkin, CS, Camargo, MC, Zenklusen, JC, Bowen, J, Leraas, K, Lichtenberg, TM, Curtis, C, Seoane, JA, Ojesina, AI, Beer, DG, Gulley, ML, Pennathur, A, Luketich, JD, Zhou, Z, Weisenberger, DJ, Akbani, R, Lee, J-S, Liu, W, Mills, GB, Zhang, W, Reid, BJ, Hinoue, T, Laird, PW, Shen, H, Piazuelo, MB, Schneider, BG, McLellan, M, Taylor-Weiner, A, Lawrence, M, Cibulskis, K, Stewart, C, Getz, G, Lander, E, Gabriel, SB, Ding, L, McLellan, MD, Miller, CA, Appelbaum, EL, Cordes, MG, Fronick, CC, Fulton, LA, Mardis, ER, Wilson, RK, Schmidt, HK, Fulton, RS, Ally, A, Balasundaram, M, Carlsen, R, Chuah, E, Dhalla, N, Holt, RA, Jones, SJM, Kasaian, K, Brooks, D, Li, HI, Ma, Y, Marra, MA, Mayo, M, Moore, RA, Mungall, KL, Schein, JE, Sipahimalani, P, Tam, A, Thiessen, N, Wong, T, Beroukhim, R, Bullman, S, Murray, BA, Saksena, G, Schumacher, SE, Gabriel, S, Meyerson, M, Hadjipanayis, A, Kucherlapati, R, Ren, X, Park, PJ, Lee, S, Kucherlapati, M, Yang, L, Baylin, SB, Hoadley, KA, Bootwalla, MS, Lai, PH, Van den Berg, DJ, Berrios, M, Holbrook, A, Hwang, J-E, Jang, H-J, Weinstein, JN, Lu, Y, Sohn, BH, Mills, G, Seth, S, Protopopov, A, Bristow, CA, Mahadeshwar, HS, Tang, J, Song, X, Cho, J, Defrietas, T, Frazer, S, Gehlenborg, N, Heiman, DI, Lawrence, MS, Lin, P, Noble, MS, Doug, V, Zhang, H, Polak, P, Chin, L, Bernard, B, Iype, L, Reynolds, SM, Abeshouse, A, Armenia, J, Kundra, R, Ladanyi, M, Kjong-Van, L, Gao, J, Sander, C, Chakravarty, D, Radenbaugh, A, Hegde, A, Penny, R, Crain, D, Gardner, J, Curley, E, Mallery, D, Morris, S, Paulauskis, J, Shelton, T, Shelton, C, Frick, J, Gastier-Foster, JM, Gerken, M, Leraas, KM, Ramirez, NC, Wise, L, Zmuda, E, Tarvin, K, Saller, C, Park, YS, Button, M, Carvalho, AL, Reis, RM, Matsushita, MM, Lucchesi, F, de Oliveira, AT, Le, X, Paklina, O, Setdikova, G, Lee, J-H, Bennett, J, Iacocca, M, Huelsenbeck-Dill, L, Potapova, CO, Voronina, O, Liu, O, Fulidou, V, Cates, C, Sharp, A, Behera, M, Force, S, Khuri, F, Owonikoko, T, Pickens, A, Ramalingam, S, Sica, G, Dinjens, W, van Nistelrooij, A, Wijnhoven, B, Sandusky, G, Stepa, S, Juhl, IH, Zornig, C, Kwon, SY, Kelsen, D, Kim, GHK, Bartlett, J, Parfitt, J, Chetty, R, Darling, G, Knox, J, Wong, R, El-Zimaity, H, Liu, G, Boussioutas, A, Park, DY, Kemp, R, Carlotti, CG, da Cunha Tirapelli, DP, Saggioro, FP, Sankarankutty, AK, Noushmehr, H, dos Santos, JS, Trevisan, FA, Eschbacher, J, Dubina, M, Mozgovoy, E, Carey, F, Chalmers, S, Forgie, I, Godwin, A, Reilly, C, Madan, R, Naima, Z, Ferrer-Torres, D, Rathmell, WK, Dhir, R, Luketich, J, Ajani, JA, Janjigian, Y, Tang, L, Cheong, J-H, Chudamani, S, Liu, J, Lolla, L, Naresh, R, Pihl, T, Sun, Q, Wan, Y, Wu, Y, Demchok, JA, Ferguson, ML, Shaw, KRM, sheth, M, Tarnuzzer, R, Wang, Z, Hutter, CM, Sofia, HJ, Kim, J, Bowlby, R, Mungall, AJ, Robertson, AG, Odze, RD, Cherniack, AD, Shih, J, Pedamallu, CS, Cibulskis, C, Dunford, A, Meier, SR, Raphael, BJ, Wu, H-T, Wong, AM, Willis, JE, Bass, AJ, Derks, S, Garman, K, McCall, SJ, Wiznerowicz, M, Pantazi, A, Parfenov, M, Thorsson, V, Shmulevich, I, Dhankani, V, Miller, M, Sakai, R, Wang, K, Schultz, N, Shen, R, Arora, A, Weinhold, N, Sanchez-Vega, F, Kelsen, DP, Zhang, J, Felau, I, Demchok, J, Rabkin, CS, Camargo, MC, Zenklusen, JC, Bowen, J, Leraas, K, Lichtenberg, TM, Curtis, C, Seoane, JA, Ojesina, AI, Beer, DG, Gulley, ML, Pennathur, A, Luketich, JD, Zhou, Z, Weisenberger, DJ, Akbani, R, Lee, J-S, Liu, W, Mills, GB, Zhang, W, Reid, BJ, Hinoue, T, Laird, PW, Shen, H, Piazuelo, MB, Schneider, BG, McLellan, M, Taylor-Weiner, A, Lawrence, M, Cibulskis, K, Stewart, C, Getz, G, Lander, E, Gabriel, SB, Ding, L, McLellan, MD, Miller, CA, Appelbaum, EL, Cordes, MG, Fronick, CC, Fulton, LA, Mardis, ER, Wilson, RK, Schmidt, HK, Fulton, RS, Ally, A, Balasundaram, M, Carlsen, R, Chuah, E, Dhalla, N, Holt, RA, Jones, SJM, Kasaian, K, Brooks, D, Li, HI, Ma, Y, Marra, MA, Mayo, M, Moore, RA, Mungall, KL, Schein, JE, Sipahimalani, P, Tam, A, Thiessen, N, Wong, T, Beroukhim, R, Bullman, S, Murray, BA, Saksena, G, Schumacher, SE, Gabriel, S, Meyerson, M, Hadjipanayis, A, Kucherlapati, R, Ren, X, Park, PJ, Lee, S, Kucherlapati, M, Yang, L, Baylin, SB, Hoadley, KA, Bootwalla, MS, Lai, PH, Van den Berg, DJ, Berrios, M, Holbrook, A, Hwang, J-E, Jang, H-J, Weinstein, JN, Lu, Y, Sohn, BH, Mills, G, Seth, S, Protopopov, A, Bristow, CA, Mahadeshwar, HS, Tang, J, Song, X, Cho, J, Defrietas, T, Frazer, S, Gehlenborg, N, Heiman, DI, Lawrence, MS, Lin, P, Noble, MS, Doug, V, Zhang, H, Polak, P, Chin, L, Bernard, B, Iype, L, Reynolds, SM, Abeshouse, A, Armenia, J, Kundra, R, Ladanyi, M, Kjong-Van, L, Gao, J, Sander, C, Chakravarty, D, Radenbaugh, A, Hegde, A, Penny, R, Crain, D, Gardner, J, Curley, E, Mallery, D, Morris, S, Paulauskis, J, Shelton, T, Shelton, C, Frick, J, Gastier-Foster, JM, Gerken, M, Leraas, KM, Ramirez, NC, Wise, L, Zmuda, E, Tarvin, K, Saller, C, Park, YS, Button, M, Carvalho, AL, Reis, RM, Matsushita, MM, Lucchesi, F, de Oliveira, AT, Le, X, Paklina, O, Setdikova, G, Lee, J-H, Bennett, J, Iacocca, M, Huelsenbeck-Dill, L, Potapova, CO, Voronina, O, Liu, O, Fulidou, V, Cates, C, Sharp, A, Behera, M, Force, S, Khuri, F, Owonikoko, T, Pickens, A, Ramalingam, S, Sica, G, Dinjens, W, van Nistelrooij, A, Wijnhoven, B, Sandusky, G, Stepa, S, Juhl, IH, Zornig, C, Kwon, SY, Kelsen, D, Kim, GHK, Bartlett, J, Parfitt, J, Chetty, R, Darling, G, Knox, J, Wong, R, El-Zimaity, H, Liu, G, Boussioutas, A, Park, DY, Kemp, R, Carlotti, CG, da Cunha Tirapelli, DP, Saggioro, FP, Sankarankutty, AK, Noushmehr, H, dos Santos, JS, Trevisan, FA, Eschbacher, J, Dubina, M, Mozgovoy, E, Carey, F, Chalmers, S, Forgie, I, Godwin, A, Reilly, C, Madan, R, Naima, Z, Ferrer-Torres, D, Rathmell, WK, Dhir, R, Luketich, J, Ajani, JA, Janjigian, Y, Tang, L, Cheong, J-H, Chudamani, S, Liu, J, Lolla, L, Naresh, R, Pihl, T, Sun, Q, Wan, Y, Wu, Y, Demchok, JA, Ferguson, ML, Shaw, KRM, sheth, M, Tarnuzzer, R, Wang, Z, Hutter, CM, and Sofia, HJ
- Abstract
Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.
- Published
- 2017
11. Comprehensive genomic characterization of head and neck squamous cell carcinomas
- Author
-
Lawrence, MS, Sougnez, C, Lichtenstein, L, Cibulskis, K, Lander, E, Gabriel, SB, Getz, G, Ally, A, Balasundaram, M, Birol, I, Bowlby, R, Brooks, D, Butterfield, YSN, Carlsen, R, Cheng, D, Chu, A, Dhalla, N, Guin, R, Holt, RA, Jones, SJM, Lee, D, Li, HI, Marra, MA, Mayo, M, Moore, RA, Mungall, AJ, Robertson, AG, Schein, JE, Sipahimalani, P, Tam, A, Thiessen, N, Wong, T, Protopopov, A, Santoso, N, Lee, S, Parfenov, M, Zhang, J, Mahadeshwar, HS, Tang, J, Ren, X, Seth, S, Haseley, P, Zeng, D, Yang, L, Xu, AW, Song, X, Pantazi, A, Bristow, CA, Hadjipanayis, A, Seidman, J, Chin, L, Park, PJ, Kucherlapati, R, Akbani, R, Casasent, T, Liu, W, Lu, Y, Mills, G, Motter, T, Weinstein, J, Diao, L, Wang, J, Hong Fan, Y, Liu, J, Wang, K, Auman, JT, Balu, S, Bodenheimer, T, Buda, E, Hayes, DN, Hoadley, KA, Hoyle, AP, Jefferys, SR, Jones, CD, Kimes, PK, Liu, Y, Marron, JS, Meng, S, Mieczkowski, PA, Mose, LE, Parker, JS, Perou, CM, Prins, JF, Roach, J, Shi, Y, Simons, JV, Singh, D, Soloway, MG, Tan, D, Veluvolu, U, Walter, V, Waring, S, Wilkerson, MD, and Wu, J
- Abstract
© 2015 Macmillan Publishers Limited. All rights reserved. The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs.
- Published
- 2015
12. Integrated genomic characterization of endometrial carcinoma
- Author
-
Getz, G, Gabriel, SB, Cibulskis, K, Lander, E, Sivachenko, A, Sougnez, C, Lawrence, M, Kandoth, C, Dooling, D, Fulton, R, Fulton, L, Kalicki-Veizer, J, McLellan, MD, O'Laughlin, M, Schmidt, H, Wilson, RK, Ye, K, Li, D, Ally, A, Balasundaram, M, Birol, I, Butterfield, YSN, Carlsen, R, Carter, C, Chu, A, Chuah, E, Chun, HJE, Dhalla, N, Guin, R, Hirst, C, Holt, RA, Jones, SJM, Lee, D, Li, HI, Marra, MA, Mayo, M, Moore, RA, Mungall, AJ, Plettner, P, Schein, JE, Sipahimalani, P, Tam, A, Varhol, RJ, Gordon Robertson, A, Cherniack, AD, Pashtan, I, Saksena, G, Onofrio, RC, Schumacher, SE, Tabak, B, Carter, SL, Hernandez, B, Gentry, J, Salvesen, HB, Ardlie, K, Winckler, W, Beroukhim, R, Meyerson, M, Hadjipanayis, A, Lee, S, Mahadeshwar, HS, Park, P, Protopopov, A, Ren, X, Seth, S, Song, X, Tang, J, Xi, R, Yang, L, Dong, Z, Kucherlapati, R, Chin, L, Zhang, J, Todd Auman, J, Balu, S, Bodenheimer, T, Buda, E, Neil Hayes, D, Hoyle, AP, Jefferys, SR, Jones, CD, Meng, S, Mieczkowski, PA, Mose, LE, Parker, JS, and Perou, CM
- Subjects
endocrine system diseases - Abstract
We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array-and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours. © 2013 Macmillan Publishers Limited. All rights reserved.
- Published
- 2013
13. Comprehensive molecular characterization of gastric adenocarcinoma
- Author
-
Bass, AJ, Thorsson, V, Shmulevich, I, Reynolds, SM, Miller, M, Bernard, B, Hinoue, T, Laird, PW, Curtis, C, Shen, H, Weisenberger, DJ, Schultz, N, Shen, R, Weinhold, N, Keiser, DP, Bowlby, R, Sipahimalani, P, Cherniack, AD, Getz, G, Liu, Y, Noble, MS, Pedamallu, C, Sougnez, C, Taylor-Weiner, A, Akbani, R, Lee, J-S, Liu, W, Mills, GB, Yang, D, Zhang, W, Pantazi, A, Parfenov, M, Gulley, M, Piazuelo, MB, Schneider, BG, Kim, J, Boussioutas, A, Sheth, M, Demchok, JA, Rabkin, CS, Willis, JE, Ng, S, Garman, K, Beer, DG, Pennathur, A, Raphael, BJ, Wu, H-T, Odze, R, Kim, HK, Bowen, J, Leraas, KM, Lichtenberg, TM, Weaver, L, McLellan, M, Wiznerowicz, M, Sakai, R, Lawrence, MS, Cibulskis, K, Lichtenstein, L, Fisher, S, Gabriel, SB, Lander, ES, Ding, L, Niu, B, Ally, A, Balasundaram, M, Birol, I, Brooks, D, Butterfield, YSN, Carlsen, R, Chu, A, Chu, J, Chuah, E, Chun, H-JE, Clarke, A, Dhalla, N, Guin, R, Holt, RA, Jones, SJM, Kasaian, K, Lee, D, Li, HA, Lim, E, Ma, Y, Marra, MA, Mayo, M, Moore, RA, Mungall, AJ, Mungall, KL, Nip, KM, Robertson, AG, Schein, JE, Tam, A, Thiessen, N, Beroukhim, R, Carter, SL, Cho, J, DiCara, D, Frazer, S, Gehlenborg, N, Heiman, DI, Jung, J, Lin, P, Meyerson, M, Ojesina, AI, Pedamallu, CS, Saksena, G, Schumacher, SE, Stojanov, P, Tabak, B, Voet, D, Rosenberg, M, Zack, TI, Zhang, H, Zou, L, Protopopov, A, Santoso, N, Lee, S, Zhang, J, Mahadeshwar, HS, Tang, J, Ren, X, Seth, S, Yang, L, Xu, AW, Song, X, Xi, R, Bristow, CA, Hadjipanayis, A, Seidman, J, Chin, L, Park, PJ, Kucherlapati, R, Ling, S, Rao, A, Weinstein, JN, Kim, S-B, Lu, Y, Mills, G, Bootwalla, MS, Lai, PH, Triche, T, Van Den Berg, DJ, Baylin, SB, Herman, JG, Murray, BA, Askoy, BA, Ciriello, G, Dresdner, G, Gao, J, Gross, B, Jacobsen, A, Lee, W, Ramirez, R, Sander, C, Senbabaoglu, Y, Sinha, R, Sumer, SO, Sun, Y, Iype, L, Kramer, RW, Kreisberg, R, Rovira, H, Tasman, N, Haussler, D, Stuart, JM, Verhaak, RGW, Leiserson, MDM, Taylor, BS, Black, AD, Carney, JA, Gastier-Foster, JM, Helsel, C, McAllister, C, Ramirez, NC, Tabler, TR, Wise, L, Zmuda, E, Penny, R, Crain, D, Gardner, J, Lau, K, Curely, E, Mallery, D, Morris, S, Paulauskis, J, Shelton, T, Shelton, C, Sherman, M, Benz, C, Lee, J-H, Fedosenko, K, Manikhas, G, Voronina, O, Belyaev, D, Dolzhansky, O, Rathmell, WK, Brzezinski, J, Ibbs, M, Korski, K, Kycler, W, Lazniak, R, Leporowska, E, Mackiewicz, A, Murawa, D, Murawa, P, Spychala, A, Suchorska, WM, Tatka, H, Teresiak, M, Abdel-Misih, R, Bennett, J, Brown, J, Iacocca, M, Rabeno, B, Kwon, S-Y, Kemkes, A, Curley, E, Alexopoulou, I, Engel, J, Bartlett, J, Albert, M, Park, D-Y, Dhir, R, Luketich, J, Landreneau, R, Janjigian, YY, Kelsen, DP, Cho, E, Ladanyi, M, Tang, L, McCall, SJ, Park, YS, Cheong, J-H, Ajani, J, Camargo, MC, Alonso, S, Ayala, B, Jensen, MA, Pihl, T, Raman, R, Walton, J, Wan, Y, Eley, G, Shaw, KRM, Tarnuzzer, R, Wang, Z, Zenklusen, JC, Davidsen, T, Hutter, CM, Sofia, HJ, Burton, R, Chudamani, S, Liu, J, Bass, AJ, Thorsson, V, Shmulevich, I, Reynolds, SM, Miller, M, Bernard, B, Hinoue, T, Laird, PW, Curtis, C, Shen, H, Weisenberger, DJ, Schultz, N, Shen, R, Weinhold, N, Keiser, DP, Bowlby, R, Sipahimalani, P, Cherniack, AD, Getz, G, Liu, Y, Noble, MS, Pedamallu, C, Sougnez, C, Taylor-Weiner, A, Akbani, R, Lee, J-S, Liu, W, Mills, GB, Yang, D, Zhang, W, Pantazi, A, Parfenov, M, Gulley, M, Piazuelo, MB, Schneider, BG, Kim, J, Boussioutas, A, Sheth, M, Demchok, JA, Rabkin, CS, Willis, JE, Ng, S, Garman, K, Beer, DG, Pennathur, A, Raphael, BJ, Wu, H-T, Odze, R, Kim, HK, Bowen, J, Leraas, KM, Lichtenberg, TM, Weaver, L, McLellan, M, Wiznerowicz, M, Sakai, R, Lawrence, MS, Cibulskis, K, Lichtenstein, L, Fisher, S, Gabriel, SB, Lander, ES, Ding, L, Niu, B, Ally, A, Balasundaram, M, Birol, I, Brooks, D, Butterfield, YSN, Carlsen, R, Chu, A, Chu, J, Chuah, E, Chun, H-JE, Clarke, A, Dhalla, N, Guin, R, Holt, RA, Jones, SJM, Kasaian, K, Lee, D, Li, HA, Lim, E, Ma, Y, Marra, MA, Mayo, M, Moore, RA, Mungall, AJ, Mungall, KL, Nip, KM, Robertson, AG, Schein, JE, Tam, A, Thiessen, N, Beroukhim, R, Carter, SL, Cho, J, DiCara, D, Frazer, S, Gehlenborg, N, Heiman, DI, Jung, J, Lin, P, Meyerson, M, Ojesina, AI, Pedamallu, CS, Saksena, G, Schumacher, SE, Stojanov, P, Tabak, B, Voet, D, Rosenberg, M, Zack, TI, Zhang, H, Zou, L, Protopopov, A, Santoso, N, Lee, S, Zhang, J, Mahadeshwar, HS, Tang, J, Ren, X, Seth, S, Yang, L, Xu, AW, Song, X, Xi, R, Bristow, CA, Hadjipanayis, A, Seidman, J, Chin, L, Park, PJ, Kucherlapati, R, Ling, S, Rao, A, Weinstein, JN, Kim, S-B, Lu, Y, Mills, G, Bootwalla, MS, Lai, PH, Triche, T, Van Den Berg, DJ, Baylin, SB, Herman, JG, Murray, BA, Askoy, BA, Ciriello, G, Dresdner, G, Gao, J, Gross, B, Jacobsen, A, Lee, W, Ramirez, R, Sander, C, Senbabaoglu, Y, Sinha, R, Sumer, SO, Sun, Y, Iype, L, Kramer, RW, Kreisberg, R, Rovira, H, Tasman, N, Haussler, D, Stuart, JM, Verhaak, RGW, Leiserson, MDM, Taylor, BS, Black, AD, Carney, JA, Gastier-Foster, JM, Helsel, C, McAllister, C, Ramirez, NC, Tabler, TR, Wise, L, Zmuda, E, Penny, R, Crain, D, Gardner, J, Lau, K, Curely, E, Mallery, D, Morris, S, Paulauskis, J, Shelton, T, Shelton, C, Sherman, M, Benz, C, Lee, J-H, Fedosenko, K, Manikhas, G, Voronina, O, Belyaev, D, Dolzhansky, O, Rathmell, WK, Brzezinski, J, Ibbs, M, Korski, K, Kycler, W, Lazniak, R, Leporowska, E, Mackiewicz, A, Murawa, D, Murawa, P, Spychala, A, Suchorska, WM, Tatka, H, Teresiak, M, Abdel-Misih, R, Bennett, J, Brown, J, Iacocca, M, Rabeno, B, Kwon, S-Y, Kemkes, A, Curley, E, Alexopoulou, I, Engel, J, Bartlett, J, Albert, M, Park, D-Y, Dhir, R, Luketich, J, Landreneau, R, Janjigian, YY, Kelsen, DP, Cho, E, Ladanyi, M, Tang, L, McCall, SJ, Park, YS, Cheong, J-H, Ajani, J, Camargo, MC, Alonso, S, Ayala, B, Jensen, MA, Pihl, T, Raman, R, Walton, J, Wan, Y, Eley, G, Shaw, KRM, Tarnuzzer, R, Wang, Z, Zenklusen, JC, Davidsen, T, Hutter, CM, Sofia, HJ, Burton, R, Chudamani, S, and Liu, J
- Abstract
Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein-Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also known as PD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies.
- Published
- 2014
14. Hippo Signaling Influences HNF4A and FOXA2 Enhancer Switching during Hepatocyte Differentiation
- Author
-
Alder, O, Cullum, R, Lee, S, Kan, AC, Wei, W, Yi, Y, Garside, VC, Bilenky, M, Griffith, M, Morrissy, AS, Robertson, GA, Thiessen, N, Zhao, Y, Chen, Q, Pan, D, Jones, SJM, Marra, MA, Hoodless, PA, Alder, O, Cullum, R, Lee, S, Kan, AC, Wei, W, Yi, Y, Garside, VC, Bilenky, M, Griffith, M, Morrissy, AS, Robertson, GA, Thiessen, N, Zhao, Y, Chen, Q, Pan, D, Jones, SJM, Marra, MA, and Hoodless, PA
- Abstract
Cell fate acquisition is heavily influenced by direct interactions between master regulators and tissue-specific enhancers. However, it remains unclear how lineage-specifying transcription factors, which are often expressed in both progenitor and mature cell populations, influence cell differentiation. Using in vivo mouse liver development as a model, we identified thousands of enhancers that are bound by the master regulators HNF4A and FOXA2 in a differentiation-dependent manner, subject to chromatin remodeling, and associated with differentially expressed target genes. Enhancers exclusively occupied in the embryo were found to be responsive to developmentally regulated TEAD2 and coactivator YAP1. Our data suggest that Hippo signaling may affect hepatocyte differentiation by influencing HNF4A and FOXA2 interactions with temporal enhancers. In summary, transcription factor-enhancer interactions are not only tissue specific but also differentiation dependent, which is an important consideration for researchers studying cancer biology or mammalian development and/or using transformed cell lines.
- Published
- 2014
15. NTRK2 Fusion Driven Pediatric Glioblastoma: Identification of key molecular drivers by personalized oncology
- Author
-
Levine, Shen, Y, Mungall, K, Serrano, J, Snuderl, M, Pleasance, E, Jones, SJM, Laskin, J, Marra, MA, Rassekh, R, Deyell, R, Yip, S, Cheng, S, and Dunham, C
- Abstract
We describe the case of an 11-month-old girl with a rare cerebellar glioblastoma driven by a NACC2-NTRK2(Nucleus Accumbens Associated Protein 2-Neurotrophic Receptor Tyrosine Kinase 2) fusion. Initial workup of our case demonstrated homozygous CDKN2Adeletion, but immunohistochemistry for other driver mutations, including IDH1 R132H, BRAF V600E, and H3F3A K27M were negative, and ATRX was retained. Tissue was subsequently submitted for personalized oncogenomic analysis, including whole genome and whole transcriptome sequencing, which demonstrated an activating NTRK2fusion, as well as high PD-L1 expression, which was subsequently confirmed by immunohistochemistry. Furthermore, H3and IDHdemonstrated wildtype status. These findings suggested the possibility of treatment with either NTRK- or immune checkpoint- inhibitors through active clinical trials. Ultimately, the family pursued standard treatment that involved Head Start III chemotherapy and proton radiotherapy. Notably, at most recent follow upapproximately two years from initial diagnosis, the patient is in disease remission and thriving, suggesting favorable biology despite histologic malignancy. This case illustrates the value of personalized oncogenomics, as the molecular profiling revealed two actionable changes that would not have been apparent through routine diagnostics. NTRKfusions are known oncogenic drivers in a range of cancer types, but this is the first report of a NACC2-NTRK2fusion in a glioblastoma.LEARNING OBJECTIVESThis presentation will enable the learner to:1.Explore the current molecular landscape of pediatric high grade gliomas2.Recognize the value of personalized oncogenomic analysis, particularly in rare and/or aggressive tumors3.Discuss the current status of NTRK inhibitor clinical trials
- Published
- 2019
- Full Text
- View/download PDF
16. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas
- Author
-
Gregory P. Way, Francisco Sanchez-Vega, Konnor La, Joshua Armenia, Walid K. Chatila, Augustin Luna, Chris Sander, Andrew D. Cherniack, Marco Mina, Giovanni Ciriello, Nikolaus Schultz, Yolanda Sanchez, Casey S. Greene, Samantha J. Caesar-Johnson, John A. Demchok, Ina Felau, Melpomeni Kasapi, Martin L. Ferguson, Carolyn M. Hutter, Heidi J. Sofia, Roy Tarnuzzer, Zhining Wang, Liming Yang, Jean C. Zenklusen, Jiashan (Julia) Zhang, Sudha Chudamani, Jia Liu, Laxmi Lolla, Rashi Naresh, Todd Pihl, Qiang Sun, Yunhu Wan, Ye Wu, Juok Cho, Timothy DeFreitas, Scott Frazer, Nils Gehlenborg, Gad Getz, David I. Heiman, Jaegil Kim, Michael S. Lawrence, Pei Lin, Sam Meier, Michael S. Noble, Gordon Saksena, Doug Voet, Hailei Zhang, Brady Bernard, Nyasha Chambwe, Varsha Dhankani, Theo Knijnenburg, Roger Kramer, Kalle Leinonen, Yuexin Liu, Michael Miller, Sheila Reynolds, Ilya Shmulevich, Vesteinn Thorsson, Wei Zhang, Rehan Akbani, Bradley M. Broom, Apurva M. Hegde, Zhenlin Ju, Rupa S. Kanchi, Anil Korkut, Jun Li, Han Liang, Shiyun Ling, Wenbin Liu, Yiling Lu, Gordon B. Mills, Kwok-Shing Ng, Arvind Rao, Michael Ryan, Jing Wang, John N. Weinstein, Jiexin Zhang, Adam Abeshouse, Debyani Chakravarty, Ino de Bruijn, Jianjiong Gao, Benjamin E. Gross, Zachary J. Heins, Ritika Kundra, Marc Ladanyi, Moriah G. Nissan, Angelica Ochoa, Sarah M. Phillips, Ed Reznik, Robert Sheridan, S. Onur Sumer, Yichao Sun, Barry S. Taylor, Jioajiao Wang, Hongxin Zhang, Pavana Anur, Myron Peto, Paul Spellman, Christopher Benz, Joshua M. Stuart, Christopher K. Wong, Christina Yau, D. Neil Hayes, Joel S. Parker, Matthew D. Wilkerson, Adrian Ally, Miruna Balasundaram, Reanne Bowlby, Denise Brooks, Rebecca Carlsen, Eric Chuah, Noreen Dhalla, Robert Holt, Steven J.M. Jones, Katayoon Kasaian, Darlene Lee, Yussanne Ma, Marco A. Marra, Michael Mayo, Richard A. Moore, Andrew J. Mungall, Karen Mungall, A. Gordon Robertson, Sara Sadeghi, Jacqueline E. Schein, Payal Sipahimalani, Angela Tam, Nina Thiessen, Kane Tse, Tina Wong, Ashton C. Berger, Rameen Beroukhim, Carrie Cibulskis, Stacey B. Gabriel, Galen F. Gao, Gavin Ha, Matthew Meyerson, Steven E. Schumacher, Juliann Shih, Melanie H. Kucherlapati, Raju S. Kucherlapati, Stephen Baylin, Leslie Cope, Ludmila Danilova, Moiz S. Bootwalla, Phillip H. Lai, Dennis T. Maglinte, David J. Van Den Berg, Daniel J. Weisenberger, J. Todd Auman, Saianand Balu, Tom Bodenheimer, Cheng Fan, Katherine A. Hoadley, Alan P. Hoyle, Stuart R. Jefferys, Corbin D. Jones, Shaowu Meng, Piotr A. Mieczkowski, Lisle E. Mose, Amy H. Perou, Charles M. Perou, Jeffrey Roach, Yan Shi, Janae V. Simons, Tara Skelly, Matthew G. Soloway, Donghui Tan, Umadevi Veluvolu, Huihui Fan, Toshinori Hinoue, Peter W. Laird, Hui Shen, Wanding Zhou, Michelle Bellair, Kyle Chang, Kyle Covington, Chad J. Creighton, Huyen Dinh, HarshaVardhan Doddapaneni, Lawrence A. Donehower, Jennifer Drummond, Richard A. Gibbs, Robert Glenn, Walker Hale, Yi Han, Jianhong Hu, Viktoriya Korchina, Sandra Lee, Lora Lewis, Wei Li, Xiuping Liu, Margaret Morgan, Donna Morton, Donna Muzny, Jireh Santibanez, Margi Sheth, Eve Shinbrot, Linghua Wang, Min Wang, David A. Wheeler, Liu Xi, Fengmei Zhao, Julian Hess, Elizabeth L. Appelbaum, Matthew Bailey, Matthew G. Cordes, Li Ding, Catrina C. Fronick, Lucinda A. Fulton, Robert S. Fulton, Cyriac Kandoth, Elaine R. Mardis, Michael D. McLellan, Christopher A. Miller, Heather K. Schmidt, Richard K. Wilson, Daniel Crain, Erin Curley, Johanna Gardner, Kevin Lau, David Mallery, Scott Morris, Joseph Paulauskis, Robert Penny, Candace Shelton, Troy Shelton, Mark Sherman, Eric Thompson, Peggy Yena, Jay Bowen, Julie M. Gastier-Foster, Mark Gerken, Kristen M. Leraas, Tara M. Lichtenberg, Nilsa C. Ramirez, Lisa Wise, Erik Zmuda, Niall Corcoran, Tony Costello, Christopher Hovens, Andre L. Carvalho, Ana C. de Carvalho, José H. Fregnani, Adhemar Longatto-Filho, Rui M. Reis, Cristovam Scapulatempo-Neto, Henrique C.S. Silveira, Daniel O. Vidal, Andrew Burnette, Jennifer Eschbacher, Beth Hermes, Ardene Noss, Rosy Singh, Matthew L. Anderson, Patricia D. Castro, Michael Ittmann, David Huntsman, Bernard Kohl, Xuan Le, Richard Thorp, Chris Andry, Elizabeth R. Duffy, Vladimir Lyadov, Oxana Paklina, Galiya Setdikova, Alexey Shabunin, Mikhail Tavobilov, Christopher McPherson, Ronald Warnick, Ross Berkowitz, Daniel Cramer, Colleen Feltmate, Neil Horowitz, Adam Kibel, Michael Muto, Chandrajit P. Raut, Andrei Malykh, Jill S. Barnholtz-Sloan, Wendi Barrett, Karen Devine, Jordonna Fulop, Quinn T. Ostrom, Kristen Shimmel, Yingli Wolinsky, Andrew E. Sloan, Agostino De Rose, Felice Giuliante, Marc Goodman, Beth Y. Karlan, Curt H. Hagedorn, John Eckman, Jodi Harr, Jerome Myers, Kelinda Tucker, Leigh Anne Zach, Brenda Deyarmin, Hai Hu, Leonid Kvecher, Caroline Larson, Richard J. Mural, Stella Somiari, Ales Vicha, Tomas Zelinka, Joseph Bennett, Mary Iacocca, Brenda Rabeno, Patricia Swanson, Mathieu Latour, Louis Lacombe, Bernard Têtu, Alain Bergeron, Mary McGraw, Susan M. Staugaitis, John Chabot, Hanina Hibshoosh, Antonia Sepulveda, Tao Su, Timothy Wang, Olga Potapova, Olga Voronina, Laurence Desjardins, Odette Mariani, Sergio Roman-Roman, Xavier Sastre, Marc-Henri Stern, Feixiong Cheng, Sabina Signoretti, Andrew Berchuck, Darell Bigner, Eric Lipp, Jeffrey Marks, Shannon McCall, Roger McLendon, Angeles Secord, Alexis Sharp, Madhusmita Behera, Daniel J. Brat, Amy Chen, Keith Delman, Seth Force, Fadlo Khuri, Kelly Magliocca, Shishir Maithel, Jeffrey J. Olson, Taofeek Owonikoko, Alan Pickens, Suresh Ramalingam, Dong M. Shin, Gabriel Sica, Erwin G. Van Meir, Hongzheng Zhang, Wil Eijckenboom, Ad Gillis, Esther Korpershoek, Leendert Looijenga, Wolter Oosterhuis, Hans Stoop, Kim E. van Kessel, Ellen C. Zwarthoff, Chiara Calatozzolo, Lucia Cuppini, Stefania Cuzzubbo, Francesco DiMeco, Gaetano Finocchiaro, Luca Mattei, Alessandro Perin, Bianca Pollo, Chu Chen, John Houck, Pawadee Lohavanichbutr, Arndt Hartmann, Christine Stoehr, Robert Stoehr, Helge Taubert, Sven Wach, Bernd Wullich, Witold Kycler, Dawid Murawa, Maciej Wiznerowicz, Ki Chung, W. Jeffrey Edenfield, Julie Martin, Eric Baudin, Glenn Bubley, Raphael Bueno, Assunta De Rienzo, William G. Richards, Steven Kalkanis, Tom Mikkelsen, Houtan Noushmehr, Lisa Scarpace, Nicolas Girard, Marta Aymerich, Elias Campo, Eva Giné, Armando López Guillermo, Nguyen Van Bang, Phan Thi Hanh, Bui Duc Phu, Yufang Tang, Howard Colman, Kimberley Evason, Peter R. Dottino, John A. Martignetti, Hani Gabra, Hartmut Juhl, Teniola Akeredolu, Serghei Stepa, Dave Hoon, Keunsoo Ahn, Koo Jeong Kang, Felix Beuschlein, Anne Breggia, Michael Birrer, Debra Bell, Mitesh Borad, Alan H. Bryce, Erik Castle, Vishal Chandan, John Cheville, John A. Copland, Michael Farnell, Thomas Flotte, Nasra Giama, Thai Ho, Michael Kendrick, Jean-Pierre Kocher, Karla Kopp, Catherine Moser, David Nagorney, Daniel O’Brien, Brian Patrick O’Neill, Tushar Patel, Gloria Petersen, Florencia Que, Michael Rivera, Lewis Roberts, Robert Smallridge, Thomas Smyrk, Melissa Stanton, R. Houston Thompson, Michael Torbenson, Ju Dong Yang, Lizhi Zhang, Fadi Brimo, Jaffer A. Ajani, Ana Maria Angulo Gonzalez, Carmen Behrens, Jolanta Bondaruk, Russell Broaddus, Bogdan Czerniak, Bita Esmaeli, Junya Fujimoto, Jeffrey Gershenwald, Charles Guo, Alexander J. Lazar, Christopher Logothetis, Funda Meric-Bernstam, Cesar Moran, Lois Ramondetta, David Rice, Anil Sood, Pheroze Tamboli, Timothy Thompson, Patricia Troncoso, Anne Tsao, Ignacio Wistuba, Candace Carter, Lauren Haydu, Peter Hersey, Valerie Jakrot, Hojabr Kakavand, Richard Kefford, Kenneth Lee, Georgina Long, Graham Mann, Michael Quinn, Robyn Saw, Richard Scolyer, Kerwin Shannon, Andrew Spillane, Jonathan Stretch, Maria Synott, John Thompson, James Wilmott, Hikmat Al-Ahmadie, Timothy A. Chan, Ronald Ghossein, Anuradha Gopalan, Douglas A. Levine, Victor Reuter, Samuel Singer, Bhuvanesh Singh, Nguyen Viet Tien, Thomas Broudy, Cyrus Mirsaidi, Praveen Nair, Paul Drwiega, Judy Miller, Jennifer Smith, Howard Zaren, Joong-Won Park, Nguyen Phi Hung, Electron Kebebew, W. Marston Linehan, Adam R. Metwalli, Karel Pacak, Peter A. Pinto, Mark Schiffman, Laura S. Schmidt, Cathy D. Vocke, Nicolas Wentzensen, Robert Worrell, Hannah Yang, Marc Moncrieff, Chandra Goparaju, Jonathan Melamed, Harvey Pass, Natalia Botnariuc, Irina Caraman, Mircea Cernat, Inga Chemencedji, Adrian Clipca, Serghei Doruc, Ghenadie Gorincioi, Sergiu Mura, Maria Pirtac, Irina Stancul, Diana Tcaciuc, Monique Albert, Iakovina Alexopoulou, Angel Arnaout, John Bartlett, Jay Engel, Sebastien Gilbert, Jeremy Parfitt, Harman Sekhon, George Thomas, Doris M. Rassl, Robert C. Rintoul, Carlo Bifulco, Raina Tamakawa, Walter Urba, Nicholas Hayward, Henri Timmers, Anna Antenucci, Francesco Facciolo, Gianluca Grazi, Mirella Marino, Roberta Merola, Ronald de Krijger, Anne-Paule Gimenez-Roqueplo, Alain Piché, Simone Chevalier, Ginette McKercher, Kivanc Birsoy, Gene Barnett, Cathy Brewer, Carol Farver, Theresa Naska, Nathan A. Pennell, Daniel Raymond, Cathy Schilero, Kathy Smolenski, Felicia Williams, Carl Morrison, Jeffrey A. Borgia, Michael J. Liptay, Mark Pool, Christopher W. Seder, Kerstin Junker, Larsson Omberg, Mikhail Dinkin, George Manikhas, Domenico Alvaro, Maria Consiglia Bragazzi, Vincenzo Cardinale, Guido Carpino, Eugenio Gaudio, David Chesla, Sandra Cottingham, Michael Dubina, Fedor Moiseenko, Renumathy Dhanasekaran, Karl-Friedrich Becker, Klaus-Peter Janssen, Julia Slotta-Huspenina, Mohamed H. Abdel-Rahman, Dina Aziz, Sue Bell, Colleen M. Cebulla, Amy Davis, Rebecca Duell, J. Bradley Elder, Joe Hilty, Bahavna Kumar, James Lang, Norman L. Lehman, Randy Mandt, Phuong Nguyen, Robert Pilarski, Karan Rai, Lynn Schoenfield, Kelly Senecal, Paul Wakely, Paul Hansen, Ronald Lechan, James Powers, Arthur Tischler, William E. Grizzle, Katherine C. Sexton, Alison Kastl, Joel Henderson, Sima Porten, Jens Waldmann, Martin Fassnacht, Sylvia L. Asa, Dirk Schadendorf, Marta Couce, Markus Graefen, Hartwig Huland, Guido Sauter, Thorsten Schlomm, Ronald Simon, Pierre Tennstedt, Oluwole Olabode, Mark Nelson, Oliver Bathe, Peter R. Carroll, June M. Chan, Philip Disaia, Pat Glenn, Robin K. Kelley, Charles N. Landen, Joanna Phillips, Michael Prados, Jeffry Simko, Karen Smith-McCune, Scott VandenBerg, Kevin Roggin, Ashley Fehrenbach, Ady Kendler, Suzanne Sifri, Ruth Steele, Antonio Jimeno, Francis Carey, Ian Forgie, Massimo Mannelli, Michael Carney, Brenda Hernandez, Benito Campos, Christel Herold-Mende, Christin Jungk, Andreas Unterberg, Andreas von Deimling, Aaron Bossler, Joseph Galbraith, Laura Jacobus, Michael Knudson, Tina Knutson, Deqin Ma, Mohammed Milhem, Rita Sigmund, Andrew K. Godwin, Rashna Madan, Howard G. Rosenthal, Clement Adebamowo, Sally N. Adebamowo, Alex Boussioutas, David Beer, Thomas Giordano, Anne-Marie Mes-Masson, Fred Saad, Therese Bocklage, Lisa Landrum, Robert Mannel, Kathleen Moore, Katherine Moxley, Russel Postier, Joan Walker, Rosemary Zuna, Michael Feldman, Federico Valdivieso, Rajiv Dhir, James Luketich, Edna M. Mora Pinero, Mario Quintero-Aguilo, Carlos Gilberto Carlotti, Jose Sebastião Dos Santos, Rafael Kemp, Ajith Sankarankuty, Daniela Tirapelli, James Catto, Kathy Agnew, Elizabeth Swisher, Jenette Creaney, Bruce Robinson, Carl Simon Shelley, Eryn M. Godwin, Sara Kendall, Cassaundra Shipman, Carol Bradford, Thomas Carey, Andrea Haddad, Jeffey Moyer, Lisa Peterson, Mark Prince, Laura Rozek, Gregory Wolf, Rayleen Bowman, Kwun M. Fong, Ian Yang, Robert Korst, W. Kimryn Rathmell, J. Leigh Fantacone-Campbell, Jeffrey A. Hooke, Albert J. Kovatich, Craig D. Shriver, John DiPersio, Bettina Drake, Ramaswamy Govindan, Sharon Heath, Timothy Ley, Brian Van Tine, Peter Westervelt, Mark A. Rubin, Jung Il Lee, Natália D. Aredes, Armaz Mariamidze, Cancer Genome Atlas Research Network, Caesar-Johnson, S.J., Demchok, J.A., Felau, I., Kasapi, M., Ferguson, M.L., Hutter, C.M., Sofia, H.J., Tarnuzzer, R., Wang, Z., Yang, L., Zenklusen, J.C., Zhang, J.J., Chudamani, S., Liu, J., Lolla, L., Naresh, R., Pihl, T., Sun, Q., Wan, Y., Wu, Y., Cho, J., DeFreitas, T., Frazer, S., Gehlenborg, N., Getz, G., Heiman, D.I., Kim, J., Lawrence, M.S., Lin, P., Meier, S., Noble, M.S., Saksena, G., Voet, D., Zhang, H., Bernard, B., Chambwe, N., Dhankani, V., Knijnenburg, T., Kramer, R., Leinonen, K., Liu, Y., Miller, M., Reynolds, S., Shmulevich, I., Thorsson, V., Zhang, W., Akbani, R., Broom, B.M., Hegde, A.M., Ju, Z., Kanchi, R.S., Korkut, A., Li, J., Liang, H., Ling, S., Liu, W., Lu, Y., Mills, G.B., Ng, K.S., Rao, A., Ryan, M., Wang, J., Weinstein, J.N., Zhang, J., Abeshouse, A., Armenia, J., Chakravarty, D., Chatila, W.K., de Bruijn, I., Gao, J., Gross, B.E., Heins, Z.J., Kundra, R., La, K., Ladanyi, M., Luna, A., Nissan, M.G., Ochoa, A., Phillips, S.M., Reznik, E., Sanchez-Vega, F., Sander, C., Schultz, N., Sheridan, R., Sumer, S.O., Sun, Y., Taylor, B.S., Anur, P., Peto, M., Spellman, P., Benz, C., Stuart, J.M., Wong, C.K., Yau, C., Hayes, D.N., Parker, J.S., Wilkerson, M.D., Ally, A., Balasundaram, M., Bowlby, R., Brooks, D., Carlsen, R., Chuah, E., Dhalla, N., Holt, R., Jones, SJM, Kasaian, K., Lee, D., Ma, Y., Marra, M.A., Mayo, M., Moore, R.A., Mungall, A.J., Mungall, K., Robertson, A.G., Sadeghi, S., Schein, J.E., Sipahimalani, P., Tam, A., Thiessen, N., Tse, K., Wong, T., Berger, A.C., Beroukhim, R., Cherniack, A.D., Cibulskis, C., Gabriel, S.B., Gao, G.F., Ha, G., Meyerson, M., Schumacher, S.E., Shih, J., Kucherlapati, M.H., Kucherlapati, R.S., Baylin, S., Cope, L., Danilova, L., Bootwalla, M.S., Lai, P.H., Maglinte, D.T., Van Den Berg, D.J., Weisenberger, D.J., Auman, J.T., Balu, S., Bodenheimer, T., Fan, C., Hoadley, K.A., Hoyle, A.P., Jefferys, S.R., Jones, C.D., Meng, S., Mieczkowski, P.A., Mose, L.E., Perou, A.H., Perou, C.M., Roach, J., Shi, Y., Simons, J.V., Skelly, T., Soloway, M.G., Tan, D., Veluvolu, U., Fan, H., Hinoue, T., Laird, P.W., Shen, H., Zhou, W., Bellair, M., Chang, K., Covington, K., Creighton, C.J., Dinh, H., Doddapaneni, H., Donehower, L.A., Drummond, J., Gibbs, R.A., Glenn, R., Hale, W., Han, Y., Hu, J., Korchina, V., Lee, S., Lewis, L., Li, W., Liu, X., Morgan, M., Morton, D., Muzny, D., Santibanez, J., Sheth, M., Shinbrot, E., Wang, L., Wang, M., Wheeler, D.A., Xi, L., Zhao, F., Hess, J., Appelbaum, E.L., Bailey, M., Cordes, M.G., Ding, L., Fronick, C.C., Fulton, L.A., Fulton, R.S., Kandoth, C., Mardis, E.R., McLellan, M.D., Miller, C.A., Schmidt, H.K., Wilson, R.K., Crain, D., Curley, E., Gardner, J., Lau, K., Mallery, D., Morris, S., Paulauskis, J., Penny, R., Shelton, C., Shelton, T., Sherman, M., Thompson, E., Yena, P., Bowen, J., Gastier-Foster, J.M., Gerken, M., Leraas, K.M., Lichtenberg, T.M., Ramirez, N.C., Wise, L., Zmuda, E., Corcoran, N., Costello, T., Hovens, C., Carvalho, A.L., de Carvalho, A.C., Fregnani, J.H., Longatto-Filho, A., Reis, R.M., Scapulatempo-Neto, C., Silveira, HCS, Vidal, D.O., Burnette, A., Eschbacher, J., Hermes, B., Noss, A., Singh, R., Anderson, M.L., Castro, P.D., Ittmann, M., Huntsman, D., Kohl, B., Le, X., Thorp, R., Andry, C., Duffy, E.R., Lyadov, V., Paklina, O., Setdikova, G., Shabunin, A., Tavobilov, M., McPherson, C., Warnick, R., Berkowitz, R., Cramer, D., Feltmate, C., Horowitz, N., Kibel, A., Muto, M., Raut, C.P., Malykh, A., Barnholtz-Sloan, J.S., Barrett, W., Devine, K., Fulop, J., Ostrom, Q.T., Shimmel, K., Wolinsky, Y., Sloan, A.E., De Rose, A., Giuliante, F., Goodman, M., Karlan, B.Y., Hagedorn, C.H., Eckman, J., Harr, J., Myers, J., Tucker, K., Zach, L.A., Deyarmin, B., Hu, H., Kvecher, L., Larson, C., Mural, R.J., Somiari, S., Vicha, A., Zelinka, T., Bennett, J., Iacocca, M., Rabeno, B., Swanson, P., Latour, M., Lacombe, L., Têtu, B., Bergeron, A., McGraw, M., Staugaitis, S.M., Chabot, J., Hibshoosh, H., Sepulveda, A., Su, T., Wang, T., Potapova, O., Voronina, O., Desjardins, L., Mariani, O., Roman-Roman, S., Sastre, X., Stern, M.H., Cheng, F., Signoretti, S., Berchuck, A., Bigner, D., Lipp, E., Marks, J., McCall, S., McLendon, R., Secord, A., Sharp, A., Behera, M., Brat, D.J., Chen, A., Delman, K., Force, S., Khuri, F., Magliocca, K., Maithel, S., Olson, J.J., Owonikoko, T., Pickens, A., Ramalingam, S., Shin, D.M., Sica, G., Van Meir, E.G., Eijckenboom, W., Gillis, A., Korpershoek, E., Looijenga, L., Oosterhuis, W., Stoop, H., van Kessel, K.E., Zwarthoff, E.C., Calatozzolo, C., Cuppini, L., Cuzzubbo, S., DiMeco, F., Finocchiaro, G., Mattei, L., Perin, A., Pollo, B., Chen, C., Houck, J., Lohavanichbutr, P., Hartmann, A., Stoehr, C., Stoehr, R., Taubert, H., Wach, S., Wullich, B., Kycler, W., Murawa, D., Wiznerowicz, M., Chung, K., Edenfield, W.J., Martin, J., Baudin, E., Bubley, G., Bueno, R., De Rienzo, A., Richards, W.G., Kalkanis, S., Mikkelsen, T., Noushmehr, H., Scarpace, L., Girard, N., Aymerich, M., Campo, E., Giné, E., Guillermo, A.L., Van Bang, N., Hanh, P.T., Phu, B.D., Tang, Y., Colman, H., Evason, K., Dottino, P.R., Martignetti, J.A., Gabra, H., Juhl, H., Akeredolu, T., Stepa, S., Hoon, D., Ahn, K., Kang, K.J., Beuschlein, F., Breggia, A., Birrer, M., Bell, D., Borad, M., Bryce, A.H., Castle, E., Chandan, V., Cheville, J., Copland, J.A., Farnell, M., Flotte, T., Giama, N., Ho, T., Kendrick, M., Kocher, J.P., Kopp, K., Moser, C., Nagorney, D., O'Brien, D., O'Neill, B.P., Patel, T., Petersen, G., Que, F., Rivera, M., Roberts, L., Smallridge, R., Smyrk, T., Stanton, M., Thompson, R.H., Torbenson, M., Yang, J.D., Zhang, L., Brimo, F., Ajani, J.A., Gonzalez, AMA, Behrens, C., Bondaruk, J., Broaddus, R., Czerniak, B., Esmaeli, B., Fujimoto, J., Gershenwald, J., Guo, C., Lazar, A.J., Logothetis, C., Meric-Bernstam, F., Moran, C., Ramondetta, L., Rice, D., Sood, A., Tamboli, P., Thompson, T., Troncoso, P., Tsao, A., Wistuba, I., Carter, C., Haydu, L., Hersey, P., Jakrot, V., Kakavand, H., Kefford, R., Lee, K., Long, G., Mann, G., Quinn, M., Saw, R., Scolyer, R., Shannon, K., Spillane, A., Stretch, J., Synott, M., Thompson, J., Wilmott, J., Al-Ahmadie, H., Chan, T.A., Ghossein, R., Gopalan, A., Levine, D.A., Reuter, V., Singer, S., Singh, B., Tien, N.V., Broudy, T., Mirsaidi, C., Nair, P., Drwiega, P., Miller, J., Smith, J., Zaren, H., Park, J.W., Hung, N.P., Kebebew, E., Linehan, W.M., Metwalli, A.R., Pacak, K., Pinto, P.A., Schiffman, M., Schmidt, L.S., Vocke, C.D., Wentzensen, N., Worrell, R., Yang, H., Moncrieff, M., Goparaju, C., Melamed, J., Pass, H., Botnariuc, N., Caraman, I., Cernat, M., Chemencedji, I., Clipca, A., Doruc, S., Gorincioi, G., Mura, S., Pirtac, M., Stancul, I., Tcaciuc, D., Albert, M., Alexopoulou, I., Arnaout, A., Bartlett, J., Engel, J., Gilbert, S., Parfitt, J., Sekhon, H., Thomas, G., Rassl, D.M., Rintoul, R.C., Bifulco, C., Tamakawa, R., Urba, W., Hayward, N., Timmers, H., Antenucci, A., Facciolo, F., Grazi, G., Marino, M., Merola, R., de Krijger, R., Gimenez-Roqueplo, A.P., Piché, A., Chevalier, S., McKercher, G., Birsoy, K., Barnett, G., Brewer, C., Farver, C., Naska, T., Pennell, N.A., Raymond, D., Schilero, C., Smolenski, K., Williams, F., Morrison, C., Borgia, J.A., Liptay, M.J., Pool, M., Seder, C.W., Junker, K., Omberg, L., Dinkin, M., Manikhas, G., Alvaro, D., Bragazzi, M.C., Cardinale, V., Carpino, G., Gaudio, E., Chesla, D., Cottingham, S., Dubina, M., Moiseenko, F., Dhanasekaran, R., Becker, K.F., Janssen, K.P., Slotta-Huspenina, J., Abdel-Rahman, M.H., Aziz, D., Bell, S., Cebulla, C.M., Davis, A., Duell, R., Elder, J.B., Hilty, J., Kumar, B., Lang, J., Lehman, N.L., Mandt, R., Nguyen, P., Pilarski, R., Rai, K., Schoenfield, L., Senecal, K., Wakely, P., Hansen, P., Lechan, R., Powers, J., Tischler, A., Grizzle, W.E., Sexton, K.C., Kastl, A., Henderson, J., Porten, S., Waldmann, J., Fassnacht, M., Asa, S.L., Schadendorf, D., Couce, M., Graefen, M., Huland, H., Sauter, G., Schlomm, T., Simon, R., Tennstedt, P., Olabode, O., Nelson, M., Bathe, O., Carroll, P.R., Chan, J.M., Disaia, P., Glenn, P., Kelley, R.K., Landen, C.N., Phillips, J., Prados, M., Simko, J., Smith-McCune, K., VandenBerg, S., Roggin, K., Fehrenbach, A., Kendler, A., Sifri, S., Steele, R., Jimeno, A., Carey, F., Forgie, I., Mannelli, M., Carney, M., Hernandez, B., Campos, B., Herold-Mende, C., Jungk, C., Unterberg, A., von Deimling, A., Bossler, A., Galbraith, J., Jacobus, L., Knudson, M., Knutson, T., Ma, D., Milhem, M., Sigmund, R., Godwin, A.K., Madan, R., Rosenthal, H.G., Adebamowo, C., Adebamowo, S.N., Boussioutas, A., Beer, D., Giordano, T., Mes-Masson, A.M., Saad, F., Bocklage, T., Landrum, L., Mannel, R., Moore, K., Moxley, K., Postier, R., Walker, J., Zuna, R., Feldman, M., Valdivieso, F., Dhir, R., Luketich, J., Pinero, EMM, Quintero-Aguilo, M., Carlotti, C.G., Dos Santos, J.S., Kemp, R., Sankarankuty, A., Tirapelli, D., Catto, J., Agnew, K., Swisher, E., Creaney, J., Robinson, B., Shelley, C.S., Godwin, E.M., Kendall, S., Shipman, C., Bradford, C., Carey, T., Haddad, A., Moyer, J., Peterson, L., Prince, M., Rozek, L., Wolf, G., Bowman, R., Fong, K.M., Yang, I., Korst, R., Rathmell, W.K., Fantacone-Campbell, J.L., Hooke, J.A., Kovatich, A.J., Shriver, C.D., DiPersio, J., Drake, B., Govindan, R., Heath, S., Ley, T., Van Tine, B., Westervelt, P., Rubin, M.A., Lee, J.I., Aredes, N.D., Mariamidze, A., SAIC-F-Frederick, Inc, and Leidos Biomedical Research, Inc.
- Subjects
0301 basic medicine ,Neuroblastoma RAS viral oncogene homolog ,Genetics and Molecular Biology (all) ,PATHOGENESIS ,pan-cancer ,PROTEIN ,Cancer Genome Atlas Research Network ,medicine.disease_cause ,computer.software_genre ,Genome ,Biochemistry ,Transcriptome ,Gene expression ,HRAS ,KRAS ,NF1 ,NRAS ,Ras ,TCGA ,drug sensitivity ,machine learning ,Neoplasms ,PRECISION ONCOLOGY ,lcsh:QH301-705.5 ,Regulation of gene expression ,PREVIOUSLY TREATED PATIENTS ,3. Good health ,Gene Expression Regulation, Neoplastic ,PHASE-II ,Life Sciences & Biomedicine ,Signal Transduction ,Biology ,Machine learning ,General Biochemistry, Genetics and Molecular Biology ,Article ,BRAF ,03 medical and health sciences ,Cell Line, Tumor ,medicine ,Biochemistry, Genetics and Molecular Biology (all) ,Humans ,Gene ,SIGNATURES ,Science & Technology ,business.industry ,Genome, Human ,MUTATIONS ,EXPRESSÃO GÊNICA ,Cell Biology ,SELUMETINIB ,GENE ,030104 developmental biology ,lcsh:Biology (General) ,Selumetinib ,ras Proteins ,Artificial intelligence ,business ,computer - Abstract
SUMMARY Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these “hidden responders” may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders., In Brief Way et al. develop a machine-learning approach using PanCanAtlas data to detect Ras activation in cancer. Integrating mutation, copy number, and expression data, the authors show that their method detects Ras-activating variants in tumors and sensitivity to MEK inhibitors in cell lines.
- Published
- 2018
17. Oncogenic signaling pathways in the Cancer Genome Atlas
- Author
-
Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., Dimitriadoy, S., Liu, D. L., Kantheti, H. S., Saghafinia, S., Chakravarty, D., Daian, F., Gao, Q., Bailey, M. H., Liang, W. -W., Foltz, S. M., Shmulevich, I., Ding, L., Heins, Z., Ochoa, A., Gross, B., Gao, J., Zhang, H., Kundra, R., Kandoth, C., Bahceci, I., Dervishi, L., Doğrusöz, Uğur, Zhou, W., Shen, H., Laird, P. W., Way, G. P., Greene, C. S., Liang, H., Xiao, Y., Wang, C., Iavarone, A., Berger, A. H., Bivona, T. G., Lazar, A. J., Hammer, G. D., Giordano, T., Kwong, L. N., McArthur, G., Huang, C., Tward, A. D., Frederick, M. J., McCormick, F., Meyerson, M., Caesar-Johnson, S. J., Demchok, J. A., Felau, I., Kasapi, M., Ferguson, M. L., Hutter, C. M., Sofia, H. J., Tarnuzzer, R., Wang, Z., Yang, L., Zenklusen, J. C., Zhang, J. J., Chudamani, S., Liu, J., Lolla, L., Naresh, R., Pihl, T., Sun, Q., Wan, Y., Wu, Y., Cho, J., DeFreitas, T., Frazer, S., Gehlenborg, N., Getz, G., Heiman, D. I., Kim, J., Lawrence, M. S., Lin, P., Meier, S., Noble, M. S., Saksena, G., Voet, D., Bernard, B., Chambwe, N., Dhankani, V., Knijnenburg, T., Kramer, R., Leinonen, K., Liu, Y., Miller, M., Reynolds, S., Thorsson, V., Zhang, W., Akbani, R., Broom, B. M., Hegde, A. M., Ju, Z., Kanchi, R. S., Korkut, A., Li, J., Ling, S., Liu W., Lu, Y., Mills, G. B., Ng, K. -S., Rao, A., Ryan, M., Wang, J., Weinstein, J. N., Zhang, J., Abeshouse, A., de, Bruijn, I., Gross, B. E., Heins, Z. J., La, K., Ladanyi, M., Nissan, M. G., Phillips, S. M., Reznik, E., Sander, C., Schultz, N., Sheridan, R., Sumer, S. O., Sun, Y., Taylor, B. S., Anur, P., Peto, M., Spellman, P., Benz, C., Stuart, J. M., Wong, C. K., Yau, C., Hayes, D. N., Parker, J. S., Wilkerson, M. D., Ally, A., Balasundaram, M., Bowlby, R., Brooks, D., Carlsen, R., Chuah, E., Dhalla, N., Holt, R., Jones, S. J. M., Kasaian, K., Lee, D., Ma, Y., Marra, M. A., Mayo, M., Moore, R. A., Mungall, A. J., Mungall, K., Robertson, A. G., Sadeghi, S., Schein, J. E., Sipahimalani, P., Tam, A., Thiessen, N., Tse, K., Wong, T., Berger, A. C., Beroukhim, R., Cherniack, A. D., Cibulskis, C., Gabriel, S. B., Gao, G. F., Ha, G., Schumacher, S. E., Shih, J., Kucherlapati, M. H., Kucherlapati, R. S., Baylin, S., Cope, L., Danilova, L., Bootwalla, M. S., Lai, P. H., Maglinte, D. T., Van, Den, Berg, D. J., Weisenberger, D. J., Auman, J. T., Balu, S., Bodenheimer, T., Fan, C., Hoadley, K. A., Hoyle, A. P., Jefferys, S. R., Jones, C. D., Meng, S., Mieczkowski, P. A., Mose, L. E., Perou, A. H., Perou, C. M., Roach, J., Shi, Y., Simons, J. V., Skelly, T., Soloway, M. G., Tan, D., Veluvolu, U., Fan, H., Hinoue, T., Bellair, M., Chang, K., Covington, K., Creighton, C. J., Dinh, H., Doddapaneni, H., Donehower, L. A., Drummond, J., Gibbs, R. A., Glenn, R., Hale, W., Han, Y., Hu, J., Korchina, V., Lee, S., Lewis, L., Li, W., Liu, X., Morgan, M., Morton, D., Muzny, D., Santibanez, J., Sheth, M., Shinbrot, E., Wang, L., Wang, M., Wheeler, D. A., Xi, L., Zhao, F., Hess, J., Appelbaum, E. L., Bailey, M., Cordes, M. G., Fronick, C. C., Fulton, L. A., Fulton, R. S., Mardis, E. R., McLellan, M. D., Miller, C. A., Schmidt, H. K., Wilson, R. K., Crain, D., Curley, E., Gardner, J., Lau, K., Mallery, D., Morris, S., Paulauskis, J., Penny, R., Shelton, C., Shelton, T., Sherman, M., Thompson, E., Yena, P., Bowen, J., Gastier-Foster, J. M., Gerken, M., Leraas, K. M., Lichtenberg, T. M., Ramirez, N. C., Wise, L., Zmuda, E., Corcoran, N., Costello, T., Hovens, C., Carvalho, A. L., de, Carvalho, A. C., Fregnani, J. H., Longatto-Filho, A., Reis, R. M., Scapulatempo-Neto, C., Silveira, H. C. S., Vidal, D. O., Burnette, A., Eschbacher, J., Hermes, B., Noss, A., Singh, R., Anderson, M. L., Castro, P. D., Ittmann, M., Huntsman, D., Kohl, B., Le, X., Thorp, R., Andry, C., Duffy, E. R., Lyadov, V., Paklina, O., Setdikova, G., Shabunin, A., Tavobilov, M., McPherson, C., Warnick, R., Berkowitz, R., Cramer, D., Feltmate, C., Horowitz, N., Kibel, A., Muto, M., Raut, C. P., Malykh, A., Barnholtz-Sloan, J. S., Barrett, W., Devine, K., Fulop, J., Ostrom, Q. T., Shimmel, K., Wolinsky, Y., Sloan, A. E., De, Rose, A., Giuliante, F., Goodman, M., Karlan, B. Y., Hagedorn, C. H., Eckman, J., Harr, J., Myers, J., Tucker, K., Zach, L. A., Deyarmin, B., Hu, H., Kvecher, L., Larson, C., Mural, R. J., Somiari, S., Vicha, A., Zelinka, T., Bennett, J., Iacocca, M., Rabeno, B., Swanson, P., Latour, M., Lacombe, L., Têtu, B., Bergeron, A., McGraw, M., Staugaitis, S. M., Chabot, J., Hibshoosh, H., Sepulveda, A., Su, T., Wang, T., Potapova, O., Voronina, O., Desjardins, L., Mariani, O., Roman-Roman, S., Sastre, X., Stern, M. -H., Cheng, F., Signoretti, S., Berchuck, A., Bigner, D., Lipp, E., Marks, J., McCall, S., McLendon, R., Secord, A., Sharp, A., Behera, M., Brat, D. J., Chen, A., Delman, K., Force, S., Khuri, F., Magliocca, K., Maithel, S., Olson, J. J., Owonikoko, T., Pickens, A., Ramalingam, S., Shin, D. M., Sica, G., Van, Meir, E. G., Eijckenboom, W., Gillis, A., Korpershoek, E., Looijenga, L., Oosterhuis, W., Stoop, H., van, Kessel, K. E., Zwarthoff, E. C., Calatozzolo, C., Cuppini, L., Cuzzubbo, S., DiMeco, F., Finocchiaro, G., Mattei, L., Perin, A., Pollo, B., Chen, C., Houck, J., Lohavanichbutr, P., Hartmann, A., Stoehr, C., Stoehr, R., Taubert, H., Wach, S., Wullich, B., Kycler, W., Murawa, D., Wiznerowicz, M., Chung, K., Edenfield, W. J., Martin, J., Baudin, E., Bubley, G., Bueno, R., De, Rienzo, A., Richards, W. G., Kalkanis, S., Mikkelsen, T., Noushmehr, H., Scarpace, L., Girard, N., Aymerich, M., Campo, E., Giné, E., Guillermo, A. L., Van, Bang, N., Hanh, P. T., Phu, B. D., Tang, Y., Colman, H., Evason, K., Dottino, P. R., Martignetti, J. A., Gabra, H., Juhl, H., Akeredolu, T., Stepa, S., Hoon, D., Ahn, K., Kang, K. J., Beuschlein, F., Breggia, A., Birrer, M., Bell, D., Borad, M., Bryce, A. H., Castle, E., Chandan, V., Cheville, J., Copland, J. A., Farnell, M., Flotte, T., Giama, N., Ho, T., Kendrick, M., Kocher, J. -P., Kopp, K., Moser, C., Nagorney, D., O'Brien, D., O'Neill, B. P., Patel, T., Petersen, G., Que, F., Rivera, M., Roberts, L., Smallridge, R., Smyrk, T., Stanton, M., Thompson, R. H., Torbenson, M., Yang, J. D., Zhang, L., Brimo, F., Ajani, J. A., Gonzalez, A. M. A., Behrens, C., Bondaruk, J., Broaddus, R., Czerniak, B., Esmaeli, B., Fujimoto, J., Gershenwald, J., Guo, C., Logothetis, C., Meric-Bernstam, F., Moran, C., Ramondetta, L., Rice, D., Sood, A., Tamboli, P., Thompson, T., Troncoso, P., Tsao, A., Wistuba, I., Carter, C., Haydu, L., Hersey, P., Jakrot, V., Kakavand, H., Kefford, R., Lee, K., Long, G., Mann, G., Quinn, M., Saw, R., Scolyer, R., Shannon, K., Spillane, A., Stretch, J., Synott, M., Thompson, J., Wilmott, J., Al-Ahmadie, H., Chan, T. A., Ghossein, R., Gopalan, A., Levine, D. A., Reuter, V., Singer, S., Singh, B., Tien, N. V., Broudy, T., Mirsaidi, C., Nair, P., Drwiega, P., Miller, J., Smith, J., Zaren, H., Park, J. -W., Hung, N. P., Kebebew, E., Linehan, W. M., Metwalli, A. R., Pacak, K., Pinto, P. A., Schiffman, M., Schmidt, L. S., Vocke, C. D., Wentzensen, N., Worrell, R., Yang, H., Moncrieff, M., Goparaju, C., Melamed, J., Pass, H., Botnariuc, N., Caraman, I., Cernat, M., Chemencedji, I., Clipca, A., Doruc, S., Gorincioi, G., Mura, S., Pirtac, M., Stancul, I., Tcaciuc, D., Albert, M., Alexopoulou, I., Arnaout, A., Bartlett, J., Engel, J., Gilbert, S., Parfitt, J., Sekhon, H., Thomas, G., Rassl, D. M., Rintoul, R. C., Bifulco, C., Tamakawa, R., Urba, W., Hayward, N., Timmers, H., Antenucci, A., Facciolo, F., Grazi, G., Marino, M., Merola, R., de, Krijger, R., Gimenez-Roqueplo, A. -P., Piché, A., Chevalier, S., McKercher, G., Birsoy, K., Barnett, G., Brewer, C., Farver, C., Naska, T., Pennell, N. A., Raymond, D., Schilero, C., Smolenski, K., Williams, F., Morrison, C., Borgia, J. A., Liptay, M. J., Pool, M., Seder, C. W., Junker, K., Omberg, L., Dinkin, M., Manikhas, G., Alvaro, D., Bragazzi, M. C., Cardinale, V., Carpino, G., Gaudio, E., Chesla, D., Cottingham, S., Dubina, M., Moiseenko, F., Dhanasekaran, R., Becker, K. -F., Janssen, K. -P., Slotta-Huspenina, J., Abdel-Rahman, M. H., Aziz, D., Bell, S., Cebulla, C. M., Davis, A., Duell, R., Elder, J. B., Hilty, J., Kumar, B., Lang, J., Lehman, N. L., Mandt, R., Nguyen, P., Pilarski, R., Rai, K., Schoenfield, L., Senecal, K., Wakely, P., Hansen, P., Lechan, R., Powers, J., Tischler, A., Grizzle, W. E., Sexton, K. C., Kastl, A., Henderson, J., Porten, S., Waldmann, J., Fassnacht, M., Asa, S. L., Schadendorf, D., Couce, M., Graefen, M., Huland, H., Sauter, G., Schlomm, T., Simon, R., Tennstedt, P., Olabode, O., Nelson, M., Bathe, O., Carroll, P. R., Chan, J. M., Disaia, P., Glenn, P., Kelley, R. K., Landen, C. N., Phillips, J., Prados, M., Simko, J., Smith-McCune, K., VandenBerg, S., Roggin, K., Fehrenbach, A., Kendler, A., Sifri, S., Steele, R., Jimeno, A., Carey, F., Forgie, I., Mannelli, M., Carney, M., Hernandez, B., Campos, B., Herold-Mende, C., Jungk, C., Unterberg, A., von, Deimling, A., Bossler, A., Galbraith, J., Jacobus, L., Knudson, M., Knutson, T., Ma, D., Milhem, M., Sigmund, R., Godwin, A. K., Madan, R., Rosenthal, H. G., Adebamowo, C., Adebamowo, S. N., Boussioutas, A., Beer, D., Mes-Masson, A. -M., Saad, F., Bocklage, T., Landrum, L., Mannel, R., Moore, K., Moxley, K., Postier, R., Walker, J., Zuna, R., Feldman, M., Valdivieso, F., Dhir, R., Luketich, J., Pinero, E. M. M., Quintero-Aguilo, M., Carlotti, C. G., Jr., Dos, Santos, J. S., Kemp, R., Sankarankuty, A., Tirapelli, D., Catto, J., Agnew, K., Swisher, E., Creaney, J., Robinson, B., Shelley, C. S., Godwin, E. M., Kendall, S., Shipman, C., Bradford, C., Carey, T., Haddad, A., Moyer, J., Peterson, L., Prince, M., Rozek, L., Wolf, G., Bowman, R., Fong, K. M., Yang, I., Korst, R., Rathmell, W. K., Fantacone-Campbell, J. L., Hooke, J. A., Kovatich, A. J., Shriver, C. D., DiPersio, J., Drake, B., Govindan, R., Heath, S., Ley, T., Van, Tine, B., Westervelt, P., Rubin, M. A., Lee, J. I., Aredes, N. D., Mariamidze, A., Van, Allen, E. M., Ciriello, G., The, Cancer, Genome, Atlas, Research, Network.tif, Doğrusöz, Uğur, Cancer Genome Atlas Research Network, Caesar-Johnson, S.J., Demchok, J.A., Felau, I., Kasapi, M., Ferguson, M.L., Hutter, C.M., Sofia, H.J., Tarnuzzer, R., Wang, Z., Yang, L., Zenklusen, J.C., Zhang, J.J., Chudamani, S., Liu, J., Lolla, L., Naresh, R., Pihl, T., Sun, Q., Wan, Y., Wu, Y., Cho, J., DeFreitas, T., Frazer, S., Gehlenborg, N., Getz, G., Heiman, D.I., Kim, J., Lawrence, M.S., Lin, P., Meier, S., Noble, M.S., Saksena, G., Voet, D., Zhang, H., Bernard, B., Chambwe, N., Dhankani, V., Knijnenburg, T., Kramer, R., Leinonen, K., Liu, Y., Miller, M., Reynolds, S., Shmulevich, I., Thorsson, V., Zhang, W., Akbani, R., Broom, B.M., Hegde, A.M., Ju, Z., Kanchi, R.S., Korkut, A., Li, J., Liang, H., Ling, S., Liu, W., Lu, Y., Mills, G.B., Ng, K.S., Rao, A., Ryan, M., Wang, J., Weinstein, J.N., Zhang, J., Abeshouse, A., Armenia, J., Chakravarty, D., Chatila, W.K., de Bruijn, I., Gao, J., Gross, B.E., Heins, Z.J., Kundra, R., La, K., Ladanyi, M., Luna, A., Nissan, M.G., Ochoa, A., Phillips, S.M., Reznik, E., Sanchez-Vega, F., Sander, C., Schultz, N., Sheridan, R., Sumer, S.O., Sun, Y., Taylor, B.S., Anur, P., Peto, M., Spellman, P., Benz, C., Stuart, J.M., Wong, C.K., Yau, C., Hayes, D.N., Parker, J.S., Wilkerson, M.D., Ally, A., Balasundaram, M., Bowlby, R., Brooks, D., Carlsen, R., Chuah, E., Dhalla, N., Holt, R., Jones, SJM, Kasaian, K., Lee, D., Ma, Y., Marra, M.A., Mayo, M., Moore, R.A., Mungall, A.J., Mungall, K., Robertson, A.G., Sadeghi, S., Schein, J.E., Sipahimalani, P., Tam, A., Thiessen, N., Tse, K., Wong, T., Berger, A.C., Beroukhim, R., Cherniack, A.D., Cibulskis, C., Gabriel, S.B., Gao, G.F., Ha, G., Meyerson, M., Schumacher, S.E., Shih, J., Kucherlapati, M.H., Kucherlapati, R.S., Baylin, S., Cope, L., Danilova, L., Bootwalla, M.S., Lai, P.H., Maglinte, D.T., Van Den Berg, D.J., Weisenberger, D.J., Auman, J.T., Balu, S., Bodenheimer, T., Fan, C., Hoadley, K.A., Hoyle, A.P., Jefferys, S.R., Jones, C.D., Meng, S., Mieczkowski, P.A., Mose, L.E., Perou, A.H., Perou, C.M., Roach, J., Shi, Y., Simons, J.V., Skelly, T., Soloway, M.G., Tan, D., Veluvolu, U., Fan, H., Hinoue, T., Laird, P.W., Shen, H., Zhou, W., Bellair, M., Chang, K., Covington, K., Creighton, C.J., Dinh, H., Doddapaneni, H., Donehower, L.A., Drummond, J., Gibbs, R.A., Glenn, R., Hale, W., Han, Y., Hu, J., Korchina, V., Lee, S., Lewis, L., Li, W., Liu, X., Morgan, M., Morton, D., Muzny, D., Santibanez, J., Sheth, M., Shinbrot, E., Wang, L., Wang, M., Wheeler, D.A., Xi, L., Zhao, F., Hess, J., Appelbaum, E.L., Bailey, M., Cordes, M.G., Ding, L., Fronick, C.C., Fulton, L.A., Fulton, R.S., Kandoth, C., Mardis, E.R., McLellan, M.D., Miller, C.A., Schmidt, H.K., Wilson, R.K., Crain, D., Curley, E., Gardner, J., Lau, K., Mallery, D., Morris, S., Paulauskis, J., Penny, R., Shelton, C., Shelton, T., Sherman, M., Thompson, E., Yena, P., Bowen, J., Gastier-Foster, J.M., Gerken, M., Leraas, K.M., Lichtenberg, T.M., Ramirez, N.C., Wise, L., Zmuda, E., Corcoran, N., Costello, T., Hovens, C., Carvalho, A.L., de Carvalho, A.C., Fregnani, J.H., Longatto-Filho, A., Reis, R.M., Scapulatempo-Neto, C., Silveira, HCS, Vidal, D.O., Burnette, A., Eschbacher, J., Hermes, B., Noss, A., Singh, R., Anderson, M.L., Castro, P.D., Ittmann, M., Huntsman, D., Kohl, B., Le, X., Thorp, R., Andry, C., Duffy, E.R., Lyadov, V., Paklina, O., Setdikova, G., Shabunin, A., Tavobilov, M., McPherson, C., Warnick, R., Berkowitz, R., Cramer, D., Feltmate, C., Horowitz, N., Kibel, A., Muto, M., Raut, C.P., Malykh, A., Barnholtz-Sloan, J.S., Barrett, W., Devine, K., Fulop, J., Ostrom, Q.T., Shimmel, K., Wolinsky, Y., Sloan, A.E., De Rose, A., Giuliante, F., Goodman, M., Karlan, B.Y., Hagedorn, C.H., Eckman, J., Harr, J., Myers, J., Tucker, K., Zach, L.A., Deyarmin, B., Hu, H., Kvecher, L., Larson, C., Mural, R.J., Somiari, S., Vicha, A., Zelinka, T., Bennett, J., Iacocca, M., Rabeno, B., Swanson, P., Latour, M., Lacombe, L., Têtu, B., Bergeron, A., McGraw, M., Staugaitis, S.M., Chabot, J., Hibshoosh, H., Sepulveda, A., Su, T., Wang, T., Potapova, O., Voronina, O., Desjardins, L., Mariani, O., Roman-Roman, S., Sastre, X., Stern, M.H., Cheng, F., Signoretti, S., Berchuck, A., Bigner, D., Lipp, E., Marks, J., McCall, S., McLendon, R., Secord, A., Sharp, A., Behera, M., Brat, D.J., Chen, A., Delman, K., Force, S., Khuri, F., Magliocca, K., Maithel, S., Olson, J.J., Owonikoko, T., Pickens, A., Ramalingam, S., Shin, D.M., Sica, G., Van Meir, E.G., Eijckenboom, W., Gillis, A., Korpershoek, E., Looijenga, L., Oosterhuis, W., Stoop, H., van Kessel, K.E., Zwarthoff, E.C., Calatozzolo, C., Cuppini, L., Cuzzubbo, S., DiMeco, F., Finocchiaro, G., Mattei, L., Perin, A., Pollo, B., Chen, C., Houck, J., Lohavanichbutr, P., Hartmann, A., Stoehr, C., Stoehr, R., Taubert, H., Wach, S., Wullich, B., Kycler, W., Murawa, D., Wiznerowicz, M., Chung, K., Edenfield, W.J., Martin, J., Baudin, E., Bubley, G., Bueno, R., De Rienzo, A., Richards, W.G., Kalkanis, S., Mikkelsen, T., Noushmehr, H., Scarpace, L., Girard, N., Aymerich, M., Campo, E., Giné, E., Guillermo, A.L., Van Bang, N., Hanh, P.T., Phu, B.D., Tang, Y., Colman, H., Evason, K., Dottino, P.R., Martignetti, J.A., Gabra, H., Juhl, H., Akeredolu, T., Stepa, S., Hoon, D., Ahn, K., Kang, K.J., Beuschlein, F., Breggia, A., Birrer, M., Bell, D., Borad, M., Bryce, A.H., Castle, E., Chandan, V., Cheville, J., Copland, J.A., Farnell, M., Flotte, T., Giama, N., Ho, T., Kendrick, M., Kocher, J.P., Kopp, K., Moser, C., Nagorney, D., O'Brien, D., O'Neill, B.P., Patel, T., Petersen, G., Que, F., Rivera, M., Roberts, L., Smallridge, R., Smyrk, T., Stanton, M., Thompson, R.H., Torbenson, M., Yang, J.D., Zhang, L., Brimo, F., Ajani, J.A., Gonzalez, AMA, Behrens, C., Bondaruk, J., Broaddus, R., Czerniak, B., Esmaeli, B., Fujimoto, J., Gershenwald, J., Guo, C., Lazar, A.J., Logothetis, C., Meric-Bernstam, F., Moran, C., Ramondetta, L., Rice, D., Sood, A., Tamboli, P., Thompson, T., Troncoso, P., Tsao, A., Wistuba, I., Carter, C., Haydu, L., Hersey, P., Jakrot, V., Kakavand, H., Kefford, R., Lee, K., Long, G., Mann, G., Quinn, M., Saw, R., Scolyer, R., Shannon, K., Spillane, A., Stretch, J., Synott, M., Thompson, J., Wilmott, J., Al-Ahmadie, H., Chan, T.A., Ghossein, R., Gopalan, A., Levine, D.A., Reuter, V., Singer, S., Singh, B., Tien, N.V., Broudy, T., Mirsaidi, C., Nair, P., Drwiega, P., Miller, J., Smith, J., Zaren, H., Park, J.W., Hung, N.P., Kebebew, E., Linehan, W.M., Metwalli, A.R., Pacak, K., Pinto, P.A., Schiffman, M., Schmidt, L.S., Vocke, C.D., Wentzensen, N., Worrell, R., Yang, H., Moncrieff, M., Goparaju, C., Melamed, J., Pass, H., Botnariuc, N., Caraman, I., Cernat, M., Chemencedji, I., Clipca, A., Doruc, S., Gorincioi, G., Mura, S., Pirtac, M., Stancul, I., Tcaciuc, D., Albert, M., Alexopoulou, I., Arnaout, A., Bartlett, J., Engel, J., Gilbert, S., Parfitt, J., Sekhon, H., Thomas, G., Rassl, D.M., Rintoul, R.C., Bifulco, C., Tamakawa, R., Urba, W., Hayward, N., Timmers, H., Antenucci, A., Facciolo, F., Grazi, G., Marino, M., Merola, R., de Krijger, R., Gimenez-Roqueplo, A.P., Piché, A., Chevalier, S., McKercher, G., Birsoy, K., Barnett, G., Brewer, C., Farver, C., Naska, T., Pennell, N.A., Raymond, D., Schilero, C., Smolenski, K., Williams, F., Morrison, C., Borgia, J.A., Liptay, M.J., Pool, M., Seder, C.W., Junker, K., Omberg, L., Dinkin, M., Manikhas, G., Alvaro, D., Bragazzi, M.C., Cardinale, V., Carpino, G., Gaudio, E., Chesla, D., Cottingham, S., Dubina, M., Moiseenko, F., Dhanasekaran, R., Becker, K.F., Janssen, K.P., Slotta-Huspenina, J., Abdel-Rahman, M.H., Aziz, D., Bell, S., Cebulla, C.M., Davis, A., Duell, R., Elder, J.B., Hilty, J., Kumar, B., Lang, J., Lehman, N.L., Mandt, R., Nguyen, P., Pilarski, R., Rai, K., Schoenfield, L., Senecal, K., Wakely, P., Hansen, P., Lechan, R., Powers, J., Tischler, A., Grizzle, W.E., Sexton, K.C., Kastl, A., Henderson, J., Porten, S., Waldmann, J., Fassnacht, M., Asa, S.L., Schadendorf, D., Couce, M., Graefen, M., Huland, H., Sauter, G., Schlomm, T., Simon, R., Tennstedt, P., Olabode, O., Nelson, M., Bathe, O., Carroll, P.R., Chan, J.M., Disaia, P., Glenn, P., Kelley, R.K., Landen, C.N., Phillips, J., Prados, M., Simko, J., Smith-McCune, K., VandenBerg, S., Roggin, K., Fehrenbach, A., Kendler, A., Sifri, S., Steele, R., Jimeno, A., Carey, F., Forgie, I., Mannelli, M., Carney, M., Hernandez, B., Campos, B., Herold-Mende, C., Jungk, C., Unterberg, A., von Deimling, A., Bossler, A., Galbraith, J., Jacobus, L., Knudson, M., Knutson, T., Ma, D., Milhem, M., Sigmund, R., Godwin, A.K., Madan, R., Rosenthal, H.G., Adebamowo, C., Adebamowo, S.N., Boussioutas, A., Beer, D., Giordano, T., Mes-Masson, A.M., Saad, F., Bocklage, T., Landrum, L., Mannel, R., Moore, K., Moxley, K., Postier, R., Walker, J., Zuna, R., Feldman, M., Valdivieso, F., Dhir, R., Luketich, J., Pinero, EMM, Quintero-Aguilo, M., Carlotti, C.G., Dos Santos, J.S., Kemp, R., Sankarankuty, A., Tirapelli, D., Catto, J., Agnew, K., Swisher, E., Creaney, J., Robinson, B., Shelley, C.S., Godwin, E.M., Kendall, S., Shipman, C., Bradford, C., Carey, T., Haddad, A., Moyer, J., Peterson, L., Prince, M., Rozek, L., Wolf, G., Bowman, R., Fong, K.M., Yang, I., Korst, R., Rathmell, W.K., Fantacone-Campbell, J.L., Hooke, J.A., Kovatich, A.J., Shriver, C.D., DiPersio, J., Drake, B., Govindan, R., Heath, S., Ley, T., Van Tine, B., Westervelt, P., Rubin, M.A., Lee, J.I., Aredes, N.D., Mariamidze, A., SAIC-F-Frederick, Inc, Leidos Biomedical Research, Inc., Sanchez-Vega F., Mina M., Armenia J., Chatila W.K., Luna A., La K.C., Dimitriadoy S., Liu D.L., Kantheti H.S., Saghafinia S., Chakravarty D., Daian F., Gao Q., Bailey M.H., Liang W.-W., Foltz S.M., Shmulevich I., Ding L., Heins Z., Ochoa A., Gross B., Gao J., Zhang H., Kundra R., Kandoth C., Bahceci I., Dervishi L., Dogrusoz U., Zhou W., Shen H., Laird P.W., Way G.P., Greene C.S., Liang H., Xiao Y., Wang C., Iavarone A., Berger A.H., Bivona T.G., Lazar A.J., Hammer G.D., Giordano T., Kwong L.N., McArthur G., Huang C., Tward A.D., Frederick M.J., McCormick F., Meyerson M., Caesar-Johnson S.J., Demchok J.A., Felau I., Kasapi M., Ferguson M.L., Hutter C.M., Sofia H.J., Tarnuzzer R., Wang Z., Yang L., Zenklusen J.C., Zhang J.J., Chudamani S., Liu J., Lolla L., Naresh R., Pihl T., Sun Q., Wan Y., Wu Y., Cho J., DeFreitas T., Frazer S., Gehlenborg N., Getz G., Heiman D.I., Kim J., Lawrence M.S., Lin P., Meier S., Noble M.S., Saksena G., Voet D., Bernard B., Chambwe N., Dhankani V., Knijnenburg T., Kramer R., Leinonen K., Liu Y., Miller M., Reynolds S., Thorsson V., Zhang W., Akbani R., Broom B.M., Hegde A.M., Ju Z., Kanchi R.S., Korkut A., Li J., Ling S., Liu W., Lu Y., Mills G.B., Ng K.-S., Rao A., Ryan M., Wang J., Weinstein J.N., Zhang J., Abeshouse A., de Bruijn I., Gross B.E., Heins Z.J., La K., Ladanyi M., Nissan M.G., Phillips S.M., Reznik E., Sander C., Schultz N., Sheridan R., Sumer S.O., Sun Y., Taylor B.S., Anur P., Peto M., Spellman P., Benz C., Stuart J.M., Wong C.K., Yau C., Hayes D.N., Parker J.S., Wilkerson M.D., Ally A., Balasundaram M., Bowlby R., Brooks D., Carlsen R., Chuah E., Dhalla N., Holt R., Jones S.J.M., Kasaian K., Lee D., Ma Y., Marra M.A., Mayo M., Moore R.A., Mungall A.J., Mungall K., Robertson A.G., Sadeghi S., Schein J.E., Sipahimalani P., Tam A., Thiessen N., Tse K., Wong T., Berger A.C., Beroukhim R., Cherniack A.D., Cibulskis C., Gabriel S.B., Gao G.F., Ha G., Schumacher S.E., Shih J., Kucherlapati M.H., Kucherlapati R.S., Baylin S., Cope L., Danilova L., Bootwalla M.S., Lai P.H., Maglinte D.T., Van Den Berg D.J., Weisenberger D.J., Auman J.T., Balu S., Bodenheimer T., Fan C., Hoadley K.A., Hoyle A.P., Jefferys S.R., Jones C.D., Meng S., Mieczkowski P.A., Mose L.E., Perou A.H., Perou C.M., Roach J., Shi Y., Simons J.V., Skelly T., Soloway M.G., Tan D., Veluvolu U., Fan H., Hinoue T., Bellair M., Chang K., Covington K., Creighton C.J., Dinh H., Doddapaneni H., Donehower L.A., Drummond J., Gibbs R.A., Glenn R., Hale W., Han Y., Hu J., Korchina V., Lee S., Lewis L., Li W., Liu X., Morgan M., Morton D., Muzny D., Santibanez J., Sheth M., Shinbrot E., Wang L., Wang M., Wheeler D.A., Xi L., Zhao F., Hess J., Appelbaum E.L., Bailey M., Cordes M.G., Fronick C.C., Fulton L.A., Fulton R.S., Mardis E.R., McLellan M.D., Miller C.A., Schmidt H.K., Wilson R.K., Crain D., Curley E., Gardner J., Lau K., Mallery D., Morris S., Paulauskis J., Penny R., Shelton C., Shelton T., Sherman M., Thompson E., Yena P., Bowen J., Gastier-Foster J.M., Gerken M., Leraas K.M., Lichtenberg T.M., Ramirez N.C., Wise L., Zmuda E., Corcoran N., Costello T., Hovens C., Carvalho A.L., de Carvalho A.C., Fregnani J.H., Longatto-Filho A., Reis R.M., Scapulatempo-Neto C., Silveira H.C.S., Vidal D.O., Burnette A., Eschbacher J., Hermes B., Noss A., Singh R., Anderson M.L., Castro P.D., Ittmann M., Huntsman D., Kohl B., Le X., Thorp R., Andry C., Duffy E.R., Lyadov V., Paklina O., Setdikova G., Shabunin A., Tavobilov M., McPherson C., Warnick R., Berkowitz R., Cramer D., Feltmate C., Horowitz N., Kibel A., Muto M., Raut C.P., Malykh A., Barnholtz-Sloan J.S., Barrett W., Devine K., Fulop J., Ostrom Q.T., Shimmel K., Wolinsky Y., Sloan A.E., De Rose A., Giuliante F., Goodman M., Karlan B.Y., Hagedorn C.H., Eckman J., Harr J., Myers J., Tucker K., Zach L.A., Deyarmin B., Hu H., Kvecher L., Larson C., Mural R.J., Somiari S., Vicha A., Zelinka T., Bennett J., Iacocca M., Rabeno B., Swanson P., Latour M., Lacombe L., Tetu B., Bergeron A., McGraw M., Staugaitis S.M., Chabot J., Hibshoosh H., Sepulveda A., Su T., Wang T., Potapova O., Voronina O., Desjardins L., Mariani O., Roman-Roman S., Sastre X., Stern M.-H., Cheng F., Signoretti S., Berchuck A., Bigner D., Lipp E., Marks J., McCall S., McLendon R., Secord A., Sharp A., Behera M., Brat D.J., Chen A., Delman K., Force S., Khuri F., Magliocca K., Maithel S., Olson J.J., Owonikoko T., Pickens A., Ramalingam S., Shin D.M., Sica G., Van Meir E.G., Eijckenboom W., Gillis A., Korpershoek E., Looijenga L., Oosterhuis W., Stoop H., van Kessel K.E., Zwarthoff E.C., Calatozzolo C., Cuppini L., Cuzzubbo S., DiMeco F., Finocchiaro G., Mattei L., Perin A., Pollo B., Chen C., Houck J., Lohavanichbutr P., Hartmann A., Stoehr C., Stoehr R., Taubert H., Wach S., Wullich B., Kycler W., Murawa D., Wiznerowicz M., Chung K., Edenfield W.J., Martin J., Baudin E., Bubley G., Bueno R., De Rienzo A., Richards W.G., Kalkanis S., Mikkelsen T., Noushmehr H., Scarpace L., Girard N., Aymerich M., Campo E., Gine E., Guillermo A.L., Van Bang N., Hanh P.T., Phu B.D., Tang Y., Colman H., Evason K., Dottino P.R., Martignetti J.A., Gabra H., Juhl H., Akeredolu T., Stepa S., Hoon D., Ahn K., Kang K.J., Beuschlein F., Breggia A., Birrer M., Bell D., Borad M., Bryce A.H., Castle E., Chandan V., Cheville J., Copland J.A., Farnell M., Flotte T., Giama N., Ho T., Kendrick M., Kocher J.-P., Kopp K., Moser C., Nagorney D., O'Brien D., O'Neill B.P., Patel T., Petersen G., Que F., Rivera M., Roberts L., Smallridge R., Smyrk T., Stanton M., Thompson R.H., Torbenson M., Yang J.D., Zhang L., Brimo F., Ajani J.A., Gonzalez A.M.A., Behrens C., Bondaruk J., Broaddus R., Czerniak B., Esmaeli B., Fujimoto J., Gershenwald J., Guo C., Logothetis C., Meric-Bernstam F., Moran C., Ramondetta L., Rice D., Sood A., Tamboli P., Thompson T., Troncoso P., Tsao A., Wistuba I., Carter C., Haydu L., Hersey P., Jakrot V., Kakavand H., Kefford R., Lee K., Long G., Mann G., Quinn M., Saw R., Scolyer R., Shannon K., Spillane A., Stretch J., Synott M., Thompson J., Wilmott J., Al-Ahmadie H., Chan T.A., Ghossein R., Gopalan A., Levine D.A., Reuter V., Singer S., Singh B., Tien N.V., Broudy T., Mirsaidi C., Nair P., Drwiega P., Miller J., Smith J., Zaren H., Park J.-W., Hung N.P., Kebebew E., Linehan W.M., Metwalli A.R., Pacak K., Pinto P.A., Schiffman M., Schmidt L.S., Vocke C.D., Wentzensen N., Worrell R., Yang H., Moncrieff M., Goparaju C., Melamed J., Pass H., Botnariuc N., Caraman I., Cernat M., Chemencedji I., Clipca A., Doruc S., Gorincioi G., Mura S., Pirtac M., Stancul I., Tcaciuc D., Albert M., Alexopoulou I., Arnaout A., Bartlett J., Engel J., Gilbert S., Parfitt J., Sekhon H., Thomas G., Rassl D.M., Rintoul R.C., Bifulco C., Tamakawa R., Urba W., Hayward N., Timmers H., Antenucci A., Facciolo F., Grazi G., Marino M., Merola R., de Krijger R., Gimenez-Roqueplo A.-P., Piche A., Chevalier S., McKercher G., Birsoy K., Barnett G., Brewer C., Farver C., Naska T., Pennell N.A., Raymond D., Schilero C., Smolenski K., Williams F., Morrison C., Borgia J.A., Liptay M.J., Pool M., Seder C.W., Junker K., Omberg L., Dinkin M., Manikhas G., Alvaro D., Bragazzi M.C., Cardinale V., Carpino G., Gaudio E., Chesla D., Cottingham S., Dubina M., Moiseenko F., Dhanasekaran R., Becker K.-F., Janssen K.-P., Slotta-Huspenina J., Abdel-Rahman M.H., Aziz D., Bell S., Cebulla C.M., Davis A., Duell R., Elder J.B., Hilty J., Kumar B., Lang J., Lehman N.L., Mandt R., Nguyen P., Pilarski R., Rai K., Schoenfield L., Senecal K., Wakely P., Hansen P., Lechan R., Powers J., Tischler A., Grizzle W.E., Sexton K.C., Kastl A., Henderson J., Porten S., Waldmann J., Fassnacht M., Asa S.L., Schadendorf D., Couce M., Graefen M., Huland H., Sauter G., Schlomm T., Simon R., Tennstedt P., Olabode O., Nelson M., Bathe O., Carroll P.R., Chan J.M., Disaia P., Glenn P., Kelley R.K., Landen C.N., Phillips J., Prados M., Simko J., Smith-McCune K., VandenBerg S., Roggin K., Fehrenbach A., Kendler A., Sifri S., Steele R., Jimeno A., Carey F., Forgie I., Mannelli M., Carney M., Hernandez B., Campos B., Herold-Mende C., Jungk C., Unterberg A., von Deimling A., Bossler A., Galbraith J., Jacobus L., Knudson M., Knutson T., Ma D., Milhem M., Sigmund R., Godwin A.K., Madan R., Rosenthal H.G., Adebamowo C., Adebamowo S.N., Boussioutas A., Beer D., Mes-Masson A.-M., Saad F., Bocklage T., Landrum L., Mannel R., Moore K., Moxley K., Postier R., Walker J., Zuna R., Feldman M., Valdivieso F., Dhir R., Luketich J., Pinero E.M.M., Quintero-Aguilo M., Carlotti C.G., Dos Santos J.S., Kemp R., Sankarankuty A., Tirapelli D., Catto J., Agnew K., Swisher E., Creaney J., Robinson B., Shelley C.S., Godwin E.M., Kendall S., Shipman C., Bradford C., Carey T., Haddad A., Moyer J., Peterson L., Prince M., Rozek L., Wolf G., Bowman R., Fong K.M., Yang I., Korst R., Rathmell W.K., Fantacone-Campbell J.L., Hooke J.A., Kovatich A.J., Shriver C.D., DiPersio J., Drake B., Govindan R., Heath S., Ley T., Van Tine B., Westervelt P., Rubin M.A., Lee J.I., Aredes N.D., Mariamidze A., Van Allen E.M., and Ciriello G.
- Subjects
0301 basic medicine ,cancer genome atlas ,cancer genomics ,combination therapy ,pan-cancer ,PanCanAtlas ,precision oncology ,signaling pathways ,TCGA ,therapeutics ,whole exome sequencing ,Signaling pathways ,Somatic cell ,Wnt Protein ,Cancer Genome Atlas Research Network ,Biochemistry ,Medical and Health Sciences ,Phosphatidylinositol 3-Kinases ,Transforming Growth Factor beta ,Neoplasms ,Databases, Genetic ,LS2_1 ,Cancer genomics ,LS4_6 ,610 Medicine & health ,11 Medical and Health Sciences ,Cancer ,biology ,Wnt signaling pathway ,cancer genomic ,Precision oncology ,Biological Sciences ,Cell cycle ,DNA methylation ,Signal transduction ,CICLO CELULAR ,Life Sciences & Biomedicine ,Genes, Neoplasm ,Humans ,Neoplasms/genetics ,Neoplasms/pathology ,Phosphatidylinositol 3-Kinases/genetics ,Phosphatidylinositol 3-Kinases/metabolism ,Signal Transduction/genetics ,Transforming Growth Factor beta/genetics ,Transforming Growth Factor beta/metabolism ,Tumor Suppressor Protein p53/genetics ,Tumor Suppressor Protein p53/metabolism ,Wnt Proteins/genetics ,Wnt Proteins/metabolism ,Biotechnology ,Human ,Signal Transduction ,signaling pathway ,EXPRESSION ,Biochemistry & Molecular Biology ,GENES ,Pan-cancer ,Therapeutics ,General Biochemistry, Genetics and Molecular Biology ,NO ,Databases ,03 medical and health sciences ,Genetic ,Genetics ,Combination therapy ,Protein kinase B ,Gene ,SIGNATURES ,Cancer genome atlas ,Science & Technology ,LANDSCAPE ,MUTATIONS ,Biochemistry, Genetics and Molecular Biology(all) ,Human Genome ,Whole exome sequencing ,Cell Biology ,Transforming growth factor beta ,cancer genome atla ,06 Biological Sciences ,COMPREHENSIVE MOLECULAR CHARACTERIZATION ,Wnt Proteins ,therapeutic ,Good Health and Well Being ,030104 developmental biology ,Genes ,PanCanAtla ,biology.protein ,Cancer research ,Neoplasm ,Phosphatidylinositol 3-Kinase ,Tumor Suppressor Protein p53 ,Digestive Diseases ,Genetics and Molecular Biology(all) ,Developmental Biology - Abstract
Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy. An integrated analysis of genetic alterations in 10 signaling pathways in >9,000 tumors profiled by TCGA highlights significant representation of individual and co-occurring actionable alterations in these pathways, suggesting opportunities for targeted and combination therapies. Michael Seiler, Peter G. Smith, Ping Zhu, Silvia Buonamici, and Lihua Yu are employees of H3 Biomedicine, Inc. Parts of this work are the subject of a patent application: WO2017040526 titled “Splice variants associated with neomorphic sf3b1 mutants.” Shouyoung Peng, Anant A. Agrawal, James Palacino, and Teng Teng are employees of H3 Biomedicine, Inc. Andrew D. Cherniack, Ashton C. Berger, and Galen F. Gao receive research support from Bayer Pharmaceuticals. Gordon B. Mills serves on the External Scientific Review Board of Astrazeneca. Anil Sood is on the Scientific Advisory Board for Kiyatec and is a shareholder in BioPath. Jonathan S. Serody receives funding from Merck, Inc. Kyle R. Covington is an employee of Castle Biosciences, Inc. Preethi H. Gunaratne is founder, CSO, and shareholder of NextmiRNA Therapeutics. Christina Yau is a part-time employee/consultant at NantOmics. Franz X. Schaub is an employee and shareholder of SEngine Precision Medicine, Inc. Carla Grandori is an employee, founder, and shareholder of SEngine Precision Medicine, Inc. Robert N. Eisenman is a member of the Scientific Advisory Boards and shareholder of Shenogen Pharma and Kronos Bio. Daniel J. Weisenberger is a consultant for Zymo Research Corporation. Joshua M. Stuart is the founder of Five3 Genomics and shareholder of NantOmics. Marc T. Goodman receives research support from Merck, Inc. Andrew J. Gentles is a consultant for Cibermed. Charles M. Perou is an equity stock holder, consultant, and Board of Directors member of BioClassifier and GeneCentric Diagnostics and is also listed as an inventor on patent applications on the Breast PAM50 and Lung Cancer Subtyping assays. Matthew Meyerson receives research support from Bayer Pharmaceuticals; is an equity holder in, consultant for, and Scientific Advisory Board chair for OrigiMed; and is an inventor of a patent for EGFR mutation diagnosis in lung cancer, licensed to LabCorp. Eduard Porta-Pardo is an inventor of a patent for domainXplorer. Han Liang is a shareholder and scientific advisor of Precision Scientific and Eagle Nebula. Da Yang is an inventor on a pending patent application describing the use of antisense oligonucleotides against specific lncRNA sequence as diagnostic and therapeutic tools. Yonghong Xiao was an employee and shareholder of TESARO, Inc. Bin Feng is an employee and shareholder of TESARO, Inc. Carter Van Waes received research funding for the study of IAP inhibitor ASTX660 through a Cooperative Agreement between NIDCD, NIH, and Astex Pharmaceuticals. Raunaq Malhotra is an employee and shareholder of Seven Bridges, Inc. Peter W. Laird serves on the Scientific Advisory Board for AnchorDx. Joel Tepper is a consultant at EMD Serono. Kenneth Wang serves on the Advisory Board for Boston Scientific, Microtech, and Olympus. Andrea Califano is a founder, shareholder, and advisory board member of DarwinHealth, Inc. and a shareholder and advisory board member of Tempus, Inc. Toni K. Choueiri serves as needed on advisory boards for Bristol-Myers Squibb, Merck, and Roche. Lawrence Kwong receives research support from Array BioPharma. Sharon E. Plon is a member of the Scientific Advisory Board for Baylor Genetics Laboratory. Beth Y. Karlan serves on the Advisory Board of Invitae.
- Published
- 2018
18. Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes.
- Author
-
O'Neill K, Pleasance E, Fan J, Akbari V, Chang G, Dixon K, Csizmok V, MacLennan S, Porter V, Galbraith A, Grisdale CJ, Culibrk L, Dupuis JH, Corbett R, Hopkins J, Bowlby R, Pandoh P, Smailus DE, Cheng D, Wong T, Frey C, Shen Y, Lewis E, Paulin LF, Sedlazeck FJ, Nelson JMT, Chuah E, Mungall KL, Moore RA, Coope R, Mungall AJ, McConechy MK, Williamson LM, Schrader KA, Yip S, Marra MA, Laskin J, and Jones SJM
- Abstract
The Long-Read Personalized OncoGenomics (POG) dataset comprises a cohort of 189 patient tumors and 41 matched normal samples sequenced using the Oxford Nanopore Technologies PromethION platform. This dataset from the POG program and the Marathon of Hope Cancer Centres Network includes DNA and RNA short-read sequence data, analytics, and clinical information. We show the potential of long-read sequencing for resolving complex cancer-related structural variants, viral integrations, and extrachromosomal circular DNA. Long-range phasing facilitates the discovery of allelically differentially methylated regions (aDMRs) and allele-specific expression, including recurrent aDMRs in the cancer genes RET and CDKN2A. Germline promoter methylation in MLH1 can be directly observed in Lynch syndrome. Promoter methylation in BRCA1 and RAD51C is a likely driver behind homologous recombination deficiency where no coding driver mutation was found. This dataset demonstrates applications for long-read sequencing in precision medicine and is available as a resource for developing analytical approaches using this technology., Competing Interests: Declaration of interests The following authors disclose relevant potential competing interests: K.O.N., V.P., L.F.P., K.D., J.L., and S.J.M.J. received travel funding from Oxford Nanopore Technologies to present at conferences in 2022 and 2023., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
19. Diagnostic and Therapeutic Implications of a FUS::TFCP2 Fusion and ALK Activation in a Metastatic Rhabdomyosarcoma.
- Author
-
Csizmok V, Grisdale CJ, Williamson LM, Lim HJ, Lee L, Renouf DJ, Jones SJM, Marra MA, Laskin J, and Smrke A
- Subjects
- Humans, Male, Adult, DNA-Binding Proteins genetics, DNA-Binding Proteins metabolism, Anaplastic Lymphoma Kinase genetics, Rhabdomyosarcoma genetics, Rhabdomyosarcoma pathology, Rhabdomyosarcoma drug therapy, RNA-Binding Protein FUS genetics, Oncogene Proteins, Fusion genetics, Transcription Factors genetics
- Abstract
The identification of gene fusions in rare sarcoma subtypes can have diagnostic, prognostic, and therapeutic impacts for advanced cancer patients. Here, we present a case of a 31-year-old male with a lytic lesion of the left mandible initially diagnosed as an osteosarcoma but found to have a TFCP2 fusion and ALK alteration, redefining the diagnosis and providing rationale for a novel treatment strategy. Histologically, the tumor displayed hypercellular, spindled to epithelioid neoplasm and nuclear pleomorphism, while immunohistochemistry showed diffuse SATB2 and focal desmin staining. Whole genome and transcriptome analysis revealed a FUS::TFCP2 fusion, the defining alteration of a rare molecularly characterized subtype of soft tissue sarcoma termed intraosseous rhabdomyosarcoma. An internal ALK deletion and extremely high ALK RNA expression were also identified, suggesting potential benefit of an ALK inhibitor. This patient displayed a rapid and dramatic clinical and radiographic response to an ALK inhibitor, alectinib. Unfortunately, the response was short-lived, likely due to the advanced stage and aggressiveness of the disease. This report describes genome and transcriptome characterization of an intraosseous rhabdomyosarcoma, few of which exist in the literature, as well as providing evidence that inhibition of ALK may be a rational treatment strategy for patients with this exceedingly rare soft tissue sarcoma subtype characterized by TFCP2 fusions and ALK activation., (© 2024 The Author(s). Genes, Chromosomes and Cancer published by Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF
20. A Deep Learning Approach for the Identification of the Molecular Subtypes of Pancreatic Ductal Adenocarcinoma Based on Whole Slide Pathology Images.
- Author
-
Ahmadvand P, Farahani H, Farnell D, Darbandsari A, Topham J, Karasinska J, Nelson J, Naso J, Jones SJM, Renouf D, Schaeffer DF, and Bashashati A
- Abstract
Delayed diagnosis and treatment resistance make pancreatic ductal adenocarcinoma (PDAC) mortality rates high. Identifying molecular subtypes can improve treatment, but current methods are costly and time-consuming. In this study, deep learning models were used to identify histologic features that classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained histopathologic slides. A total of 97 histopathology slides associated with resectable PDAC from The Cancer Genome Atlas project were used to train a deep learning model and tested the performance on 44 needle biopsy material (110 slides) from a local annotated patient cohort. The model achieved balanced accuracy of 96.19% and 83.03% in identifying the classical and basal subtypes of PDAC in The Cancer Genome Atlas and the local cohort, respectively. This study provides a promising method to cost-effectively and rapidly classifying PDAC molecular subtypes based on routine hematoxylin-eosin-stained slides, potentially leading to more effective clinical management of this disease., Competing Interests: Disclosure Statement None declared., (Copyright © 2024. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF
21. Enhancing clinical genomic accuracy with panelGC: a novel metric and tool for quantifying and monitoring GC biases in hybridization capture panel sequencing.
- Author
-
Cheng X, Goktas MT, Williamson LM, Krzywinski M, Mulder DT, Swanson L, Slind J, Sihvonen J, Chow CR, Carr A, Bosdet I, Tucker T, Young S, Moore R, Mungall KL, Yip S, and Jones SJM
- Subjects
- Humans, Sequence Analysis, DNA methods, Nucleic Acid Hybridization methods, High-Throughput Nucleotide Sequencing methods, High-Throughput Nucleotide Sequencing standards, Genome, Human, Reproducibility of Results, DNA Copy Number Variations, Genomics methods, Base Composition
- Abstract
Accurate assessment of fragment abundance within a genome is crucial in clinical genomics applications such as the analysis of copy number variation (CNV). However, this task is often hindered by biased coverage in regions with varying guanine-cytosine (GC) content. These biases are particularly exacerbated in hybridization capture sequencing due to GC effects on probe hybridization and polymerase chain reaction (PCR) amplification efficiency. Such GC content-associated variations can exert a negative impact on the fidelity of CNV calling within hybridization capture panels. In this report, we present panelGC, a novel metric, to quantify and monitor GC biases in hybridization capture sequencing data. We establish the efficacy of panelGC, demonstrating its proficiency in identifying and flagging potential procedural anomalies, even in situations where instrument and experimental monitoring data may not be readily accessible. Validation using real-world datasets demonstrates that panelGC enhances the quality control and reliability of hybridization capture panel sequencing., (© The Author(s) 2024. Published by Oxford University Press.)
- Published
- 2024
- Full Text
- View/download PDF
22. AI-based histopathology image analysis reveals a distinct subset of endometrial cancers.
- Author
-
Darbandsari A, Farahani H, Asadi M, Wiens M, Cochrane D, Khajegili Mirabadi A, Jamieson A, Farnell D, Ahmadvand P, Douglas M, Leung S, Abolmaesumi P, Jones SJM, Talhouk A, Kommoss S, Gilks CB, Huntsman DG, Singh N, McAlpine JN, and Bashashati A
- Subjects
- Humans, Female, Middle Aged, Aged, Image Processing, Computer-Assisted methods, Prognosis, DNA Copy Number Variations, Whole Genome Sequencing, Tumor Suppressor Protein p53 genetics, Cohort Studies, Endometrial Neoplasms pathology, Endometrial Neoplasms genetics, Artificial Intelligence
- Abstract
Endometrial cancer (EC) has four molecular subtypes with strong prognostic value and therapeutic implications. The most common subtype (NSMP; No Specific Molecular Profile) is assigned after exclusion of the defining features of the other three molecular subtypes and includes patients with heterogeneous clinical outcomes. In this study, we employ artificial intelligence (AI)-powered histopathology image analysis to differentiate between p53abn and NSMP EC subtypes and consequently identify a sub-group of NSMP EC patients that has markedly inferior progression-free and disease-specific survival (termed 'p53abn-like NSMP'), in a discovery cohort of 368 patients and two independent validation cohorts of 290 and 614 from other centers. Shallow whole genome sequencing reveals a higher burden of copy number abnormalities in the 'p53abn-like NSMP' group compared to NSMP, suggesting that this group is biologically distinct compared to other NSMP ECs. Our work demonstrates the power of AI to detect prognostically different and otherwise unrecognizable subsets of EC where conventional and standard molecular or pathologic criteria fall short, refining image-based tumor classification. This study's findings are applicable exclusively to females., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
23. Whole genome and transcriptome integrated analyses guide clinical care of pediatric poor prognosis cancers.
- Author
-
Deyell RJ, Shen Y, Titmuss E, Dixon K, Williamson LM, Pleasance E, Nelson JMT, Abbasi S, Krzywinski M, Armstrong L, Bonakdar M, Ch'ng C, Chuah E, Dunham C, Fok A, Jones M, Lee AF, Ma Y, Moore RA, Mungall AJ, Mungall KL, Rogers PC, Schrader KA, Virani A, Wee K, Young SS, Zhao Y, Jones SJM, Laskin J, Marra MA, and Rassekh SR
- Subjects
- Humans, Child, Female, Adolescent, Male, Child, Preschool, Prognosis, Infant, Transcriptome, Young Adult, Whole Genome Sequencing, Germ-Line Mutation, Mutation, Genome, Human genetics, Genetic Predisposition to Disease, Neoplasms genetics, Neoplasms therapy, Gene Expression Profiling methods, DNA Copy Number Variations
- Abstract
The role for routine whole genome and transcriptome analysis (WGTA) for poor prognosis pediatric cancers remains undetermined. Here, we characterize somatic mutations, structural rearrangements, copy number variants, gene expression, immuno-profiles and germline cancer predisposition variants in children and adolescents with relapsed, refractory or poor prognosis malignancies who underwent somatic WGTA and matched germline sequencing. Seventy-nine participants with a median age at enrollment of 8.8 y (range 6 months to 21.2 y) are included. Germline pathogenic/likely pathogenic variants are identified in 12% of participants, of which 60% were not known prior. Therapeutically actionable variants are identified by targeted gene report and whole genome in 32% and 62% of participants, respectively, and increase to 96% after integrating transcriptome analyses. Thirty-two molecularly informed therapies are pursued in 28 participants with 54% achieving a clinical benefit rate; objective response or stable disease ≥6 months. Integrated WGTA identifies therapeutically actionable variants in almost all tumors and are directly translatable to clinical care of children with poor prognosis cancers., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
24. VOLTA: an enVironment-aware cOntrastive ceLl represenTation leArning for histopathology.
- Author
-
Nakhli R, Rich K, Zhang A, Darbandsari A, Shenasa E, Hadjifaradji A, Thiessen S, Milne K, Jones SJM, McAlpine JN, Nelson BH, Gilks CB, Farahani H, and Bashashati A
- Subjects
- Humans, Female, Machine Learning, Supervised Machine Learning, Algorithms, Image Processing, Computer-Assisted methods, Endometrial Neoplasms pathology, Ovarian Neoplasms pathology
- Abstract
In clinical oncology, many diagnostic tasks rely on the identification of cells in histopathology images. While supervised machine learning techniques necessitate the need for labels, providing manual cell annotations is time-consuming. In this paper, we propose a self-supervised framework (enVironment-aware cOntrastive cell represenTation learning: VOLTA) for cell representation learning in histopathology images using a technique that accounts for the cell's mutual relationship with its environment. We subject our model to extensive experiments on data collected from multiple institutions comprising over 800,000 cells and six cancer types. To showcase the potential of our proposed framework, we apply VOLTA to ovarian and endometrial cancers and demonstrate that our cell representations can be utilized to identify the known histotypes of ovarian cancer and provide insights that link histopathology and molecular subtypes of endometrial cancer. Unlike supervised models, we provide a framework that can empower discoveries without any annotation data, even in situations where sample sizes are limited., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
25. Exploration of Germline Correlates and Risk of Immune-Related Adverse Events in Advanced Cancer Patients Treated with Immune Checkpoint Inhibitors.
- Author
-
Titmuss E, Yu IS, Pleasance ED, Williamson LM, Mungall K, Mungall AJ, Renouf DJ, Moore R, Jones SJM, Marra MA, Laskin JJ, and Savage KJ
- Subjects
- Humans, Male, Female, Middle Aged, Aged, Germ-Line Mutation, Adult, Aged, 80 and over, Immune Checkpoint Inhibitors adverse effects, Immune Checkpoint Inhibitors therapeutic use, Neoplasms drug therapy
- Abstract
Immune checkpoint inhibitors (ICIs) are increasingly used in the treatment of many tumor types, and durable responses can be observed in select populations. However, patients may exhibit significant immune-related adverse events (irAEs) that may lead to morbidity. There is limited information on whether the presence of specific germline mutations may highlight those at elevated risk of irAEs. We evaluated 117 patients with metastatic solid tumors or hematologic malignancies who underwent genomic analysis through the ongoing Personalized OncoGenomics (POG) program at BC Cancer and received an ICI during their treatment history. Charts were reviewed for irAEs. Whole genome sequencing of a fresh biopsy and matched normal specimens (blood) was performed at the time of POG enrollment. Notably, we found that MHC class I alleles in the HLA-B27 family, which have been previously associated with autoimmune conditions, were associated with grade 3 hepatitis and pneumonitis (q = 0.007) in patients treated with combination PD-1/PD-L1 and CTLA-4 inhibitors, and PD-1 inhibitors in combination with IDO-1 inhibitors. These data highlight that some patients may have a genetic predisposition to developing irAEs.
- Published
- 2024
- Full Text
- View/download PDF
26. Canadian COVID-19 host genetics cohort replicates known severity associations.
- Author
-
Garg E, Arguello-Pascualli P, Vishnyakova O, Halevy AR, Yoo S, Brooks JD, Bull SB, Gagnon F, Greenwood CMT, Hung RJ, Lawless JF, Lerner-Ellis J, Dennis JK, Abraham RJS, Garant JM, Thiruvahindrapuram B, Jones SJM, Strug LJ, Paterson AD, Sun L, and Elliott LT
- Subjects
- Humans, SARS-CoV-2 genetics, Genetic Predisposition to Disease, Polymorphism, Single Nucleotide, Canada epidemiology, Genome-Wide Association Study, Membrane Transport Proteins, Forkhead Transcription Factors, COVID-19 genetics, North American People
- Abstract
The HostSeq initiative recruited 10,059 Canadians infected with SARS-CoV-2 between March 2020 and March 2023, obtained clinical information on their disease experience and whole genome sequenced (WGS) their DNA. We analyzed the WGS data for genetic contributors to severe COVID-19 (considering 3,499 hospitalized cases and 4,975 non-hospitalized after quality control). We investigated the evidence for replication of loci reported by the International Host Genetics Initiative (HGI); analyzed the X chromosome; conducted rare variant gene-based analysis and polygenic risk score testing. Population stratification was adjusted for using meta-analysis across ancestry groups. We replicated two loci identified by the HGI for COVID-19 severity: the LZTFL1/SLC6A20 locus on chromosome 3 and the FOXP4 locus on chromosome 6 (the latter with a variant significant at P < 5E-8). We found novel significant associations with MRAS and WDR89 in gene-based analyses, and constructed a polygenic risk score that explained 1.01% of the variance in severe COVID-19. This study provides independent evidence confirming the robustness of previously identified COVID-19 severity loci by the HGI and identifies novel genes for further investigation., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Garg et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
27. The benefit of a complete reference genome for cancer structural variant analysis.
- Author
-
Paulin LF, Fan J, O'Neill K, Pleasance E, Porter VL, Jones SJM, and Sedlazeck FJ
- Abstract
The complexities of cancer genomes are becoming more easily interpreted due to advancements in sequencing technologies and improved bioinformatic analysis. Structural variants (SVs) represent an important subset of somatic events in tumors. While detection of SVs has been markedly improved by the development of long-read sequencing, somatic variant identification and annotation remains challenging. We hypothesized that use of a completed human reference genome (CHM13-T2T) would improve somatic SV calling. Our findings in a tumour/normal matched benchmark sample and two patient samples show that the CHM13-T2T improves SV detection and prioritization accuracy compared to GRCh38, with a notable reduction in false positive calls. We also overcame the lack of annotation resources for CHM13-T2T by lifting over CHM13-T2T-aligned reads to the GRCh38 genome, therefore combining both improved alignment and advanced annotations. In this process, we assessed the current SV benchmark set for COLO829/COLO829BL across four replicates sequenced at different centers with different long-read technologies. We discovered instability of this cell line across these replicates; 346 SVs (1.13%) were only discoverable in a single replicate. We identify 49 somatic SVs, which appear to be stable as they are consistently present across the four replicates. As such, we propose this consensus set as an updated benchmark for somatic SV calling and include both GRCh38 and CHM13-T2T coordinates in our benchmark. The benchmark is available at: 10.5281/zenodo.10819636 Our work demonstrates new approaches to optimize somatic SV prioritization in cancer with potential improvements in other genetic diseases., Competing Interests: The following authors disclose relevant potential competing interests: Kieran O’Neill, Vanessa Porter, Luis F Paulin and Steven J.M. Jones received travel funding from Oxford Nanopore Technologies to present at conferences in 2022 and/or 2023. Fritz J Sedlazeck receives research support from ONT, Pacbio, Illumina and Genentech. Luis F Paulin received research support from Genentech from 2021 to 2023.
- Published
- 2024
- Full Text
- View/download PDF
28. Establishing association between HLA-C*04:01 and severe COVID-19.
- Author
-
Warren RL, Abraham R, Calingo M, Garant JM, Jones SJM, and Birol I
- Subjects
- Humans, HLA-C Antigens genetics, Alleles, SARS-CoV-2, Gene Frequency, COVID-19
- Published
- 2024
- Full Text
- View/download PDF
29. Assembly and annotation of the black spruce genome provide insights on spruce phylogeny and evolution of stress response.
- Author
-
Lo T, Coombe L, Gagalova KK, Marr A, Warren RL, Kirk H, Pandoh P, Zhao Y, Moore RA, Mungall AJ, Ritland C, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I, and Thomson A
- Subjects
- Phylogeny, North America, Picea genetics
- Abstract
Black spruce (Picea mariana [Mill.] B.S.P.) is a dominant conifer species in the North American boreal forest that plays important ecological and economic roles. Here, we present the first genome assembly of P. mariana with a reconstructed genome size of 18.3 Gbp and NG50 scaffold length of 36.0 kbp. A total of 66,332 protein-coding sequences were predicted in silico and annotated based on sequence homology. We analyzed the evolutionary relationships between P. mariana and 5 other spruces for which complete nuclear and organelle genome sequences were available. The phylogenetic tree estimated from mitochondrial genome sequences agrees with biogeography; specifically, P. mariana was strongly supported as a sister lineage to P. glauca and 3 other taxa found in western North America, followed by the European Picea abies. We obtained mixed topologies with weaker statistical support in phylogenetic trees estimated from nuclear and chloroplast genome sequences, indicative of ancient reticulate evolution affecting these 2 genomes. Clustering of protein-coding sequences from the 6 Picea taxa and 2 Pinus species resulted in 34,776 orthogroups, 560 of which appeared to be specific to P. mariana. Analysis of these specific orthogroups and dN/dS analysis of positive selection signatures for 497 single-copy orthogroups identified gene functions mostly related to plant development and stress response. The P. mariana genome assembly and annotation provides a valuable resource for forest genetics research and applications in this broadly distributed species, especially in relation to climate adaptation., Competing Interests: Conflicts of interest statement The author(s) declare no conflicts of interest., (© The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America.)
- Published
- 2023
- Full Text
- View/download PDF
30. Genomic structures and regulation patterns at HPV integration sites in cervical cancer.
- Author
-
Porter VL, O'Neill K, MacLennan S, Corbett RD, Ng M, Culibrk L, Hamadeh Z, Iden M, Schmidt R, Tsaih SW, Chang G, Fan J, Nip KM, Akbari V, Chan SK, Hopkins J, Moore RA, Chuah E, Mungall KL, Mungall AJ, Birol I, Jones SJM, Rader JS, and Marra MA
- Abstract
Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer, but its genomic consequences have been difficult to study using short-read technologies. To resolve the dysregulation associated with HPV integration, we performed long-read sequencing on 63 cervical cancer genomes. We identified six categories of integration events based on HPV-human genomic structures. Of all HPV integrants, defined as two HPV-human breakpoints bridged by an HPV sequence, 24% contained variable copies of HPV between the breakpoints, a phenomenon we termed heterologous integration. Analysis of DNA methylation within and in proximity to the HPV genome at individual integration events revealed relationships between methylation status of the integrant and its orientation and structure. Dysregulation of the human epigenome and neighboring gene expression in cis with the HPV-integrated allele was observed over megabase-ranges of the genome. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.
- Published
- 2023
- Full Text
- View/download PDF
31. Mitogen-induced defective mitosis transforms neural progenitor cells.
- Author
-
Omairi HK, Grisdale CJ, Meode M, Bohm AK, Black S, Adam NJ, Chapman CP, Maroilley T, Kelly JJ, Tarailo-Graovac M, Jones SJM, Blough MD, and Cairncross JG
- Subjects
- Humans, Animals, Mice, Mitogens metabolism, Tumor Suppressor Protein p53 genetics, Tumor Suppressor Protein p53 metabolism, Mitosis, Neural Stem Cells pathology, Glioblastoma pathology
- Abstract
Background: Chromosome instability (CIN) with recurrent copy number alterations is a feature of many solid tumors, including glioblastoma (GBM), yet the genes that regulate cell division are rarely mutated in cancers. Here, we show that the brain-abundant mitogen, platelet-derived growth factor-A (PDGFA) fails to induce the expression of kinetochore and spindle assembly checkpoint genes leading to defective mitosis in neural progenitor cells (NPCs)., Methods: Using a recently reported in vitro model of the initiation of high-grade gliomas from murine NPCs, we investigated the immediate effects of PDGFA exposure on the nuclear and mitotic phenotypes and patterns of gene and protein expression in NPCs, a putative GBM cell of origin., Results: NPCs divided abnormally in defined media containing PDGFA with P53-dependent effects. In wild-type cells, defective mitosis was associated with P53 activation and cell death, but in some null cells, defective mitosis was tolerated. Surviving cells had unstable genomes and proliferated in the presence of PDGFA accumulating random and clonal chromosomal rearrangements. The outcome of this process was a population of tumorigenic NPCs with recurrent gains and losses of chromosomal regions that were syntenic to those recurrently gained and lost in human GBM. By stimulating proliferation without setting the stage for successful mitosis, PDGFA-transformed NPCs lacking P53 function., Conclusions: Our work describes a mechanism of transformation of NPCs by a brain-associated mitogen, raising the possibility that the unique genomic architecture of GBM is an adaptation to defective mitosis that ensures the survival of affected cells., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
32. Chemokine expression predicts T cell-inflammation and improved survival with checkpoint inhibition across solid cancers.
- Author
-
Romero JM, Titmuss E, Wang Y, Vafiadis J, Pacis A, Jang GH, Zhang A, Golesworthy B, Lenko T, Williamson LM, Grünwald B, O'Kane GM, Jones SJM, Marra MA, Wilson JM, Gallinger S, Laskin J, and Zogopoulos G
- Abstract
Immune checkpoint inhibitors (ICI) are highly effective in specific cancers where canonical markers of antitumor immunity are used for patient selection. Improved predictors of T cell-inflammation are needed to identify ICI-responsive tumor subsets in additional cancer types. We investigated associations of a 4-chemokine expression signature (c-Score: CCL4, CCL5, CXCL9, CXCL10) with metrics of antitumor immunity across tumor types. Across cancer entities from The Cancer Genome Atlas, subgroups of tumors displayed high expression of the c-Score (c-Score
hi ) with increased expression of immune checkpoint (IC) genes and transcriptional hallmarks of the cancer-immunity cycle. There was an incomplete association of the c-Score with high tumor mutation burden (TMB), with only 15% of c-Scorehi tumors displaying ≥10 mutations per megabase. In a heterogeneous pan-cancer cohort of 82 patients, with advanced and previously treated solid cancers, c-Scorehi tumors had a longer median time to progression (103 versus 72 days, P = 0.012) and overall survival (382 versus 196 days, P = 0.038) following ICI therapy initiation, compared to patients with low c-Score expression. We also found c-Score stratification to outperform TMB assignment for overall survival prediction (HR = 0.42 [0.22-0.79], P = 0.008 versus HR = 0.60 [0.29-1.27], P = 0.18, respectively). Assessment of the c-Score using the TIDE and PredictIO databases, which include ICI treatment outcomes from 10 tumor types, provided further support for the c-Score as a predictive ICI therapeutic biomarker. In summary, the c-Score identifies patients with hallmarks of T cell-inflammation and potential response to ICI treatment across cancer types, which is missed by TMB assignment., (© 2023. Nature Publishing Group UK.)- Published
- 2023
- Full Text
- View/download PDF
33. The DACH1 gene is frequently deleted in prostate cancer, restrains prostatic intraepithelial neoplasia, decreases DNA damage repair, and predicts therapy responses.
- Author
-
Li Z, Jiao X, Robertson AG, Di Sante G, Ashton AW, DiRocco A, Wang M, Zhao J, Addya S, Wang C, McCue PA, South AP, Cordon-Cardo C, Liu R, Patel K, Hamid R, Parmar J, DuHadaway JB, Jones SJM, Casimiro MC, Schultz N, Kossenkov A, Phoon LY, Chen H, Lan L, Sun Y, Iczkowski KA, Rui H, and Pestell RG
- Subjects
- Male, Humans, Prostate metabolism, DNA Damage genetics, Transforming Growth Factor beta genetics, Eye Proteins metabolism, Transcription Factors genetics, Prostatic Intraepithelial Neoplasia genetics, Prostatic Neoplasms drug therapy, Prostatic Neoplasms genetics, Prostatic Neoplasms metabolism
- Abstract
Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFβ activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFβ kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
34. macroH2A2 antagonizes epigenetic programs of stemness in glioblastoma.
- Author
-
Nikolic A, Maule F, Bobyn A, Ellestad K, Paik S, Marhon SA, Mehdipour P, Lun X, Chen HM, Mallard C, Hay AJ, Johnston MJ, Gafuik CJ, Zemp FJ, Shen Y, Ninkovic N, Osz K, Labit E, Berger ND, Brownsey DK, Kelly JJ, Biernaskie J, Dirks PB, Derksen DJ, Jones SJM, Senger DL, Chan JA, Mahoney DJ, De Carvalho DD, and Gallo M
- Subjects
- Humans, Histones genetics, Histones metabolism, Gene Expression Regulation, Neoplastic, Chromatin metabolism, Epigenesis, Genetic, Cell Line, Tumor, Neoplastic Stem Cells metabolism, Glioblastoma metabolism, Brain Neoplasms genetics, Brain Neoplasms metabolism
- Abstract
Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
35. NCBP2 and TFRC are novel prognostic biomarkers in oral squamous cell carcinoma.
- Author
-
Arora R, Haynes L, Kumar M, McNeil R, Ashkani J, Nakoneshny SC, Matthews TW, Chandarana S, Hart RD, Jones SJM, Dort JC, Itani D, Chanda A, and Bose P
- Subjects
- Humans, Squamous Cell Carcinoma of Head and Neck genetics, Prognosis, DNA Copy Number Variations, Carcinogenesis genetics, Gene Expression Regulation, Neoplastic, Biomarkers, Tumor metabolism, Carcinoma, Squamous Cell pathology, Mouth Neoplasms pathology, Papillomavirus Infections genetics, Head and Neck Neoplasms genetics
- Abstract
There are few prognostic biomarkers and targeted therapeutics currently in use for the clinical management of oral squamous cell carcinoma (OSCC) and patient outcomes remain poor in this disease. A majority of mutations in OSCC are loss-of-function events in tumour suppressor genes that are refractory to conventional modes of targeting. Interestingly, the chromosomal segment 3q22-3q29 is amplified in many epithelial cancers, including OSCC. We hypothesized that some of the 468 genes located on 3q22-3q29 might be drivers of oral carcinogenesis and could be exploited as potential prognostic biomarkers and therapeutic targets. Our integrative analysis of copy number variation (CNV), gene expression and clinical data from The Cancer Genome Atlas (TCGA), identified two candidate genes: NCBP2, TFRC, whose expression positively correlates with worse overall survival (OS) in HPV-negative OSCC patients. Expression of NCBP2 and TFRC is significantly higher in tumour cells compared to most normal human tissues. High NCBP2 and TFRC protein abundance is associated with worse overall, disease-specific survival, and progression-free interval in an in-house cohort of HPV-negative OSCC patients. Finally, due to a lack of evidence for the role of NCBP2 in carcinogenesis, we tested if modulating NCBP2 levels in human OSCC cell lines affected their carcinogenic behaviour. We found that NCBP2 depletion reduced OSCC cell proliferation, migration, and invasion. Differential expression analysis revealed the upregulation of several tumour-promoting genes in patients with high NCBP2 expression. We thus propose both NCBP2 and TFRC as novel prognostic and potentially therapeutic biomarkers for HPV-negative OSCC., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
36. Defining the heterogeneity of unbalanced structural variation underlying breast cancer susceptibility by nanopore genome sequencing.
- Author
-
Dixon K, Shen Y, O'Neill K, Mungall KL, Chan S, Bilobram S, Zhang W, Bezeau M, Sharma A, Fok A, Mungall AJ, Moore R, Bosdet I, Thibodeau ML, Sun S, Yip S, Schrader KA, and Jones SJM
- Subjects
- Humans, Female, Genetic Predisposition to Disease, Genetic Testing methods, Breast Neoplasms genetics, Breast Neoplasms pathology, Nanopore Sequencing, Nanopores
- Abstract
Germline structural variants (SVs) are challenging to resolve by conventional genetic testing assays. Long-read sequencing has improved the global characterization of SVs, but its sensitivity at cancer susceptibility loci has not been reported. Nanopore long-read genome sequencing was performed for nineteen individuals with pathogenic copy number alterations in BRCA1, BRCA2, CHEK2 and PALB2 identified by prior clinical testing. Fourteen variants, which spanned single exons to whole genes and included a tandem duplication, were accurately represented. Defining the precise breakpoints of SVs in BRCA1 and CHEK2 revealed unforeseen allelic heterogeneity and informed the mechanisms underlying the formation of recurrent deletions. Integrating read-based and statistical phasing further helped define extended haplotypes associated with founder alleles. Long-read sequencing is a sensitive method for characterizing private, recurrent and founder SVs underlying breast cancer susceptibility. Our findings demonstrate the potential for nanopore sequencing as a powerful genetic testing assay in the hereditary cancer setting., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
37. Population-size history inferences from the coho salmon (Oncorhynchus kisutch) genome.
- Author
-
Rondeau EB, Christensen KA, Minkley DR, Leong JS, Chan MTT, Despins CA, Mueller A, Sakhrani D, Biagi CA, Rougemont Q, Normandeau E, Jones SJM, Devlin RH, Withler RE, Beacham TD, Naish KA, Yáñez JM, Neira R, Bernatchez L, Davidson WS, and Koop BF
- Subjects
- Animals, Population Density, Genome, Oncorhynchus kisutch genetics
- Abstract
Coho salmon (Oncorhynchus kisutch) are a culturally and economically important species that return from multiyear ocean migrations to spawn in rivers that flow to the Northern Pacific Ocean. Southern stocks of coho salmon in Canada and the United States have significantly declined over the past quarter century, and unfortunately, conservation efforts have not reversed this trend. To assist in stock management and conservation efforts, we generated a chromosome-level genome assembly. We also resequenced the genomes of 83 coho salmon across the North American range to identify nucleotide variants and understand the demographic histories of these salmon by modeling effective population size from genome-wide data. From demographic history modeling, we observed reductions in effective population sizes between 3,750 and 8,000 years ago for several northern sampling sites, which may correspond to bottleneck events during recolonization after glacial retreat., Competing Interests: Conflicts of interest statement The authors declare no conflict of interest., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Genetics Society of America.)
- Published
- 2023
- Full Text
- View/download PDF
38. Homologous recombination deficiency signatures in gastrointestinal and thoracic cancers correlate with platinum therapy duration.
- Author
-
Tsang ES, Csizmok V, Williamson LM, Pleasance E, Topham JT, Karasinska JM, Titmuss E, Schrader I, Yip S, Tessier-Cloutier B, Mungall K, Ng T, Sun S, Lim HJ, Loree JM, Laskin J, Marra MA, Jones SJM, Schaeffer DF, and Renouf DJ
- Abstract
There is emerging evidence about the predictive role of homologous recombination deficiency (HRD), but this is less defined in gastrointestinal (GI) and thoracic malignancies. We reviewed whole genome (WGS) and transcriptomic (RNA-Seq) data from advanced GI and thoracic cancers in the Personalized OncoGenomics trial (NCT02155621) to evaluate HRD scores and single base substitution (SBS)3, which is associated with BRCA1/2 mutations and potentially predictive of defective HRD. HRD scores were calculated by sum of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions scores. Regression analyses examined the association between HRD and time to progression on platinum (TTPp). We included 223 patients with GI (n = 154) or thoracic (n = 69) malignancies. TTPp was associated with SBS3 (p < 0.01) but not HRD score in patients with GI malignancies, whereas neither was associated with TTPp in thoracic malignancies. Tumors with gBRCA1/2 mutations and a somatic second alteration exhibited high SBS3 and HRD scores, but these signatures were also present in several tumors with germline but no somatic second alterations, suggesting silencing of the wild-type allele or BRCA1/2 haploinsufficiency. Biallelic inactivation of an HR gene, including loss of XRCC2 and BARD1, was identified in BRCA1/2 wild-type HRD tumors and these patients had prolonged response to platinum. Thoracic cases with high HRD score were associated with high RECQL5 expression (p ≤ 0.025), indicating another potential mechanism of HRD. SBS3 was more strongly associated with TTPp in patients with GI malignancies and may be complementary to using HRD and BRCA status in identifying patients who benefit from platinum therapy., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
39. Immune Activation following Irbesartan Treatment in a Colorectal Cancer Patient: A Case Study.
- Author
-
Titmuss E, Milne K, Jones MR, Ng T, Topham JT, Brown SD, Schaeffer DF, Kalloger S, Wilson D, Corbett RD, Williamson LM, Mungall K, Mungall AJ, Holt RA, Nelson BH, Jones SJM, Laskin J, Lim HJ, and Marra MA
- Subjects
- Humans, Irbesartan therapeutic use, CD8-Positive T-Lymphocytes pathology, Antihypertensive Agents therapeutic use, Colorectal Neoplasms drug therapy, Colorectal Neoplasms genetics, Colorectal Neoplasms pathology
- Abstract
Colorectal cancers are one of the most prevalent tumour types worldwide and, despite the emergence of targeted and biologic therapies, have among the highest mortality rates. The Personalized OncoGenomics (POG) program at BC Cancer performs whole genome and transcriptome analysis (WGTA) to identify specific alterations in an individual's cancer that may be most effectively targeted. Informed using WGTA, a patient with advanced mismatch repair-deficient colorectal cancer was treated with the antihypertensive drug irbesartan and experienced a profound and durable response. We describe the subsequent relapse of this patient and potential mechanisms of response using WGTA and multiplex immunohistochemistry (m-IHC) profiling of biopsies before and after treatment from the same metastatic site of the L3 spine. We did not observe marked differences in the genomic landscape before and after treatment. Analyses revealed an increase in immune signalling and infiltrating immune cells, particularly CD8+ T cells, in the relapsed tumour. These results indicate that the observed anti-tumour response to irbesartan may have been due to an activated immune response. Determining whether there may be other cancer contexts in which irbesartan may be similarly valuable will require additional studies.
- Published
- 2023
- Full Text
- View/download PDF
40. A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes.
- Author
-
Ritch EJ, Herberts C, Warner EW, Ng SWS, Kwan EM, Bacon JVW, Bernales CQ, Schönlau E, Fonseca NM, Giri VN, Maurice-Dror C, Vandekerkhove G, Jones SJM, Chi KN, and Wyatt AW
- Abstract
Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR deficiency but historically require whole-genome sequencing of tumour tissue. We assembled whole-exome sequencing data for 155 high ctDNA fraction plasma cell-free DNA and matched leukocyte DNA samples from patients with metastatic prostate or bladder cancer. Labels for DDR gene alterations were established using deep targeted sequencing. Per sample mutation and copy number features were used to train XGBoost ensemble models. Naive somatic features and trinucleotide signatures were associated with specific DDR gene alterations but insufficient to resolve each class. Conversely, XGBoost-derived models showed strong performance including an area under the curve of 0.99, 0.99 and 1.00 for identifying BRCA2, CDK12, and mismatch repair deficiency in metastatic prostate cancer. Our machine learning approach re-classified several samples exhibiting genomic features inconsistent with original labels, identified a metastatic bladder cancer sample with a homozygous BRCA2 copy loss, and outperformed an existing exome-based classifier for BRCA2 deficiency. We present DARC Sign (DnA Repair Classification SIGNatures); a public machine learning tool leveraging clinically-practical liquid biopsy specimens for simultaneously identifying multiple types of metastatic prostate cancer DDR deficiencies. We posit that it will be useful for understanding differential responses to DDR-directed therapies in ongoing clinical trials and may ultimately enable prospective identification of prostate cancers with phenotypic evidence of DDR deficiency., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
41. CIViCdb 2022: evolution of an open-access cancer variant interpretation knowledgebase.
- Author
-
Krysiak K, Danos AM, Saliba J, McMichael JF, Coffman AC, Kiwala S, Barnell EK, Sheta L, Grisdale CJ, Kujan L, Pema S, Lever J, Ridd S, Spies NC, Andric V, Chiorean A, Rieke DT, Clark KA, Reisle C, Venigalla AC, Evans M, Jani P, Takahashi H, Suda A, Horak P, Ritter DI, Zhou X, Ainscough BJ, Delong S, Kesserwan C, Lamping M, Shen H, Marr AR, Hoang MH, Singhal K, Khanfar M, Li BV, Lin WH, Terraf P, Corson LB, Salama Y, Campbell KM, Farncombe KM, Ji J, Zhao X, Xu X, Kanagal-Shamanna R, King I, Cotto KC, Skidmore ZL, Walker JR, Zhang J, Milosavljevic A, Patel RY, Giles RH, Kim RH, Schriml LM, Mardis ER, Jones SJM, Raca G, Rao S, Madhavan S, Wagner AH, Griffith M, and Griffith OL
- Subjects
- Humans, Knowledge Bases, High-Throughput Nucleotide Sequencing, Genetic Variation, Neoplasms genetics
- Abstract
CIViC (Clinical Interpretation of Variants in Cancer; civicdb.org) is a crowd-sourced, public domain knowledgebase composed of literature-derived evidence characterizing the clinical utility of cancer variants. As clinical sequencing becomes more prevalent in cancer management, the need for cancer variant interpretation has grown beyond the capability of any single institution. CIViC contains peer-reviewed, published literature curated and expertly-moderated into structured data units (Evidence Items) that can be accessed globally and in real time, reducing barriers to clinical variant knowledge sharing. We have extended CIViC's functionality to support emergent variant interpretation guidelines, increase interoperability with other variant resources, and promote widespread dissemination of structured curated data. To support the full breadth of variant interpretation from basic to translational, including integration of somatic and germline variant knowledge and inference of drug response, we have enabled curation of three new Evidence Types (Predisposing, Oncogenic and Functional). The growing CIViC knowledgebase has over 300 contributors and distributes clinically-relevant cancer variant data currently representing >3200 variants in >470 genes from >3100 publications., (© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2023
- Full Text
- View/download PDF
42. Phasing DNA Methylation.
- Author
-
Akbari V and Jones SJM
- Subjects
- Humans, Sequence Analysis, DNA, Haplotypes genetics, Alleles, Genome, Human, DNA Methylation, High-Throughput Nucleotide Sequencing
- Abstract
Haplotyping enables the study of allele-specific events. Heterozygous variants, primarily single nucleotide variants (SNVs), enable the assignment of the paternal and maternal origin of the chromosomes and are widely employed to phase sequencing reads to their haplotype of origin. Certain long-read technologies enable the detection of both the DNA sequence and DNA modifications. These long reads and their inherent methylation information are suitable for genome-wide haplotyping and allele-specific DNA methylation analysis. Here, we describe the workflow to phase reads and DNA methylation using nanopore sequencing., (© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
43. Parent-of-origin detection and chromosome-scale haplotyping using long-read DNA methylation sequencing and Strand-seq.
- Author
-
Akbari V, Hanlon VCT, O'Neill K, Lefebvre L, Schrader KA, Lansdorp PM, and Jones SJM
- Abstract
Hundreds of loci in human genomes have alleles that are methylated differentially according to their parent of origin. These imprinted loci generally show little variation across tissues, individuals, and populations. We show that such loci can be used to distinguish the maternal and paternal homologs for all human autosomes without the need for the parental DNA. We integrate methylation-detecting nanopore sequencing with the long-range phase information in Strand-seq data to determine the parent of origin of chromosome-length haplotypes for both DNA sequence and DNA methylation in five trios with diverse genetic backgrounds. The parent of origin was correctly inferred for all autosomes with an average mismatch error rate of 0.31% for SNVs and 1.89% for insertions or deletions (indels). Because our method can determine whether an inherited disease allele originated from the mother or the father, we predict that it will improve the diagnosis and management of many genetic diseases., Competing Interests: The authors declare no competing interests., (© 2022 The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
44. Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images.
- Author
-
Farahani H, Boschman J, Farnell D, Darbandsari A, Zhang A, Ahmadvand P, Jones SJM, Huntsman D, Köbel M, Gilks CB, Singh N, and Bashashati A
- Subjects
- Humans, Female, Artificial Intelligence, Neural Networks, Computer, Carcinoma, Ovarian Epithelial, Deep Learning, Carcinoma pathology, Ovarian Neoplasms diagnosis
- Abstract
Ovarian carcinoma has the highest mortality of all female reproductive cancers and current treatment has become histotype-specific. Pathologists diagnose five common histotypes by microscopic examination, however, histotype determination is not straightforward, with only moderate interobserver agreement between general pathologists (Cohen's kappa 0.54-0.67). We hypothesized that machine learning (ML)-based image classification models may be able to recognize ovarian carcinoma histotype sufficiently well that they could aid pathologists in diagnosis. We trained four different artificial intelligence (AI) algorithms based on deep convolutional neural networks to automatically classify hematoxylin and eosin-stained whole slide images. Performance was assessed through cross-validation on the training set (948 slides corresponding to 485 patients), and on an independent test set of 60 patients from another institution. The best-performing model achieved a diagnostic concordance of 81.38% (Cohen's kappa of 0.7378) in our training set, and 80.97% concordance (Cohen's kappa 0.7547) on the external dataset. Eight cases misclassified by ML in the external set were reviewed by two subspecialty pathologists blinded to the diagnoses, molecular and immunophenotype data, and ML-based predictions. Interestingly, in 4 of 8 cases from the external dataset, the expert review pathologists rendered diagnoses, based on blind review of the whole section slides classified by AI, that were in agreement with AI rather than the integrated reference diagnosis. The performance characteristics of our classifiers indicate potential for improved diagnostic performance if used as an adjunct to conventional histopathology., (© 2022. The Author(s), under exclusive licence to United States & Canadian Academy of Pathology.)
- Published
- 2022
- Full Text
- View/download PDF
45. Author Correction: Failure of human rhombic lip differentiation underlies medulloblastoma formation.
- Author
-
Hendrikse LD, Haldipur P, Saulnier O, Millman J, Sjoboen AH, Erickson AW, Ong W, Gordon V, Coudière-Morrison L, Mercier AL, Shokouhian M, Suárez RA, Ly M, Borlase S, Scott DS, Vladoiu MC, Farooq H, Sirbu O, Nakashima T, Nambu S, Funakoshi Y, Bahcheli A, Diaz-Mejia JJ, Golser J, Bach K, Phuong-Bao T, Skowron P, Wang EY, Kumar SA, Balin P, Visvanathan A, Lee JJY, Ayoub R, Chen X, Chen X, Mungall KL, Luu B, Bérubé P, Wang YC, Pfister SM, Kim SK, Delattre O, Bourdeaut F, Doz F, Masliah-Planchon J, Grajkowska WA, Loukides J, Dirks P, Fèvre-Montange M, Jouvet A, French PJ, Kros JM, Zitterbart K, Bailey SD, Eberhart CG, Rao AAN, Giannini C, Olson JM, Garami M, Hauser P, Phillips JJ, Ra YS, de Torres C, Mora J, Li KKW, Ng HK, Poon WS, Pollack IF, López-Aguilar E, Gillespie GY, Van Meter TE, Shofuda T, Vibhakar R, Thompson RC, Cooper MK, Rubin JB, Kumabe T, Jung S, Lach B, Iolascon A, Ferrucci V, de Antonellis P, Zollo M, Cinalli G, Robinson S, Stearns DS, Van Meir EG, Porrati P, Finocchiaro G, Massimino M, Carlotti CG, Faria CC, Roussel MF, Boop F, Chan JA, Aldinger KA, Razavi F, Silvestri E, McLendon RE, Thompson EM, Ansari M, Garre ML, Chico F, Eguía P, Pérezpeña M, Morrissy AS, Cavalli FMG, Wu X, Daniels C, Rich JN, Jones SJM, Moore RA, Marra MA, Huang X, Reimand J, Sorensen PH, Wechsler-Reya RJ, Weiss WA, Pugh TJ, Garzia L, Kleinman CL, Stein LD, Jabado N, Malkin D, Ayrault O, Golden JA, Ellison DW, Doble B, Ramaswamy V, Werbowetski-Ogilvie TE, Suzuki H, Millen KJ, and Taylor MD
- Published
- 2022
- Full Text
- View/download PDF
46. Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma.
- Author
-
Topham JT, Tsang ES, Karasinska JM, Metcalfe A, Ali H, Kalloger SE, Csizmok V, Williamson LM, Titmuss E, Nielsen K, Negri GL, Spencer Miko SE, Jang GH, Denroche RE, Wong HL, O'Kane GM, Moore RA, Mungall AJ, Loree JM, Notta F, Wilson JM, Bathe OF, Tang PA, Goodwin R, Morin GB, Knox JJ, Gallinger S, Laskin J, Marra MA, Jones SJM, Schaeffer DF, and Renouf DJ
- Subjects
- Bile Ducts, Intrahepatic, Humans, Mutation, Proto-Oncogene Proteins p21(ras) genetics, Transcription Factors genetics, Pancreatic Neoplasms, Adenocarcinoma pathology, Bile Duct Neoplasms genetics, Carcinoma, Pancreatic Ductal pathology, Cholangiocarcinoma genetics, Pancreatic Neoplasms pathology
- Abstract
Oncogenic KRAS mutations are absent in approximately 10% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) and may represent a subgroup of mPDAC with therapeutic options beyond standard-of-care cytotoxic chemotherapy. While distinct gene fusions have been implicated in KRAS wildtype mPDAC, information regarding other types of mutations remain limited, and gene expression patterns associated with KRAS wildtype mPDAC have not been reported. Here, we leverage sequencing data from the PanGen trial to perform comprehensive characterization of the molecular landscape of KRAS wildtype mPDAC and reveal increased frequency of chr1q amplification encompassing transcription factors PROX1 and NR5A2. By leveraging data from colorectal adenocarcinoma and cholangiocarcinoma samples, we highlight similarities between cholangiocarcinoma and KRAS wildtype mPDAC involving both mutation and expression-based signatures and validate these findings using an independent dataset. These data further establish KRAS wildtype mPDAC as a unique molecular entity, with therapeutic opportunities extending beyond gene fusion events., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
47. Early-stage economic analysis of research-based comprehensive genomic sequencing for advanced cancer care.
- Author
-
Weymann D, Laskin J, Jones SJM, Roscoe R, Lim HJ, Renouf DJ, Schrader KA, Sun S, Yip S, Marra MA, and Regier DA
- Abstract
Genomic research is driving discovery for future population benefit. Limited evidence exists on immediate patient and health system impacts of research participation. This study uses real-world data and quasi-experimental matching to examine early-stage cost and health impacts of research-based genomic sequencing. British Columbia's Personalized OncoGenomics (POG) single-arm program applies whole genome and transcriptome analysis (WGTA) to characterize genomic landscapes in advanced cancers. Our cohort includes POG patients enrolled between 2014 and 2015 and 1:1 genetic algorithm-matched usual care controls. We undertake a cost consequence analysis and estimate 1-year effects of WGTA on patient management, patient survival, and health system costs reported in 2015 Canadian dollars. WGTA costs are imputed and forecast using system of equations modeling. We use Kaplan-Meier survival analysis to explore survival differences and inverse probability of censoring weighted linear regression to estimate mean 1-year survival times and costs. Non-parametric bootstrapping simulates sampling distributions and enables scenario analysis, revealing drivers of incremental costs, survival, and net monetary benefit for assumed willingness to pay thresholds. We identified 230 POG patients and 230 matched controls for cohort inclusion. The mean period cost of research-funded WGTA was $26,211 (SD: $14,191). Sequencing costs declined rapidly, with WGTA forecasts hitting $13,741 in 2021. The incremental healthcare system effect (non-research expenditures) was $5203 (95% CI: 75, 10,424) compared to usual care. No overall survival differences were observed, but outcome heterogeneity was present. POG patients receiving WGTA-informed treatment experienced incremental survival gains of 2.49 months (95% CI: 1.32, 3.64). Future cost consequences became favorable as WGTA cost drivers declined and WGTA-informed treatment rates improved to 60%. Our study demonstrates the ability of real-world data to support evaluations of only-in-research health technologies. We identify situations where precision oncology research initiatives may produce survival benefit at a cost that is within healthcare systems' willingness to pay. This economic evidence informs the early-stage healthcare impacts of precision oncology research., (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
48. TMBur: a distributable tumor mutation burden approach for whole genome sequencing.
- Author
-
Titmuss E, Corbett RD, Davidson S, Abbasi S, Williamson LM, Pleasance ED, Shlien A, Renouf DJ, Jones SJM, Laskin J, and Marra MA
- Subjects
- Humans, Kaplan-Meier Estimate, Microsatellite Instability, Microsatellite Repeats genetics, Neoplasms metabolism, Neoplasms therapy, Patient Selection, Proportional Hazards Models, Reproducibility of Results, Biomarkers, Tumor genetics, Mutation, Neoplasms genetics, Whole Genome Sequencing methods
- Abstract
Background: Tumor mutation burden (TMB) is a key characteristic used in a tumor-type agnostic context to inform the use of immune checkpoint inhibitors (ICI). Accurate and consistent measurement of TMB is crucial as it can significantly impact patient selection for therapy and clinical trials, with a threshold of 10 mutations/Mb commonly used as an inclusion criterion. Studies have shown that the most significant contributor to variability in mutation counts in whole genome sequence (WGS) data is differences in analysis methods, even more than differences in extraction or library construction methods. Therefore, tools for improving consistency in whole genome TMB estimation are of clinical importance., Methods: We developed a distributable TMB analysis suite, TMBur, to address the need for genomic TMB estimate consistency in projects that span jurisdictions. TMBur is implemented in Nextflow and performs all analysis steps to generate TMB estimates directly from fastq files, incorporating somatic variant calling with Manta, Strelka2, and Mutect2, and microsatellite instability profiling with MSISensor. These tools are provided in a Singularity container downloaded by the workflow at runtime, allowing the entire workflow to be run identically on most computing platforms. To test the reproducibility of TMBur TMB estimates, we performed replicate runs on WGS data derived from the COLO829 and COLO829BL cell lines at multiple research centres. The clinical value of derived TMB estimates was then evaluated using a cohort of 90 patients with advanced, metastatic cancer that received ICIs following WGS analysis. Patients were split into groups based on a threshold of 10/Mb, and time to progression from initiation of ICIs was examined using Kaplan-Meier and cox-proportional hazards analyses., Results: TMBur produced identical TMB estimates across replicates and at multiple analysis centres. The clinical utility of TMBur-derived TMB estimates were validated, with a genomic TMB ≥ 10/Mb demonstrating improved time to progression, even after correcting for differences in tumor type (HR = 0.39, p = 0.012)., Conclusions: TMBur, a shareable workflow, generates consistent whole genome derived TMB estimates predictive of response to ICIs across multiple analysis centres. Reproducible TMB estimates from this approach can improve collaboration and ensure equitable treatment and clinical trial access spanning jurisdictions., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
49. Whole-genome and transcriptome analysis enhances precision cancer treatment options.
- Author
-
Pleasance E, Bohm A, Williamson LM, Nelson JMT, Shen Y, Bonakdar M, Titmuss E, Csizmok V, Wee K, Hosseinzadeh S, Grisdale CJ, Reisle C, Taylor GA, Lewis E, Jones MR, Bleile D, Sadeghi S, Zhang W, Davies A, Pellegrini B, Wong T, Bowlby R, Chan SK, Mungall KL, Chuah E, Mungall AJ, Moore RA, Zhao Y, Deol B, Fisic A, Fok A, Regier DA, Weymann D, Schaeffer DF, Young S, Yip S, Schrader K, Levasseur N, Taylor SK, Feng X, Tinker A, Savage KJ, Chia S, Gelmon K, Sun S, Lim H, Renouf DJ, Jones SJM, Marra MA, and Laskin J
- Subjects
- Gene Expression Profiling, Genomics methods, Humans, Mutation, Precision Medicine methods, RNA, Transcriptome, Neoplasms drug therapy, Neoplasms genetics
- Abstract
Background: Recent advances are enabling delivery of precision genomic medicine to cancer clinics. While the majority of approaches profile panels of selected genes or hotspot regions, comprehensive data provided by whole-genome and transcriptome sequencing and analysis (WGTA) present an opportunity to align a much larger proportion of patients to therapies., Patients and Methods: Samples from 570 patients with advanced or metastatic cancer of diverse types enrolled in the Personalized OncoGenomics (POG) program underwent WGTA. DNA-based data, including mutations, copy number and mutation signatures, were combined with RNA-based data, including gene expression and fusions, to generate comprehensive WGTA profiles. A multidisciplinary molecular tumour board used WGTA profiles to identify and prioritize clinically actionable alterations and inform therapy. Patient responses to WGTA-informed therapies were collected., Results: Clinically actionable targets were identified for 83% of patients, of which 37% of patients received WGTA-informed treatments. RNA expression data were particularly informative, contributing to 67% of WGTA-informed treatments; 25% of treatments were informed by RNA expression alone. Of a total 248 WGTA-informed treatments, 46% resulted in clinical benefit. RNA expression data were comparable to DNA-based mutation and copy number data in aligning to clinically beneficial treatments. Genome signatures also guided therapeutics including platinum, poly-ADP ribose polymerase inhibitors and immunotherapies. Patients accessed WGTA-informed treatments through clinical trials (19%), off-label use (35%) and as standard therapies (46%) including those which would not otherwise have been the next choice of therapy, demonstrating the utility of genomic information to direct use of chemotherapies as well as targeted therapies., Conclusions: Integrating RNA expression and genome data illuminated treatment options that resulted in 46% of treated patients experiencing positive clinical benefit, supporting the use of comprehensive WGTA profiling in clinical cancer care., (Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
50. Spruce giga-genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes.
- Author
-
Gagalova KK, Warren RL, Coombe L, Wong J, Nip KM, Yuen MMS, Whitehill JGA, Celedon JM, Ritland C, Taylor GA, Cheng D, Plettner P, Hammond SA, Mohamadi H, Zhao Y, Moore RA, Mungall AJ, Boyle B, Laroche J, Cottrell J, Mackay JJ, Lamothe M, Gérardi S, Isabel N, Pavy N, Jones SJM, Bohlmann J, Bousquet J, and Birol I
- Subjects
- Expressed Sequence Tags, Genome, Plant genetics, Multigene Family genetics, Phylogeny, Picea genetics, Tracheophyta genetics
- Abstract
Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response., (© 2022 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.