Aggression is a complex social behaviour that allows individuals to compete for access to limited resources (eg, mates, food and territories). Excessive or inappropriate aggression, however, has become problematic in modern societies, and current treatments are largely ineffective. Although previous work in mammals suggests that aggressive behaviour varies seasonally, seasonality is largely overlooked when developing clinical treatments for inappropriate aggression. Here, we investigated how the hormone melatonin regulates seasonal changes in neurosteroid levels and aggressive behaviour in Siberian hamsters, a rodent model of seasonal aggression. Specifically, we housed males in long-day (LD) or short-day (SD) photoperiods, administered timed s.c. melatonin injections (which mimic a SD-like signal) or control injections, and measured aggression using a resident-intruder paradigm after 9 weeks of treatment. Moreover, we quantified five steroid hormones in circulation and in brain regions associated with aggressive behaviour (lateral septum, anterior hypothalamus, medial amygdala and periaqueductal gray) using liquid chromatography-tandem mass spectrometry. SD hamsters and LD hamsters administered timed melatonin injections (LD-M) displayed increased aggression and exhibited region-specific decreases in neural dehydroepiandrosterone, testosterone and oestradiol, but showed no changes in progesterone or cortisol. Male hamsters also showed distinct associations between neurosteroids and aggressive behaviour, in which neural progesterone and dehydroepiandrosterone were positively correlated with aggression in all treatment groups, whereas neural testosterone, oestradiol and cortisol were negatively correlated with aggression only in LD-M and SD hamsters. Collectively, these results provide insight into a novel neuroendocrine mechanism of mammalian aggression, in which melatonin reduces neurosteroid levels and elevates aggressive behaviour.