1. Photocatalytic action of Ag/TiO2 nanoparticles to emerging pollutants degradation: A comprehensive review
- Author
-
Caroline Zarzzeka, Jonas Goldoni, Jessica do Rocio de Paula de Oliveira, Giane Gonçalves Lenzi, Margarete Dulce Bagatini, and Leda Maria Saragiotto Colpini
- Subjects
Bibliometric analysis ,Nanotechnology ,Visible light ,Photocatalysis ,Water treatment ,Chemistry ,QD1-999 ,Environmental technology. Sanitary engineering ,TD1-1066 - Abstract
Silver (Ag) doped titanium dioxide (TiO2) nanoparticles are promising photocatalysts for the degradation of emerging pollutants. These nanocomposites enhance the photocatalytic activity of TiO2 in visible light, suppress the e-/h+ rearrangement, and enhance their bactericidal properties. This review proposes a bibliometric analysis that elucidates research trends, and important topics on contaminant degradation, analyzes the advantages and limitations of different synthesis techniques (solvothermal, photochemical reduction, sol-gel, and others), their properties to produce Ag/TiO2, and their potential for pollutant degradation. Thus, depending on the technique chosen, Ag doping of TiO2 can offer high stability, recyclability for more than 3 cycles, customized morphologies and sizes, among others. Applications of Ag/TiO2 include wastewater treatment, antibacterial surfaces, food packaging, implants, and others. Advances in the synthesis of Ag/TiO2 photocatalysts offer excellent photocatalytic degradation, between 80 % and 100 %, for organic dyes, hormones, pharmaceuticals, pesticides and other emerging pollutants. Ag/TiO2 photocatalysts show superior degradation rates compared to pure TiO2, with some achieving up to 99 % pollutant removal. The bibliometric analysis performed by Methodi Ordinatio, classifying 267 articles, reveals a foundation of relevant articles, around 35 % of articles published on these topics were published between 2019 and 2021. A complete cost analysis of Ag/TiO2 is considered to determine the feasibility for pilot and large-scale experimentation. These nanocomposites offer a promising solution to address the growing concern about emerging pollutants, disinfection of water, and in the inactivation of pathogenic microorganisms.
- Published
- 2024
- Full Text
- View/download PDF